Supporting Information

Manganese catalyzed C–H functionalization of indoles with alkynes to synthesize bis/trisubstituted indolylalkenes and carbazoles: the acid is the key to control selectivity

Lijun Shi,^{a,b} Xiang Zhong,^b Houde She,^a Ziqiang Lei*^a and Fuwei Li*^b

^a Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. Fax: +86-931-7975121; E-mail: <u>Leizq@nwnu.edu.cn</u>

^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China. Fax: (+86)-931-4968129; Email: <u>fiweili@licp.cas.cn</u>

- 1. General information
- General procedure for manganese-catalyzed alkenylation of N-2-Pyrimidylindole with alkynes.
- 3. General procedure for the manganese-catalyzed [2+2+2] cycloaddition of various indoles to phenylacetylene.
- 4. Optimization of the reaction conditions for carbazole.
- 5. Procedure for the synthesis of Mn-complex A.
- 6. Procedure for deuterium-labeling experiments and kinetic isotope effect experiments.
- 7. GC analysis of the gas composition of the reaction and GC-MS analysis of the styrene.
- 8. Characterization data for products.
- 9. References
- 10. ¹H NMR and ¹³C NMR copies of products.

1. General information

All solvents before use were dried and degassed by standard methods and stored under nitrogen. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. N-2-pyridylindole, N-2-Pyrimidylpyrrole and N-2-Pyrimidylindoles used here were prepared according to the reported methods.¹ NMR spectra of the products were recorded using a Bruker Avance TM III spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C in CDCl₃ unless otherwise noted. High resolution mass spectrum (HRMS) were obtained on a Bruker Daltonics micro TOF-Q^{II} spectrometer. High-performance liquid chromatography (HPLC) analysis (acetonitrile/H₂O = 75/25, 0.8 mL/min, λ = 254 nm) was performed by Agilent 1260 Infinity with an Agilent ZORBAX C18 column using biphenyl as inner standard for product **4a**. Isolated yield was obtained by column chromatography (300-400 mesh), and Ethyl acetate/ Petroleum ether was used as the eluent.

2. General procedure for Mn-catalyzed alkenylation of indoles with alkynes.

A flame-dried 50 mL Young-type tube with a magnetic stir bar was charged with N-2pyrimidylindole (**1a**) (0.2 mmol), phenylacetylene (**2a**) (0.3 mmol), MnBr(CO)₅ (0.02 mmol), PhCO₂H (0.04 mmol), N,N-diisopropylethylamine (DIPEA) (0.04 mmol) and diethyl ether (1.0 mL). The reaction mixture was stirred vigorously at 80 °C for 12 h under argon atmosphere. After cooling to room temperature, the reaction mixture was directly loaded onto a silica gel column to afford the desired product (**3aa**).

3. General procedure for the manganese-catalyzed addition of various indoles to phenylacetylenes.

A flame-dried 50 mL Young-type tube with a magnetic stir bar was charged with N-2pyrimidylindole (**1a**) (0.3 mmol), phenylacetylene (**2a**) (0.75 mmol), MnBr(CO)₅ (0.06 mmol), DIPEA (0.06 mmol) and diethyl ether (1.0 mL). The reaction mixture was stirred vigorously at 80 °C for 24 h under argon atmosphere. After cooling to room temperature, the reaction mixture was directly loaded onto a silica gel column to afford the desired product (**4a**).

