Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2015

Supplementary materials

Nanoporous anodic aluminum oxide films for UV/Vis detection of noble and non-noble metals

Yuliya E. Silina,^{1*} Tatiana A. Kychmenko,² Marcus Koch¹

¹INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany ²Voronezh State University of Engineering Technologies, Voronezh, Russia

*Corresponding author:

Dr. Yuliya Silina Chemical Analytics, INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany Tel: +49 681 9300-117 Fax: +49 681 9300-242 E-Mail: *yuliya.silina@leibniz-inm.de*

Figure S1. EDX spectra of Al-foil after two-step anodization in 0.6 M sulfosalycilic acid.

Figure S2. Schema of AAO fragment with Al-barrier layer: d – diameter of pore, h- height of pore. *Note:* possible places of Al migration through the micro-cracks within AAO are marked in red. If we assume a medium pore size of 50 nm, a pore distance of 10 nm and cylindrical channels inside the AAO, the porosity is equal to the pore surface ratio 54.5 %.

	-		-				
Element	Water before AAO		Water after AAO		Calibration	R ²	LOD,
/isotopes	Concen-	RSD,	Concen-	RSD,	formula		ppt
	tration,	%	tration, ppt*	%			
	ppt*						
Al ₂₇	-51.4	5.5	2439.0	4.0	Y=14.98·X	R ² =0.9997	100-
					- 350.41		3000
Mg ₂₄	-141.4	3.6	258.2	1.7	Y=9.41·X	R ² =0.9999	100-
					+ 573.40		1500
Mg ₂₅	-128.6	15.6	284.5	5.0	Y=1.24·X	R ² =0.9998	100-
					+74.10		1500
Mg ₂₆	-107.7	3.4	298.9	5.7	Y=1.33·X	R ² =0.9992	100-
					+ 53.36		1500

Table S1. Comparison of Al and Mg contents in distillate water before and after AAO immersion by ICP MS (immersion time 30 min, HR≥10000)

* -results were obtained via subtraction of blind sample (distillate water).