Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery

Ziyi Wang,^a Han Liao,^c Hao Wu,^c Beibei Wang,^c Haidong Zhao^{a,*} and Mingqian Tan^{b,c*}

^aThe Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian 116023, China; <u>z.hddl@hotmail.com</u>

^bLiaoning Key Laboratory of Food Biological Technology, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China; <u>2468750030@aq.com</u>;Fax: +86-411-86323262;

^cDivision of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China;

Table S1. Parameters of the lifetime (τ) measurement of BCDs from Tsingtao^R beer

$\tau_{i}(ns)$	A _i (%)
0.76	25.13
3.93	53.40
14.85	21.47

Fluorescence lifetime (τ) of the BCDs was calculated using the equation: $\tau = (A_1\tau_I^2 + A_2\tau_2^2 + A_3\tau_3^2)/(A_1\tau_I + A_2\tau_2 + A_3\tau_3)$. The average fluorescence lifetime of BCDs was 9.02 ns, wherein A_i is the fractional contributions of time-resolved decay lifetime of τ_i , i=1, 2, and 3.

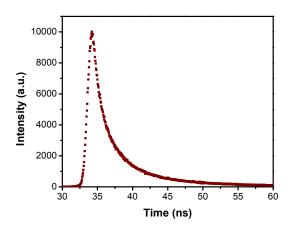


Fig. S1 Fluorescence decay curve of BCDs with a 376 nm laser as excitation source.

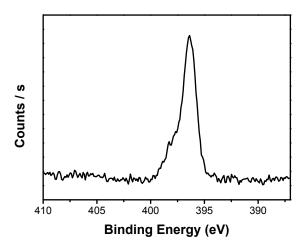
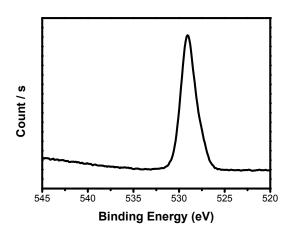



Fig. S2 N1s spectrum of the BCDs

Fig. S3 O1s spectrum of the BCDs.

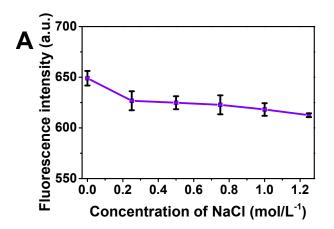


Fig. S4 Effect of ionic strength on the fluorescence (FL) intensity of BCDs

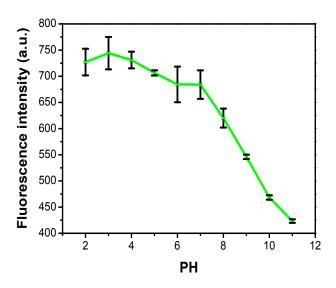
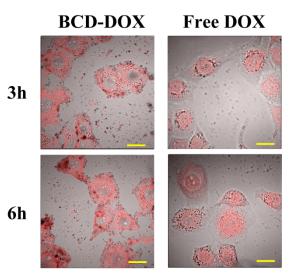



Fig. S5 pH effect on the fluorescence (FL) intensity of BCDs.

Fig. S6 Cellular imaging of MCF-7 cells treated with BCD-DOX or free DOX with 543 nm excitation (Merged fluorescence and bright field images). Scale bar=20 μ m.