4. Optimization of the reaction conditions for carbazole.

Table S1. Survey of the reaction parameters ^a

4	Piperidine	Et ₂ O	100/6h	15.1
5	DBU	Et ₂ O	100/6h	5.3
6	DABCO	Et ₂ O	100/6h	21.3
7	Pyridine	Et ₂ O	100/6h	15.2
8	DIPEA	Et ₂ O	100/6h	29.8
9	NEt ₃	Et ₂ O	100/6h	28.9
10	'BuOk	Et ₂ O	100/6h	22.8
11	BuNH ₂	Et ₂ O	100/6h	5.8
12	DIPEA	Et ₂ O	100/6h	29.8
13	DIPEA	Toluene	100/6h	13.9
14	DIPEA	DMSO	100/6h	trace
15	DIPEA	DMAc	100/6h	2.96
16	DIPEA	Toluene	100/6h	6.8
17 ^c	DIPEA	Et ₂ O	100/12h	35.8
18^{d}	DIPEA	Et ₂ O	100/12h	36.6
19	DIPEA	Et ₂ O	100/12h	37.2
20	DIPEA/TBAB	Et ₂ O	100/12h	12
21	DIPEA/(PhCO ₂) ₂	Et ₂ O	100/12h	25
22	DIPEA /Pyridine	Et ₂ O	100/12h	14.1
23	DIPEA /(Ph) ₃ P	Et ₂ O	100/12h	18.1
24	DIPEA /(Py)2	Et ₂ O	100/12h	12.9
25	DIPEA/4A	Et ₂ O	100/12h	36.3
26	DIPEA/PhCO ₂ H	Et ₂ O	100/12h	7
27	DIPEA/Ag(TFA)	Et ₂ O	100/12h	n.r.
28	DIPEA	Et ₂ O	80/12h	38.7
29	DIPEA	Et ₂ O	50/12h	n.r.
30 ^e	DIPEA	Et ₂ O	80/12h	46(20)
31 ^e	DIPEA	Et ₂ O	80/24h	58(29)67
32 ^e	DIPEA	Et ₂ O	80/36h	(18)

^{*a*}Reaction conditions: 0.2 mmol of **1a**, 2.5equiv **2a**, 10% mol of MnBr(CO)₅, 0.20 equiv DIPEA and PhCO₂H, 1 mL of solvent, Argon atmosphere. ^{*b*}The yields were determined by HPLC analysis with biphenyl as an internal standard. ^{*c*} under the CO atmosphere. ^{*d*} under O₂ atmosphere. ^{*e*}20% mol of catalyst, recovery yields of **1a** in italics.

5. Procedure for the synthesis of Mn-complex A.

To a flame-dried Teflom-screw-capped tube was equipped with a magnetic stie bar. 3-methyl-N-2-pyrimidylindole (**1j**) (0.3 mmol), $MnBr(CO)_5$ (0.3 mmol), DIPEA (0.36 mmol) were added to 2.0 mL diethyl ether under argon atmosphere. The closed tube was put into a pre-heated oil bath at 80 °C and stirred for 12 h. After cooling to room temperature, the reaction mixture was directly loaded onto a silica gel column to afford the five-membered manganacycle Mn-A.

6. Procedure for deuterium-labeling experiments and kinetic isotope effect (KIE)

experiments.

To a flame-dried Teflom-screw-capped tube was equipped with a magnetic stie bar. 3-methyl-N-2-pyrimidylindole (1j) (0.2 mmol), MeOD (0.3 mmol), MnBr(CO)₅ (0.06 mmol) , DIPEA (0.06 mmol) and PhCO₂H (0.06 mmol) were added to 1.0 mL diethyl ether under argon atmosphere. The closed tube was put into a pre-heated oil bath at 80 °C and stirred for 12 h. After cooling to room temperature, the reaction mixture was directly loaded onto a silica gel column to afford the deuterium-labeling product. Without the acid addition, all of 1a was recovered.

Kinetic isotope effect (KIE) experiments:

1) To a flame-dried Teflom-screw-capped tube was equipped with a magnetic stie bar. 3-methyl-N-2-pyrimidylindole (**1j**) and D-3-methyl-N-2-pyrimidylindole (D-**1j**) (1:1) (0.2 mmol), phenylacetylene (0.1 mmol), MnBr(CO)₅ (0.06 mmol) , DIPEA (0.06 mmol) and PhCO₂H (0.06 mmol) were added to 1.0 mL diethyl ether under argon atmosphere. The closed tube was put into a pre-heated oil bath at 80 °C and stirred for 12 h. After cooling to room temperature, the reaction mixture was directly loaded onto a silica gel column to afford the deuterium-labeling product. The KIE value was determined by NMR.

2) Two parallel reactions of **2a** with **1j** and D-**1j** respectively were performed to determine the corresponding KIE value. **1j** (0.2 mmol) and D-**1j** (0.2 mmol) were placed in a flame-dried Schlenk tube equipped with a magnetic stir bar, respectively. Then to both tubes were added the same mixture of **2a** (0.3 mmol), MnBr(CO)₅ (0.06 mmol), DIPEA (0.06 mmol) and PhCO₂H (0.06 mmol) in 2.0 mL 1-butoxybutane. The closed tube was put into a pre-heated oil bath at 50 °C under argon atmosphere. Each reaction was sampled at the following indicated points and analyzed by HPLC with the biphenyl as inner standard. And the results and curves are shown in the below.

