Supplementary Information

Amino Acids as Chiral Anionic Ligands for Ruthenium Based Asymmetric Olefin Metathesis

Elisa Ivry,^a Amos Ben-Asuly,^a Israel Goldberg,^b and N. Gabriel Lemcoff*^a

^a Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

^b School of Chemistry, Tel-Aviv University, Tel-Aviv 69978, Israel

Part I. General information	S2
Part II. Synthesis	S 3
Part III. NMR spectra	S7
Part IV. HR-MS data	S23
Part V. X-Ray data	S26
Part VI. Synthesis of Ru-G in DCM	S27
Part VII. Catalytic activity tests	S29
Part VIII. Chiral HPLC data	S32
Part IX. ¹ H-NMR data of anionic ligand exchange	S40

Part I. General information

All reagents were of grade quality, purchased commercially from Sigma-Aldrich, Alfa-Aesar or Fluka and used without further purification. All solvents were dried and distilled prior to use. Purification by column chromatography was performed on Davisil grade chromatographic silica media 60 Å (35-75 μ m, 220-440 mesh). TLC analyses were performed using Merck precoated silica gel (0.2mm) aluminum (backed) sheets. NMR spectra were recorded on Bruker DPX₄₀₀ or DMX₅₀₀ instruments; chemical shifts, given in ppm, are relative to the residual solvent peak.¹ HR-MS data were obtained using a thermoscientific LTQU XL Orbitrap HR-MS (atmospheric-pressure equipped with APCI chemical ionization). Gas chromatography data were obtained using an Agilent 6850 GC equipped with an Agilent 5973 MSD working under standard conditions and an Agilent HP5-MS column. HPLC chiral analyses were performed using Young lin 9100 system equipped with a Reprosil column Chiral-NR, 8μ m, 150x4.5 mm and a PDA detector. Specific rotations were measured by using ADP410 Polarimeter at wavelength λ =589nm and sample concentration "c" has units of g/100ml.

¹ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176.

Part II. Synthesis

Synthesis of silver carboxylate salts

General procedure²

Boc-protected amino acid (1.4eq, 0.5gr) was added to a stirring solution of aqueous NaOH (1.2eq in 1ml H₂O). The mixture was left to stir at r.t for 15 min and an aqueous solution of AgNO₃ (1.0eq in 1ml H₂O) was added dropwise in the dark. White precipitate immediately appeared and after stirring for 15 min at r.t the mixture was filtered and washed with H₂O (1ml x 3), MeOH (1ml x 3) and hexane (1ml x 3). Drying under high vacuum yielded silver carboxylate salts as white solids.

Boc-Glycine silver salt

Boc-Gly (0.50gr, 2.8mmol), NaOH (98mg, 2.4mmol), AgNO₃ (0.35gr, 2.0mmol). White solid (0.51gr, 1.8mmol), 88%. ¹H-NMR (500 MHz, DMSO-d₆, ppm): δ 6.38 (t, J = 5.0 Hz, 1H), 3.43 (d, J = 5.0 Hz, 2H), 1.37 (s, 9H).

Boc-Alanine silver salt

Boc-Ala (0.50gr, 2.6mmol), NaOH (90.6mg, 2.3mmol), AgNO₃ (0.32gr, 1.9mmol). White solid (0.38gr, 1.3mmol) 68%. ¹H-NMR (500 MHz, DMSO-d₆, ppm): δ 6.36 (d, J = 7.0 Hz, 1H), 3.83 (dq, J = 7.5, 7.0 Hz, 2H), 1.36 (s, 9H), 1.21 (d, J = 7.5 Hz, 3H).

Boc-Leucine silver salt

Boc-Leu (0.50gr, 2.2mmol), NaOH (74.6mg, 1.85mmol). MeOH (~0.5ml) was added to increase solubility of un-reacted acid. AgNO₃ (0.267gr, 1.57mmol). White solid (0.442gr, 1.31mmol) 83%. ¹H-NMR (400 MHz, DMSO-d₆, ppm): δ 6.37 (d, J = 8.4 Hz, 1H), 3.88 (ddd, J = 8.8, 8.4, 5.3 Hz, 1H), 1.63 (m, 1H), 1.45 (m, 2H), 1.36 (s, 9H) 0.856 (d, J = 6.8 Hz, 3H), 0.846 (d, J = 6.4, Hz, 3H).

