Supporting Information

Redox-responsive Supramolecular Amphiphilies Constructed via Host-guest Interaction for Photodynamic Therapy

Feng Liu, Yufei Ma, Lei Xu, Lichao Liu, Weian Zhang*

Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

*Correspondence to: Weian Zhang (<u>wazhang@ecust.edu.cn</u>)

Scheme S1. The synthesis process of TPPC6-Ada.

Synthesis of Adamantane Terminal Porphyrin (TPPC6-Ada)

TPPC6-Ada reaction TPPC6-OH was prepared by between and 1adamantanecarboxylic acid chloride. TPPC6-OH (0.1 g, 0.137 mmol) was dissolved in 15 mL dry THF, and TEA was added dropwise into the solution. 1-Adamantanecarboxylic acid chloride (0.272 g, 1.37 mmol) was dissolved in 10 mL dry THF, and added dropwise under ice-bath. Then the reaction was performed at room temperature for 4 h. The solution was washed with deionized water three times, extracted with dichloromethane, and dried with anhydrous MgSO₄. Then the solvent was removed by evaporation. The crude product was purified by column chromatography on silica, eluting with petroleum ether/ethyl acetate (5:1, v/v) as the eluent. Yield: 0.097 g (79.1%). ¹H NMR (400 MHz, CDCl₃), δ ppm: 8.87 (m, 8H, β-H), 8.21 (m, 6H, 10, 15, 20-Ar-o-H), 8.11 (m, 2H, 5-Ar-o-H), 7.76 (m, 9H, 10, 15, 20-Ar-m- and p-H), 7.28 (m, 2H, 5-Ar-m-H), 4.26 (t, 2H, -O-CH₂-CH₂-), 3.75 (t, 2H, -CH2-O-), 2.10 (s, 3H, -CH2-CH(CH2)-CH2-), 1.98 (d, 6H, -C(CH2)3-CH(CH2)2-), 1.78 (q, 6H, -CH(CH₂)₂-CH₂-CH(CH₂)₂-), 1.66-1.49 (m, 6H, -CH₂-(CH₂)₃-CH₂-OH), -2.77 (s, 2H, -NH-). The ¹H NMR spectrum of TPPC6-Ada is shown in Fig. S12.

Fig. S1. ¹H NMR spectrum of TPP-OH in CDCl₃.

Fig. S2. ¹³C NMR spectrum of TPP-OH in CDCl₃.

Fig. S3. TOF-MS spectrum of TPP-OH, calcd for $C_{44}H_{30}N_4O$: 630.20; found: 630.2487.

Fig. S4. ¹H NMR spectrum of TPPC6-OH in CDCl₃.

Fig. S5. ¹³C NMR spectrum of TPPC6-OH in CDCl₃.

Fig. S6. TOF-MS spectrum of TPPC6-OH, calcd for $C_{50}H_{42}N_4O_2$: 730.35; found: 730.3384.

Fig. S7. ¹H NMR spectrum of TPPC6-SS-COOH in CDCl₃.

Fig. S8. ¹³C NMR spectrum of TPPC6-SS-COOH in CDCl₃.

Fig. S9. MALDI-TOF-MS spectrum for TPPC6-SS-COOH, calcd for $C_{56}H_{50}N_5O_5S_2$: 923.32; found: 923.3286.

Fig. S10. ¹³C NMR spectrum of TPPC6-SS-Ada in CDCl₃.

Fig. S11. MALDI-TOF-MS spectrum for TPPC6-SS-Ada, calcd for $C_{66}H_{65}N_5O_4S_2$: 1056.44; found: 1056.4514.

Fig. S12. ¹H NMR spectrum of TPPC6-Ada in CDCl₃.

Fig. S13. FT-IR spectra of PEG- β -CD (a), β -CD-N₃ (b) and β -CD-OTs (c).

Fig. S14. ¹H NMR spectrum of PEG- β -CD in DMSO- d_6 .

Fig. S15. Plot of the I_{383}/I_{372} ratio vs different concentrations of TPPC6-SS-Ada/PEG- β -CD micelles.

Fig. S16. Plot of the I_{383}/I_{372} ratio vs different concentrations of TPPC6-Ada/PEG- β -CD micelles.

Fig. S17. SEM images of TPPC6-SS-Ada/PEG- β -CD.

Fig. S18. Hydrodynamic diameter distribution of TPPC6-Ada/PEG- β -CD micelles (a, $D_h = 86.4$ nm, PDI = 0.112), TPPC6-Ada/PEG- β -CD micelles treated without GSH for 24 h (b, $D_h = 92.5$ nm, PDI = 0.140), and with 10 mM of GSH for 4 h (c, $D_h = 94.0$ nm, PDI = 0.162) and 24 h (d, $D_h = 87.7$ nm, PDI = 0.132).

Fig. S19. TEM images of TPPC6-Ada/PEG-β-CD micelles treated with 10 mM of GSH for 24 h.

Fig. S20. The UV-Vis absorption spectrum of TPPC6-SS-Ada in CHCl₃.