2)	Г 1.	Me H N N N N N N N N N N N N N	+ Ph 1.5 ec	MnBr PhCC (ⁿ Bu	$\frac{\text{HBr}(\text{CO})_5 (10\%)}{\text{hCO}_2\text{H}, \text{DIPEA}} \xrightarrow{\text{N}} N$ $\frac{\text{N}}{\text{Bu})_2\text{O}, 50 \text{ °C}} \xrightarrow{\text{N}} N$ $3ja$					
	الم الم الم الم	Me N N D-1j 0 eq	+ Ph 2a 1.5 ec	MnBr PhC0 (″Bt	r <u>(CO)₅ (10⁰</u> D₂H, DIPE, J₂O, 50 °C	%) A	Me D N N D- 3ja	Ph		
Time (min)	1	2	4	6	10	13	16	20	25	30
HPLC yield of 3ja (%)	0.34	0.50	1.61	5.92	11.0 7	14.95	17.32	22.58	24.18	27.31
Time (min)	40	50	0 60	0						
HPLC yield of 3ja	39.32	2 44.	73 50.	22						

KIE = 1.167/0.288 = 4.05

Thus, the KIE value from the two parallel reactions was determined to be 4.05. So these two types of KIE values were measured by the above experiments indicated that the cleavage of the C– H bond might be the rate-determining step of the reaction.

7. GC analysis of the gas composition of the reaction and GC-MS analysis of the styrene.

Experimental procedure:

A) In an oven-dried Schlenk tube under Ar atmosphere, a mixture of 1j (0.2 mmol), 2a (0.3 mmol), MnBr(CO)₅ (0.02 mmol), DIPEA (0.04 mmol) and PhCO₂H (0.04 mmol) in Et₂O (1 mL) was stirred at 80 °C for 12 h. When the reaction mixture cooled down to room temperature, the mixed gas of the reaction was taken using a syringe and GC analysis of the gas composition was carried out. There was only CO generated after the reaction, according to the GC spectrum of the mixture (Figure S1) and those of the corresponding standard samples (Figures S3 and S4). In addition, the styrene was not detected according to the GC-MS spectrum (Figure S5).

B) In an oven-dried Schlenk tube under Ar atmosphere, a mixture of **1j** (0.2 mmol), **2a** (0.3 mmol), MnBr(CO)₅ (0.04 mmol), DIPEA (0.04 mmol) in Et₂O (1 mL) was stirred at 80 °C for 12 h. When the reaction mixture cooled down to room temperature, the mixed gas of the reaction was taken using a syringe and GC analysis of the gas composition was carried out. The H₂ combined with CO were generated after the reaction, according to the GC spectrum of the mixture (Figure S2). In figure S6, the definitely peak certificated that the styrene was generated in this process.

GC analysis of the gas composition

GC-MS analysis of the styrene

Figure S6. GC-MS spectrum of experiment B

8. Characterization data for products.

(*E*)-1-(pyrimidin-2-yl)-2-styryl-1*H*-indole (**3aa**)

¹H NMR (CDCl₃, 400 MHz): δ 8.85 (d, *J* = 4.8 Hz, 2H), 8.29 (d, *J* = 8.2, 1H), 7.69 (d, *J* = 16.2 Hz, 1H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.18-7.29 (m, 4H), 7.16 (d, *J* = 16.2 Hz, 1H), 7.02 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.2, 138.8, 137.5, 137.4, 129.6, 129.4, 128.6, 127.6, 126.6, 123.5, 122.3, 120.7, 120.4, 117.3, 114.0, 105.3. HRMS (ESI): *m/z* calculated for C₂₀H₁₅N₃Na⁺ [M+Na⁺]: 320.1158, found 320.1145.

(*E*)-2-(4-methylstyryl)-1-(pyrimidin-2-yl)-1*H*-indole (**3ab**)

¹H NMR (CDCl₃, 400 MHz): δ 8.78 (d, *J* = 4.4 Hz, 2H), 8.27 (d, *J* = 8.0, 1H), 7.58-7.64 (m, 2H), 7.37 (d, *J* = 7.9 Hz, 2H), 7.19-7.27 (m, 2H), 7.10-7.14 (m, 4H), 6.98 (s, 1H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.2, 139.1, 137.6, 137.4, 134.8, 129.7, 129.5, 129.4, 126.6, 123.4, 122.3, 120.3, 119.7, 117.3, 114.0, 105.0, 21.4. HRMS (ESI): *m/z* calculated for C₂₁H₁₇N₃Na⁺ [M+Na⁺]: 334.1315, found 334.1306.