² K. Endo and R. H. Grubbs, J. Am. Chem. Soc., 2011, **133**, 8525.

Boc-Phenylalanine silver salt

Boc-Phe (0.50gr, 1.88mmol), NaOH (64.4mg, 1.62mmol), AgNO₃ (0.229gr, 1.35mmol). White solid (0.437gr, 1.17mmol) 87%. ¹H-NMR (400 MHz, DMSO-d₆, ppm): δ 7.25 – 7.14 (m, 5H), 6.36 (d, J = 8.0 Hz, 1H), 4.05 (ddd, J = 8.4, 8.0, 4.4 Hz, 1H), 3.07 (dd, J = 13.6, 4.4 Hz, 1H), 2.84 (dd, J = 13.6, 8.4 Hz, 1H), 1.31 (s, 9H).

Boc-Valine silver salt

Boc-Val (0.50gr, 2.30mmol), NaOH (78.8mg, 1.97mmol), AgNO₃ (0.279gr, 1.64mmol). White solid (0.254gr, 0.752mmol) 48%. ¹H-NMR (400 MHz, DMSO-d₆, ppm): δ 6.06 (bs, 1H), 3.74 (m, 1H), 2.02 (m, 1H), 1.37 (s, 9H), 0.834 (d, J = 6.8 Hz, 3H), 0.804 (d, J = 6.8 Hz, 3H).

Boc-D-Alanine silver salt

Boc-Ala (0.30gr, 1.59mmol), NaOH (55.6mg, 1.39mmol), AgNO₃ (0.198gr, 1.16mmol). White solid (0.17gr, 0.58mmol) 50%. ¹H-NMR (500 MHz, DMSO-d₆, ppm): δ 6.37 (d, J = 7.5 Hz, 1H), 3.83 (dq, J = 7.5, 7.0 Hz, 2H), 1.36 (s, 9H), 1.20 (d, J = 7.0 Hz, 3H).

Synthesis of ruthenium complexes

General procedure

A solution of commercially available Hoveyda-Grubbs 2nd generation (1.0eq, 50.0 mg, 0.0798mmol) in dry THF (1.3ml) is added at once to Boc-protected amino acid silver salt (2.1eq) in the glovebox at the dark. The solution is left to stir at 37°C. After 3 hours silver chloride is filtered out and solvent evaporated to yield deep purple solid.

Complex Ru-G

Hoveyda-Grubbs 2nd generation (20.0mg, 0.0319mmol) in dry THF (0.7ml), Boc-Gly silver salt (18.9mg, 0.0670mmol). 27.1mg, 0.030mmol, 94%. ¹H-NMR (500 MHz, C₆D₆, ppm): δ 17.99 (s, 1H), 7.47 (dd, J = 7.5, 1.5 Hz, 1H), 7.02 (ddd, J = 8.0, 7.5, 1.5 1H), 6.83 (t, J = 7.0 Hz, 1H), 6.81 (s, 4H), 6.23 (d, J = 8.5 Hz, 1H), 5.14 (bs, 2H), 4.12 (sep, J = 6.0, 1H), 3.80-3.67 (m, 4H), 3.22 (s, 4H), 2.29 (s, 12H), 2.22 (s, 6H), 1.42 (s, 18H), 0.85 (d, J = 6.0, 6H). ¹³C-NMR (100 MHz, C₆D₆, ppm): δ 304.5, 206.2, 174.7, 155.5, 154.7, 143.9, 138.0, 137.7, 137.2, 129.6, 123.3, 122.6, 112.4, 78.3, 74.6, 51.9, 44.6, 28.5, 21.0, 20.7, 18.5. HRMS *m/z* calc. for C₄₅H₆₂N₄O₉Ru: 904.3564, found 904.3546. [α]_D²⁵: 0.00 (*c* = 1.03, toluene).

