Supplementary Information

A Highly-Sensitive Electrochemical Sensor Based on Cu/Cu₂O@Carbon Nanocomposite Structures for Hydrazine Detection

Zhenting Zhao,^a Ying Wang,^a Pengwei Li,^a Shengbo Sang,^a Wendong Zhang,^a Jie Hu *^a and Kun Lian *^{abc}

^a Micro and Nano System Research Center, Information Engineering College, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China. hujie@tyut.edu.cn; liankun@tyut.edu.cn.

^b School of Nano-Science and Nano-Engineering, Suzhou & Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

^c Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana 70806, USA.

Fig. S1 The linear plot of oxidation peak current value vs. hydrazine concentration for Nafion/Cu/Cu₂O@carbon/GCE sensors which modified with different amounts of Cu/Cu₂O@carbon: (a) 340 μ g·cm⁻², (b) 510 μ g·cm⁻², (c) 680 μ g·cm⁻² and (d) 1180 μ g·cm⁻².

Fig. S2 CVs of Nafion/Cu/Cu₂O@carbon/GCE at different scan rates in 0.1M PBS (pH=7.4) with 100 μ M hydrazine. The scan rates are 10, 20, 30, 50, 80, 150, 250, 400 and 600 mV/s; (b) is the linear fitting plot of peak current vs. scan rate.

Fig. S3 The amperometric current responses (6 times reproducible results) of Nafion/Cu/Cu₂O@carbon/GCE for successive addition of hydrazine range from 0.25 μ M to 1700 μ M in 0.1 M PBS (pH=7.4).

Table S1: The correlation coefficients (R_i^2) of calibration curves which obtained from Fig. S3, and the calculated standard deviation of the results.

R_1^2	R_2^2	R_3^2	R_4^2	R ₅ ²	R_6^2
0.99488	0.99278	0.98675	0.9878	0.99283	0.9976
S=0.0038					

Fig. S4 Amperometric current responses (6 times reproducible results) of Nafion/Cu/Cu₂O@carbon/GCE for successive addition of hydrazine range from 3.0 μ M to 800 μ M in 0.1 M PBS which contains 30 μ M interference substances.

Table S2: The correlation coefficients (R_i^2) of calibration curves which obtained from Fig. S4, and the calculated standard deviation of the results.

R_1^2	R_2^2	R_3^2	R_4^2	R_5^2	R_6^2	
0.9861	0.98778	0.99705	0.9856	0.99341	0.9912	
S=0.0041						

Fig. S5 Chronoamprometric current responses for real samples.

Table S3: Preparation of the diluted samples from 0.25 μ M to1700 μ M, which were used in the amperometric (i-t) response experiments.

Concentration/ µM	Continuous dropping amount/µL (5mM)	Continuous dropping amount/µL (100mM)	Continuous dropping amount/µL (N ₂ H ₄ ·H ₂ O)
0.25	5.0		
0.65	8.0		
1.1	9.0		
1.9	16		
2.9	20		
4.1	24		
5.6	30		
7.3	34		
17.3		10	

25	 7.8	
30	 5.0	
38	 8.0	
45	 7.0	
55	 10	
65	 10	
90	 25	
130	 40	
180	 50	
280	 	0.49
500	 	1.10
800	 	1.50
1200	 	1.95
1700	 	2.40