(*E*)-2-(4-methoxystyryl)-1-(pyrimidin-2-yl)-1*H*-indole (**3ac**)

¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 4.6 Hz, 2H), 8.26 (d, *J* = 8.0 Hz, 1H), 7.57-7.62(m, 1H), 7.53 (d, *J* = 16.1 Hz, 1H), 7.42 (d, *J* = 8.7 Hz, 2H), 7.18-7.30(m, 2H), 7.16 (t, *J* = 4.7 Hz, 1H), 7.11 (d, *J* = 16.1 Hz, 1H), 6.96 (s, 1H), 6.88 (d, *J* = 8.7 Hz, 1H), 3.81 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.4, 158.4, 158.2, 139.3, 137.4, 130.4, 129.6, 129.4, 128.0, 123.4, 122.4, 120.3, 118.5, 117.4, 114.2, 114.0, 104.8, 55.4. HRMS (ESI): *m*/*z* calculated for C₂₁H₁₈N₃O⁺ [M+H⁺]: 328.1444, found 328.1436.

(*E*)-2-(4-*tert*-butylstyryl)-1-(pyrimidin-2-yl)-1*H*-indole (**3ad**)

¹H NMR (CDCl₃, 400 MHz): δ 8.80 (d, *J* = 4.8 Hz, 2H), 8.27 (d, *J* = 8.2, 1H), 7.64 (d, *J* = 16.4 Hz, 2H), 7.58-7.60 (m, 1H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 4H), 7.19-7.27 (m, 2H), 7.11-7.15 (m, 2H), 6.99 (s, 1H), 1.33 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.4, 158.2, 150.9, 139.2, 137.4, 134.9, 129.64, 129.56, 126.5, 125.7, 123.5, 122.4, 120.4, 120.0, 117.3, 114.1, 105.1, 34.7, 31.4. HRMS (ESI): *m/z* calculated for C₂₄H₂₃N₃Na⁺ [M+Na⁺]: 376.1784, found 376.1773.

(*E*)-2-(3-methylstyryl)-1-(pyrimidin-2-yl)-1*H*-indole (**3ae**)

¹H NMR (CDCl₃, 400 MHz): δ 8.82 (d, *J* = 4.6 Hz, 2H), 8.28 (d, *J* = 8.1, 1H), 7.65 (d, *J* = 16.2 Hz, 1H), 7.60 (d, *J* = 7.3 Hz, 1H), 7.19-7.30 (m, 5H), 7.10-7.16 (m, 2H), 7.06 (d, *J* = 7.4 Hz, 1H), 6.99 (s, 1H), 2.36 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.1, 139.0, 138.2, 137.5, 137.4, 129.8, 129.4, 128.6, 128.5, 127.4, 123.8, 123.5, 122.3, 120.5, 120.4, 117.3, 114.0, 105.2, 21.5. HRMS (ESI): *m/z* calculated for C₂₁H₁₇N₃Na⁺ [M+Na⁺]: 334.1315, found 334.1300.

(*E*)-2-(2-methoxystyryl)-1-(pyrimidin-2-yl)-1*H*-indole (**3af**)

¹H NMR (CDCl₃, 400 MHz): δ 8.78 (d, J = 4.8 Hz, 2H), 8.26 (d, J = 8.1, 1H), 7.71 (d, J = 16.4 Hz, 1H), 7.59 (d, J = 7.1 Hz, 1H), 7.49-7.56 (m, 2H), 7.18-7.26 (m, 3H), 7.10 (t, J = 4.8 Hz, 1H), 7.04 (s, 1H). 6.93 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.2, 157.1, 139.6, 137.4, 129.6, 128.8, 126.74, 126.65, 124.6, 123.4, 122.3, 120.9, 120.8, 120.4, 117.3, 114.0, 111.1, 105.1, 55.6. HRMS (ESI): *m/z* calculated for C₂₁H₁₇N₃ONa⁺ [M+Na⁺]: 350.1264, found 350.1272.