Complex Ru-A

Hoveyda-Grubbs 2nd generation (50.0mg, 0.0798mmol) in dry THF (1.3ml), Boc-Ala silver salt (49.6mg, 0.168mmol). 71.0mg, 0.076mmol, 95%. ¹H-NMR (500 MHz, C₆D₆, ppm): δ 17.6 (s, 1H), 7.32 (dd, J = 7.5, 1.5 Hz, 1H), 6.99-6.91 (m, 5H), 6.73 (t, J = 7.5 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 5.65 (d, J = 6.5 Hz, 1H), 5.63 (d, J = 6.5 Hz, 1H), 4.35 (m, 2H), 4.10 (sep, J = 6.0, 1H), 3.26-3.19 (m, 4H), 2.41 (s, 6H), 2.25 (s, 6H), 2.18 (s, 6H), 1.443 (s, 9H), 1.437 (s, 9H), 1.38 (d, J = 6.5 Hz, 3H), 1.19 (d, J = 6.5 Hz, 3H), 0.890 (d, J = 6.0 Hz, 3H), 0.883 (d, J = 6.0 Hz, 3H). ¹³C-NMR (100 MHz, C₆D₆, ppm): δ 307.4, 212.0, 177.5, 176.0, 155.3, 155.2, 153.9, 143.8, 138.8, 138.7, 136.2, 129.7, 123.6, 122.3, 111.7, 78.3, 78.0, 74.3, 51.3, 51.2, 50.9, 28.6, 21.2, 20.8, 20.7, 20.0, 19.9, 18.6, 18.5. HRMS *m*/*z* calc. for [C₄₇H₆₅N₄O₉Ru]: 931.3790, found 931.3818. [α]_D²⁵: +38.3 (*c* = 1.04, toluene).

Complex Ru-L

Hoveyda-Grubbs 2^{nd} generation (20mg, 0.0319mmol) in dry THF (1.0 ml), Boc-Leu silver salt (22.7mg, 0.0670mmol). 25.3mg, 0.0249mmol, 77%. ¹H-NMR (500 MHz, C₆D₆, ppm): δ 17.58 (s, 1H), 7.28 (d, J = 7.0, 1H), 7.05-6.96 (m, 5H), 6.72 (t, J = 7.5 Hz, 1H), 6.28 (d, J = 8.5 Hz, 1H), 5.42 (dd, J = 8.4, 3.7 Hz, 2H), 4.55-4.41 (m, 2H), 4.31-4.26 (m, 1H), 3.30-3.26 (m, 4H), 2.50 (s, 6H), 2.29 (s, 6H), 2.26 (s, 6H), 1.48 (s, 9H), 1.45 (s, 9H), 1.10 (d, J = 6.5 Hz, 3H), 1.04-1.01 (m, 6H), 0.909 (d, J = 7.0 Hz, 3H), 0.810 (d, J = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, C₆D₆, ppm): δ 307.1, 212.8,

177.8, 176.6, 155.8, 155.7, 153.8, 143.7, 139.1, 138.9, 138.8, 136.1, 129.8, 123.8, 122.3, 111.5, 78.2, 78.0, 74.4, 53.9, 53.7, 51.1, 44.2, 44.1, 28.6, 28.5, 25.1, 23.8, 23.6, 22.5, 22.3, 21.1, 20.9, 20.8, 18.9, 18.6. HRMS m/z calc. for [C₅₃H₇₇N₄O₉Ru]: 1015.4733, found 1015.4729; [α]_D²⁵: -18.2 (c = 1.10, toluene).

Complex Ru-F

Hoveyda-Grubbs 2nd generation (20mg, 0.0319mmol) in dry THF (1.3ml), Boc-Phe silver salt (24.9mg, 0.0670mmol). 29.8mg, 0.0275mmol, 87%. ¹H-NMR (500 MHz, C₆D₆, ppm): δ 17.70 (s, 1H), 7.36 (d, J = 7.0 Hz, 1H), 7.14-6.90 (m, 15H), 6.79 (t, J = 7.4 Hz, 1H), 6.28 (d, J = 8.0 Hz, 1H), 5.33 (dd, J = 16.9, 7.7 Hz, 2H), 4.70-4.62 (m, 2H), 4.16-4.11 (m, 1H), 3.28-3.22 (m, 4H), 2.92 (dd, J = 13.5, 7.0 Hz, 2H), 2.70 (dd, J = 13.5, 6.0 Hz, 2H), 2.43 (s, 6H), 2.28 (s, 6H), 2.23 (s, 6H), 1.40 (s, 18H), 0.967 (d, J = 6.0, 3H), 0.822 (d, J = 5.5, 3H). ¹³C-NMR (100 MHz, C₆D₆, ppm): δ 307.6, 212.4, 175.9, 175.0, 155.4, 155.3, 153.9, 143.6, 139.1, 138.9, 138.8, 138.5, 136.0, 130.2, 130.0, 129.8, 129.7, 129.0, 128.2, 127.9, 126.1, 124.0, 122.5, 111.9, 78.3, 78.1, 56.6, 55.8, 51.1, 39.4, 39.0, 28.6, 28.4, 21.2, 20.8, 20.7, 18.7, 18.6. HRMS *m*/*z* calc. for [C₅₉H₇₃N₄O₉Ru]: 1083.4431, found 1083.4416. [α]²⁵: -37.5 (*c* = 1.07, toluene).

