Supporting Information

Electrochemical preparation of three dimensional PEDOT-Cu_xO hybrid for enhanced oxidation and sensitive detection of hydrazine

¹Key Laboratory of Functional Small Organic Molecule, Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China ²College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China

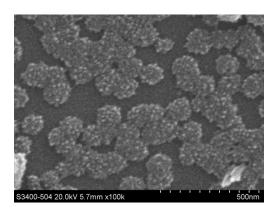


Fig. S1. SEM images of Cu_xO directed deposited on bare GCE.

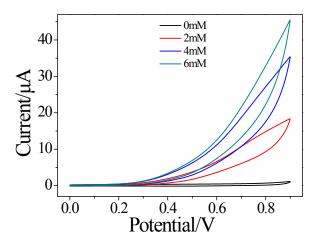
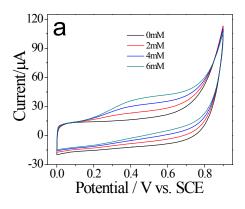



Fig. S2 The cyclic voltammetery of bare GCE in the absence or in the presence of different concentration of hydrazine.

-

^{*} Corresponding authors: Tel: +86-791-88120861, Fax: +86-791-88120861 E-mail: fgxu@jxnu.edu.cn (F.G. Xu), and lwang@jxnu.edu.cn (L. Wang).

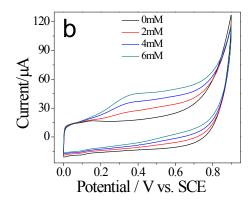


Fig. S3 Cyclic voltammetry of different concentration of hydrazine on planar 2D-PEDOT/GCE (a) or 2D-PEDOT- Cu_xO/GCE (b).

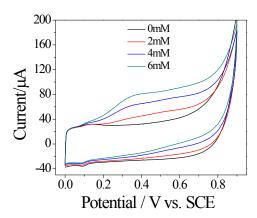


Fig. S4 Cyclic voltammetry of different concentration of hydrazine on 3D-PEDOT/GCE with similar Cu_xO loading amount with that on Cu_xO /GCE shown in Fig. 3a. The Cu_xO loading amount was tuned by changing the electrodeposition time of Cu on modified electrode. The loading amount of Cu_xO on Cu_xO /GCE with deposition time 90s (Fig. 3a) is similar to that on 3D-PEDOT- Cu_xO /GCE with deposition time 45s.

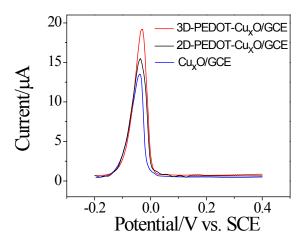


Fig. S5 The stripping voltammetry for Cu comes from PEDOT-Cu_xO/GCE(red curve) or Cu_xO/GCE (blue curve).

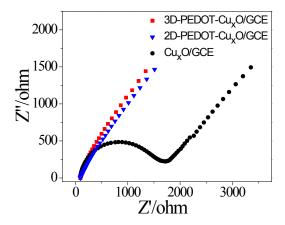


Fig. S6 EIS measurement results of PEDOT-Cu_xO/GCE (red curve) or Cu_xO/GCE (black curve) in 5 mM K_3 Fe(CN)₆ - K_4 Fe(CN)₆ in the presence of 0.1M KCl.

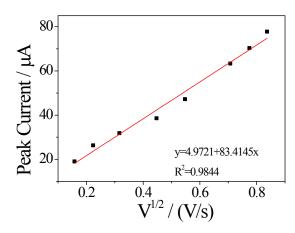


Fig. S7 The current response of hydrazine oxidation versus scan rate obtained from PEDOT- Cu_xO/GCE in pH 8.0 PBS in the presence of 4 mM hydrazine. (Derived from Fig. 4a in manuscript, and the background current were subtracted.)