(*E*)-2-(4-chlorostyryl)-1-(pyrimidin-2-yl)-1*H*-indole (**3ag**)

¹H NMR (CDCl₃, 400 MHz): δ 8.84 (d, J = 4.8 Hz, 2H), 8.30 (d, J = 8.0, 1H), 7.67 (d, J = 16.2 Hz, 1H), 7.61 (d, J = 7.3 Hz, 1H), 7.41 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.19-7.28 (m, 3H), 7.09 (d, J = 16.2 Hz, 1H), 7.01 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.5, 158.2, 138.6, 137.5, 136.2, 133.3, 129.5, 128.9, 128.3, 127.9, 123.9, 122.6, 121.4, 120.6, 117.4, 114.2, 105.7. HRMS (ESI): m/z calculated for C₂₀H₁₄ClN₃Na⁺ [M+Na⁺]: 354.0768, found 354.0759.

(*E*)-2-(4-bromostyryl)-1-(pyrimidin-2-yl)-1*H*-indole (**3ah**)

¹H NMR (CDCl₃, 400 MHz): δ 8.84 (d, *J* = 4.8 Hz, 2H), 8.30 (d, *J* = 8.2, 1H), 7.68 (d, *J* = 16.2 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.18-7.30 (m, 3H), 7.07 (d, *J* = 16.2 Hz, 1H), 7.01 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.4, 158.2, 138.5, 137.5, 136.6, 131.9, 129.4, 128.3, 128.2, 123.9, 122.5, 121.5, 121.4, 120.5, 117.4, 114.2, 105.7. HRMS (ESI): *m/z* calculated for C₂₀H₁₄BrN₃Na⁺ [M+Na⁺]: 398.0263, found 398.0258. (*E*)-1-(pyrimidin-2-yl)-2-(2-(thiophen-2-yl)vinyl)-1*H*-indole (**3ai**)

¹H NMR (CDCl₃, 400 MHz): δ 8.84 (d, *J* = 4.7 Hz, 2H), 8.29 (d, *J* = 8.2, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 15.9 Hz, 1H), 7.17-7.28 (m, 5H), 7.07 (d, *J* = 3.2 Hz, 1H), 6.99-7.01 (m, 1H), 6.97 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.4, 158.2, 143.2, 138.4, 137.4, 129.5, 127.8, 126.2, 124.5, 123.7, 122.8, 122.5, 120.43, 120.36, 117.4, 114.1, 105.3. HRMS (ESI): *m/z* calculated for C₁₈H₁₃N₃SNa⁺ [M+Na⁺]: 326.0722, found 326.0715.

(E)-2-(5-chloropent-1-enyl)-1-(pyrimidin-2-yl)-1H-indole (3aj)

¹H NMR (CDCl₃, 400 MHz): δ 8.80 (d, J = 4.8 Hz, 2H), 8.25 (d, J = 8.1, 1H), 7.55 (dd, J = 7.2, 0.7 Hz, 1H), 7.13-7.26 (m, 3H), 6.93 (d, J = 15.7 Hz, 1H), 6.78 (s, 1H), 6.19 (dt, J = 15.6, 7.1 Hz, 1H), 3.64 (t, J = 6.5 Hz, 2H), 2.40 (qd, J = 7.1, 1.2 Hz, 2H), 1.96 (p, J = 6.8 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.1, 138.8, 137.1, 130.0, 129.4, 123.7, 123.3, 122.3, 120.2, 117.3, 114.0, 104.8, 44.4, 31.9, 30.1. HRMS (ESI): m/z calculated for C₁₇H₁₆ClN₃Na⁺ [M+Na⁺]: 320.0925, found 320.0918.

(*E*)-3-(1-(pyrimidin-2-yl)-1*H*-indol-2-yl)allylbenzoate (**3ak**)

¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 4.7 Hz, 2H), 8.29 (d, J = 8.2 Hz, 1H), 8.09 (d, J = 7.5 Hz, 2H), 7.54-7.59 (m, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.35 (d, J = 15.8 Hz, 1H), 7.19-7.28 (m, 2H), 7.13 (t, J = 4.7 Hz, 1H), 6.93 (s, 1H), 6.45 (dt, J = 15.6, 6.2 Hz, 1H), 5.02 (d, J = 6.0 Hz, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 166.5, 158.3, 158.1, 137.4, 137.3, 133.1, 130.4, 129.8, 129.2, 128.5, 126.2, 124.2, 123.8, 122.4, 120.6, 117.3, 114.3, 106.1, 65.5. HRMS (ESI): m/z calculated for C₂₂H₁₇N₃O₂Na⁺ [M+Na⁺]: 378.1213, found 378.1210.