Complex Ru-DA

Hoveyda-Grubbs 2nd generation (50mg, 0.0798mmol) in dry THF (1.3ml), Boc-Ala silver salt (49.6mg, 0.168mmol). 58.3mg, 0.0625mmol, 78%. ¹H-NMR (500 MHz, C₆D₆, ppm): δ 17.6 (s, 1H), 7.31 (dd, J = 7.5, 1.0 Hz, 1H), 6.99-6.91 (m, 5H), 6.73 (t, J = 7.5 Hz, 1H), 6.20 (d, J = 8.5 Hz, 1H), 5.67 (d, J = 6.0 Hz, 1H), 5.64 (d, J = 6.5 Hz, 1H), 4.36 (m, 2H), 4.10 (sep, J = 6.0, 1H), 3.29-3.19 (m, 4H), 2.41 (s, 6H), 2.25 (s, 6H), 2.18 (s, 6H), 1.443 (s, 9H), 1.436 (s, 9H), 1.38 (d, J = 7.0 Hz, 3H), 1.19 (d, J = 6.5 Hz, 3H), 0.890 (d, J = 6.0 Hz, 3H), 0.884 (d, J = 6.0 Hz, 3H). ¹³C-NMR (100 MHz, C₆D₆, ppm): δ 307.4, 212.0, 177.5, 176.0, 155.3, 155.2, 153.9, 143.8, 138.8, 138.7, 136.2, 129.7, 123.6, 122.3, 111.7, 78.3, 78.0, 74.3, 51.3, 51.2, 50.9, 28.6, 21.2, 20.8, 20.7, 20.0, 19.9, 18.6, 18.5. HRMS *m*/*z* calc. for [C₄₇H₆₅N₄O₉Ru]: 931.3790, found 931.3822; [α]²²/_D: -38.5 (*c* = 1.04, toluene).

Boc-Glycine silver salt

Boc-Alanine silver salt

Boc-Leucine silver salt

Boc-Phenylalanine silver salt

Complex Ru-G

Complex Ru-A

Complex Ru-DA

Any attempt to synthesize complexes bearing Boc-valine or Boc-proline as anionic ligands were unsuccessful. The ¹H-NMRs (400MHz) of the reaction crudes disclosed a mixture of carbenes.

Figure 1. Synthesis with Boc-valine silver salt.

Figure 2. Synthesis with Boc-proline silver salt.

Complex Ru-G

Complex Ru-DA

Part V. X-Ray data

Crystals of **Ru-G** suitable for x-ray diffraction were grown by slow diffusion of pentane into ether solution of the complex. CIF files are attached separately.

Chemical formula	$C_{90}H_{124}N_8O_{18}Ru_2$
Formula weight	1808.11
Temperature (K)	110
Crystal system	Triclinic
Space group	P -1
a (Å)	16.0973(18)
<i>b</i> (Å)	18.0969(19)
<i>c</i> (Å)	20.125(2)
α (°)	90.430
β (°)	113.250
γ (°)	99.817
$V(\text{\AA}^3)$	5289.5(10)
Ζ	2
$\rho (\mathrm{g \ cm}^{-3})$	1.135
$\mu (\text{mm}^{-1})$	0.345
<i>F</i> (000)	1904.0
Radiation	ΜοΚα
Wavelength	0.71073
<i>hkl</i> range	$h \le 19$
	$k \leq 21$
	$l \leq 23$
No. of reflections	10863
No. of parameters	1091
$w R_2$	0.2245

