Supporting Information

An efficient colorimetric and fluorescent probe for detection fluoride

based on benzothiadiazole derivative

Yanhua Yu^{a*} and Chang-zhi Dong^{a,b}
a. Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China; E-Mail: hpyyh@aliyun.com.Tel: +86(027)84223798
b. University Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France;

Contents

1 ¹ H NMR and ¹³ C NMR copies of products	1
2 Determination of the detection limit5)
3 Fluorescence intensity of probe 3 versus low concentration of F ⁻	5

¹H NMR and ¹³C NMR spectra of compound 1 to 3 Compound 1

Compound 2

Compound 3

Determination of the detection limit

Detection limit = $3\sigma/k$

Where σ is the standard deviation of blank measurement, k is the slop between the absorbance versus F⁻ concentration.

The detection limit was calculated based on the absorption titration. The absorption spectrum of probe 3 was measured by 15 times and the standard deviation of blank measurement was calculated to give 4.87E-4.

To gain the slop, the absorbance at 519 nm was plotted as a concentration of F⁻ from 2.5 to 30 μ M. The slop is 860.12.

So the detection limit was calculated with equation:

Fluorescence intensity of probe 3 versus low concentration of F⁻

Fig. **S1** Relative fluorescence intensity of probe **3** at low concentrations of F⁻ from 5 to 30 μ M in the mixture of acetonitrile and Tris-HCl buffer (v/v = 9:1, pH = 7.5)