(*E*)-1-(pyrimidin-2-yl)-2-(2-(trimethylsily)vinyl)-1*H*-indole (**3al**)

¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 4.6 Hz, 2H), 8.24 (d, *J* = 8.2 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 19.1 Hz, 1H), 7.15-7.27 (m, 3H), 6.94 (s, 1H), 6.49 (d, *J* = 19.1 Hz, 1H), 0.15 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.1, 140.2, 137.4, 135.3, 130.8, 129.2, 123.7, 122.3, 120.6, 117.4, 114.0, 105.7, -1.1. HRMS (ESI): *m/z* calculated for C₁₇H₁₉N₃SiNa⁺ [M+Na⁺]: 316.1240, found 316.1237.

(E)-2-(1, 2-diphenylvinyl)-1-(pyrimidin-2-yl)-1*H*-indole (**3am**)

¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 4.6 Hz, 2H), 8.04 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 6.9 Hz, 1H), 7.08-7.29 (m, 9H), 7.01-7.06 (m, 4H), 6.88 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ

158.1, 157.6, 142.8, 138.6, 137.9, 137.2, 135.4, 130.5, 129.8, 128.9, 128.8, 128.0, 127.8, 127.3, 127.0, 123.9, 122.1, 120.7, 117.2, 112.9, 110.1. HRMS (ESI): m/z calculated for C₂₆H₁₉N₃Na⁺ [M+Na⁺]: 396.1471, found 396.1472.

(E)-2-(1-phenylprop-1-en-2-yl)-1-(pyrimidin-2-yl)-1H-indole (3an)

¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.8 Hz, 2H), 8.22 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.35 (d, J = 4.4 Hz, 4H), 7.18-7.30 (m, 3H), 7.12 (dt, J = 4.8, 1.0 Hz, 1H), 6.74 (s, 1H), 6.66 (s, 1H), 2.10 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.5, 158.4, 144.6, 138.0, 137.9, 131.4, 129.4, 129.3, 129.2, 128.3, 126.7, 123.6, 122.3, 120.6, 117.5, 113.4, 107.4, 19.3. HRMS (ESI): m/z calculated for C₂₁H₁₇N₃Na⁺ [M+Na⁺]: 334.1315, found 334.1298.

Diethyl-2-(1-(pyrimidin-2-yl)-1H-indol-2-yl)maleate (3ao)

¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 8.5, 0.7 Hz, 1H), 8.65 (d, *J* = 4.8 Hz, 2H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.34-7.38 (m, 1H), 7.22-7.26 (m, 1H), 7.03 (t, *J* = 4.8 Hz, 1H), 6.95 (s, 1H), 6.70 (d, *J* = 0.6 Hz, 1H), 4.00-4.10 (m, 4H), 1.00 (dt, *J* = 7.1, 3.4 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 166.0, 165.9, 157.9, 157.6, 138.7, 136.7, 132.1, 129.5, 127.0, 124.4, 122.5, 121.0, 116.35, 116.31, 111.5, 61.5, 60.9, 14.0, 13.9. HRMS (ESI): *m/z* calculated for C₂₀H₁₉N₃O₄Na⁺ [M+Na⁺]: 388.1268, found 388.1284.

1-(pyrimidin-2-yl)-2-(1-(thiophen-2-yl)-2-(p-tolyl)vinyl)-1H-indole (3ap)

¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 4.8 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.60 (m, 1H), 7.28-7.18 (m, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.07 (s, 1H), 7.02 (dd, *J* = 5.0, 0.6 Hz, 1H), 6.99-6.95 (m, 3H), 6.90 (d, *J* = 3.3 Hz, 1H), 6.86-6.84 (m, 1H), 6.80 (s, 1H), 2.26 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.2, 158.0, 142.8, 140.9, 138.4, 137.8, 135.0, 133.3, 130.5, 129.1, 129.0, 128.9, 126.4, 125.6, 123.8, 122.2, 122.1, 120.7, 117.4, 112.8, 109.9, 21.5. HRMS (ESI): *m/z* calculated for C₂₅H₁₉N₃SNa⁺ [M+Na⁺]: 416.1192, found 416.1209.