Part VI. Synthesis of Ru-G in DCM

Synthesis of **Ru-G**, as specified in the general procedure, in DCM-d₂, was followed by ¹H-NMR (500MHz) (Figure 3). Inspection of the benzylidene shift showed that after 5 hours the reaction does not complete and after 24 hours the complex decomposes as indicated by the 2-isopropoxybenzaldehyde peak of the decomposition product.³ Synthesis of **Ru-G** as specified in the general procedure in THF-d₈ was followed by ¹H-NMR (500MHz) as well (Figure 4). As can be seen, the reaction is complete after only 3 hours, yielding a single carbene peak of the desired product **3**. Subsequently, a sample from the isolated product was taken to the NMR in DCM-d₂. Disproportionation of the di-substituted complex **3** to the mono-substituted complex **2** was observed. This indicates that DCM is not a suitable solvent for the synthesis of the chiral complexes as it facilitates a degenerate ligand exchange of the anionic ligands, in accordance with previous work by Blechert⁴ and co-workers and Braddock and co-workers.⁵

Scheme 1. Synthesis of Ru-G starting from Grubbs-Hoveyda 2nd generation

³ (a) M. Kim, M. –S. Eum, M. Y. Jin, K. –W. Jun, C. W. Lee, K. A. Kuen, C. H. Kim and C. S. Chin, *J. Organomet. Chem.*, 2004, **689**, 3535; (b) S. B. Garber, J. S. Kingsbury, B. L. Gray and A. H. Hoveyda , *J. Am. Chem. Soc.*, 2000, **122**, 8168.

⁴ K. Vehlow, S. Maechling, K. Köhler and S. Blechert, *Tetrahedron Lett.*, 2006, **47**, 8617.

⁵ K. Tanaka, V. P. W. Böhm, D. Chadwick, M. Roeper and D. C. Braddock, *Organometallics*, 2006, **25**, 5696.

Figure 3. Reaction progress for the synthesis of Ru-G in DCM-d₂

Figure 4. Reaction progress for the synthesis of Ru-G in THF-d₈

Part VII. Catalytic activity tests

General procedure of AROCM of 1

Substrate 1 was prepared according to literature; product 3 is a known compound.⁶

To a solution of **1** (20.0mg, 0.122mmol) and styrene (136mg, 1.31mmol) in THF (1.5ml), complex **Ru-A** (8.9mg, 9.55 μ mol, 7.8mol%) in dry THF (0.5ml), (0.056M) was added in the glovebox and the mixture was left to stir at 37°C for 2 hours. Reaction was quenched with ethyl vinyl ether. The solvent was evaporated and the crude was purified by flash chromatography with 50% Et₂O/pentane to obtain product **3**. Conversions were monitored by GC-MS and *ee* was determined by HPLC.

General procedure of ARCM of 2

Substrate 2 was prepared according to literature; product 4 is a known compound.⁷

To triene **2** (9.7mg, 0.054mmol) complex **Ru-A** (4 mg, 4.3 μ mol, 8.0mol%) in dry THF (1.0ml, 0.056M) was added in the glovebox and the mixture was left to stir at 37°C for 2 hours. Reaction was quenched with ethyl vinyl ether. The solvent was evaporated and the crude was purified by flash chromatography with 5% Et₂O/pentane to obtain product **4**. Conversions were monitored by GC-MS and *ee* was determined by HPLC.

⁶ J. J. Van Veldhuizen, S. B. Garber, J. S. Kingsbury and A. H. Hoveyda, J. Am. Chem. Soc., 2002, **124**, 4954.

⁷ T. W. Funk, J. M. Berlin and R. H. Grubbs, J. Am. Chem. Soc., 2006, **128**, 1840.

		tomponotore			aanvandier	
entry	catalyst	(°C)	solvent	additive ^a	[%]	ee [%]
1	Hoveyda- Grubbs II ^b	37	THF	-	100	0
2	Ru-G	37	THF	-	83	0
3	\mathbf{Ru} - \mathbf{F}^{c}	37	THF	-	93	0
4	Ru-L	37	THF	-	100	12
5	Ru-A	37	THF	-	100	20
6	Ru-A	0	THF	-	15	27
7	Ru-DA	37	THF	-	100	20
8	Ru-DA	0	THF	-	10	28
9	Ru-A	37	THF	Ala-OAg	89^d	34
10	Ru-A	37	benzene	-	92^d	44
11	Ru-A	37	benzene	Ala-OAg	63 ^{<i>d</i>}	56
12	Ru-A	37	benzene/hexane 1:1	Ala-OAg	0	n.a.
13	Ru-A	37	benzene/hexane 2:1	Ala-OAg	0	n.a.

Data for ARCM under different conditions:

ARCM conditions as specified in the general procedure. ^{*a*}40mol% in respect to **Ru-A** ^{*b*}2.5 mol% ^{*c*}7.0 mol% ^{*d*}accompanied by cycloisomerization products.

General procedure of CM of styrene

To a solution of styrene (12.5µl, 0.11mmol) in dry solvent (1.0ml), complex **Ru-A** (8 mg, 8.6µmol, 7.8mol%) in dry solvent (1.0ml, 0.056M) was added in the glovebox and the mixture was left to stir at 37°C. Reaction was quenched with ethyl vinyl ether. Conversions and E/Z ratio were monitored by GC-MS.

Data for CM under different conditions:

entry	catalyst	solvent	t (hours)	additive ^a	conversion [%]	E:Z
1	Hoveyda- Grubbs II ^b	benzene	24	-	87	1:0
2	Ru-A	THF	24	Ala-OAg	36	1:0
3	Ru-A	benzene	48	Ala-OAg	38	1:0

CM conditions as specified in the general procedure. ^{*a*}40mol% in respect to **Ru-A** ^{*b*}2.5 mol%.

Part VIII. Chiral HPLC data

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 0% ee.

ARCM product received by **Ru-G**:

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 0% ee.

ARCM product received by **Ru-A**:

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 20% ee.

ARCM product received by **Ru-L**:

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 12% ee.

ARCM product received by **Ru-F**:

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 0% ee.

ARCM product received by **Ru-DA**:

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 20% ee.

ARCM product received by **Ru-A** at 0°C:

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 27% ee.

ARCM product received by **Ru-DA** at 0°C:

Conditions: 210nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 28% ee.

ARCM product received by **Ru-A** with excess Boc-Ala silver salt:

Conditions: 220nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 34% ee.

ARCM product received by **Ru-A** in benzene:

Conditions: 220nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 44% ee.

ARCM product received by **Ru-A** in benzene with excess Boc-Ala silver salt:

Conditions: 220nm, hexane/isopropanol 98:2, flow, 0.6ml/min, 56% ee.

AROCM promoted by **Hoveyda-Grubbs-II**:

Conditions: 254nm, hexane/isopropanol 92:8, flow, 0.75ml/min, 0% ee.

AROCM product received by **Ru-G**:

Conditions: 254nm, hexane/isopropanol 92:8, flow, 0.75ml/min, 0% ee.

AROCM product received by **Ru-A**:

Conditions: 254nm, hexane/isopropanol 92:8, flow, 0.75ml/min, 4% ee.

AROCM product received by **Ru-F**:

Conditions: 254nm, hexane/isopropanol 92:8, flow, 0.75ml/min, 4% ee.

AROCM product received by **Ru-DA**:

Conditions: 254nm, hexane/isopropanol 92:8, flow, 0.75ml/min, 4% ee.

Part IX. ¹H-NMR data of anionic ligand exchange

In the glove box, **Ru-A** complex (6.45mg, 6.92 μ mol, 1.0eq) in THF-d₈ (0.2ml) was added to an NMR-tube charged with Boc-Gly-OAg (4.20mg, 1.49x10⁻⁵ mol, 2.1eq) in THF-d₈ (0.3ml). Reaction was followed by ¹H-NMR (400MHz).

Ratio of carbene peaks:

	Ru-A	-	-	Ru-G
	17.37ppm	17.57ppm	17.49ppm	17.74ppm
10 min	1.00	0.52	0.30	0.18
2 hours	1.00	0.63	0.40	0.29

Ligand exchange for Ru-F with Boc-Glycine silver salt

In the glove box, Boc-Gly-OAg (8.40mg, 2.97×10^{-5} mol, 2.1eq) was added to an NMR-tube charged with **Ru-F** complex (15.1mg, 1.39×10^{-5} mol, 1.0eq) and THF-d₈ (1.0ml). Reaction was followed by ¹H-NMR (400MHz).

Ratio of carbene peaks:

	Ru-F	-	-	Ru-G
	17.48ppm	17.46ppm	17.55ppm	17.74ppm
10 min	1.00	0.70	0.31	0.13
2 hours	1.00	1.12	0.51	0.43

After 2 hours the amount of the original Ru complex according to the ¹H-NMR (400MHz) benzylidene signal in the **Ru-F** experiment is less than the amount of original Ru complex in **Ru-A** when Boc-glycine was added in both cases.