(*E*)-6-chloro-1-(pyrimidin-2-yl)-2-styryl-1*H*-indole (**3ba**)

¹H NMR (CDCl₃, 400 MHz): δ 8.80 (d, J = 4.8 Hz, 2H), 8.35 (s, 1H), 7.55 (d, J = 16.2, 1H), 7.47 $(d, J = 8.3 \text{ Hz}, 3\text{H}), 7.33 (t, J = 7.6 \text{ Hz}, 2\text{H}), 7.23-7.26 (m, 1\text{H}), 7.15-7.19 (m, 2\text{H}), 7.12 (d, J = 7.6 \text{ Hz}, 2\text{H}), 7.23 (m, 100 \text{ Hz}), 7.12 (m, 100 \text$ 16.4 Hz, 1H), 6.93 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.4, 157.8, 139.6, 137.6, 137.3, 130.1, 129.2, 128.7, 127.9, 127.8, 126.7, 122.9, 121.0, 120.4, 117.6, 114.4, 104.9. HRMS (ESI): m/z calculated for C₂₀H₁₄ClN₃Na⁺ [M+Na⁺]: 354.0768, found 354.0754.

(*E*)-6-fluoro-1-(pyrimidin-2-yl)-2-styryl-1*H*-indole (**3ca**)

¹H NMR (CDCl₃, 400 MHz): δ 8.83 (d, *J* = 4.8 Hz, 2H), 8.09 (dd, *J* = 11.0, 2.0 Hz, 1H), 7.69 (d, *J* = 16.2, 1H), 7.48-7.52 (m, 3H), 7.35 (t, J = 7.5 Hz, 2H), 7.24-7.27 (m, 1H), 7.20 (t, J = 4.8 Hz, 1H), 7.11 (d, J = 16.2 Hz, 1H), 6.99 (m, 1H), 6.96 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 161.9, 159.5, 158.5, 158.1, 139.6, 139.5, 137.62, 137.56, 137.5, 129.5, 128.8, 127.8, 126.8, 125.9, 121.0, 120.9, 120.8, 117.5, 111.0, 110.8, 105.2, 101.8, 101.5. HRMS (ESI): m/z calculated for C₂₀H₁₄FN₃Na⁺ [M+Na⁺]: 338.1064, found 338.1067.

(*E*)-6-bromo-1-(pyrimidin-2-yl)-2-styryl-1*H*-indole (**3da**)

¹H NMR (CDCl₃, 400 MHz): δ 8.80 (d, J = 4.5 Hz, 2H), 8.5 (s, 1H), 7.65 (d, J = 16.2, 1H), 7.48 (d, J = 7.5 Hz, 2H), 7.44 (t, J = 8.3 Hz, 1H), 7.31-7.36 (m, 3H), 7.24-7.27 (m, 1H), 7.18-7.20 (m, 1H), 7.14 (d, J = 16.2 Hz, 1H), 6.94 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.5, 157.9, 139.6, 138.0, 137.4, 130.3, 128.8, 128.3, 127.9, 126.8, 125.7, 121.4, 120.4, 117.7, 117.3, 117.1, 105.0. HRMS (ESI): m/z calculated for C₂₀H₁₄BrN₃Na⁺ [M+Na⁺]: 398.0263, found 398.0252.

(E)-5-methoxy-1-(pyrimidin-2-yl)-2-styryl-1H-indole (3ea)

¹H NMR (CDCl₃, 400 MHz): δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.24 (d, *J* = 9.1 Hz, 1H), 7.72 (d, *J* = 16.2 Hz, 1H), 7.49 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.22-7.26 (m, 1H), 7.09-7.14 (m, 2H), 7.04 (d, *J* = 2.5 Hz, 1H), 6.93 (s, 1H), 6.90 (dd, *J* = 9.1, 2.6 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.2, 155.8, 139.5, 137.6, 132.4, 130.2, 129.5, 128.7, 127.7, 126.7, 121.0, 117.1, 115.3, 112.9, 105.3, 102.3, 55.8. HRMS (ESI): *m/z* calculated for C₂₁H₁₈N₃O⁺ [M+H⁺]: 328.1444, found 328.1433.

(*E*)-5-bromo-1-(pyrimidin-2-yl)-2-styryl-1*H*-indole (**3fa**)

¹H NMR (CDCl₃, 400 MHz): δ 8.85 (d, *J* = 4.8 Hz, 2H), 8.19 (d, *J* = 8.9 Hz, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.68 (d, *J* = 16.2 Hz, 1H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.32-7.38 (m, 3H), 7.26-7.29 (m, 1H), 7.23 (t, *J* = 4.8 Hz, 1H), 7.16 (d, *J* = 16.2 Hz, 1H), 6.93 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.5, 158.0, 140.2, 137.4, 136.1, 131.3, 130.7, 128.8, 128.0, 126.9, 126.3, 122.9, 120.4, 117.7, 115.8, 115.7, 104.4. HRMS (ESI): *m/z* calculated for C₂₀H₁₄BrN₃Na⁺ [M+Na⁺]: 398.0263, found 398.0252.

(*E*)-7-methyl-1-(pyrimidin-2-yl)-2-styryl-1*H*-indole (**3ga**)

¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 4.9 Hz, 2H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.34-7.38 (m, 2H), 7.24-7.31 (m, 3H), 7.18-7.22 (m, 1H), 7.07-7.12 (m, 3H), 6.97-6.98 (m, 2H), 1.93 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.9, 158.6, 139.6, 137.5, 137.2, 131.0, 129.8, 128.7, 127.8, 126.6, 126.0, 122.1, 121.9, 119.6, 118.7, 118.0, 102.9, 20.0. HRMS (ESI): *m/z* calculated for C₂₁H₁₈N₃⁺ [M+H⁺]: 312.1495, found 312.1489.

(*E*)-5-methyl-1-(pyrimidin-2-yl)-2-styryl-1*H*-indole (**3ha**)

¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, *J* = 4.8 Hz, 2H), 8.19 (d, *J* = 8.5 Hz, 1H), 7.70 (d, *J* = 16.2 Hz, 1H), 7.47 (d, *J* = 7.3 Hz, 2H), 7.30-7.36 (m, 3H), 7.18-7.26 (m, 1H), 7.02 -7.15 (m, 3H), 6.91 (s, 1H), 2.44 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 158.2, 138.9, 137.6, 135.7, 131.7,

129.7, 129.3, 128.7, 127.6, 126.7, 125.1, 121.0, 120.2, 117.0, 114.0, 105.2, 21.4. HRMS (ESI): *m/z* calculated for C₂₁H₁₇N₃Na⁺ [M+Na⁺]: 334.1315, found 334.1304.

(E)-4-methyl-1-(pyrimidin-2-yl)-2-styryl-1H-indole (3ia)

¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, J = 3.2 Hz, 2H), 8.11 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 16.1 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.1 Hz, 2H), 7.11-7.25 (m, 4H), 7.01-7.04 (m, 2H), 2.58 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.4, 158.2, 138.3, 137.7, 137.2, 129.8, 129.4, 129.1, 128.7, 127.6, 126.7, 123.7, 122.7, 120.8, 117.3, 111.6, 103.8, 18.8. HRMS (ESI): m/z calculated for C₂₁H₁₇N₃Na⁺ [M+Na⁺]: 334.1315, found 334.1306.

(E)-3-methyl-1-(pyrimidin-2-yl)-2-styryl-1H-indole (**3ja**)

¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 4.8 Hz, 2H), 8.29 (dd, *J* = 7.4, 0.9 Hz, 1H), 7.59-7.61 (m, 1H), 7.48-7.52 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.23-7.32 (m, 4H), 7.14 (t, *J* = 4.8 Hz, 1H), 6.77 (d, *J* = 16.4 Hz, 1H), 2.52 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.5, 158.4, 137.9, 136.7, 134.0, 131.3, 130.0, 128.8, 127.6, 126.5, 124.1, 122.0, 120.8, 118.9, 117.0, 115.8, 113.8, 10.7. HRMS (ESI): *m/z* calculated for C₂₁H₁₇N₃Na⁺ [M+Na⁺]: 334.1315, found 334.1299.

(*E*)-1-(pyridin-2-yl)-2-styryl-1*H*-indole (**3ka**)

¹H NMR (400 MHz, CDCl₃) δ 8.72-8.73 (m, 1H), 7.88 (td, *J* = 7.7, 1.8 Hz, 1H), 7.62-7.64 (m, 1H), 7.50-7.52 (m, 1H), 7.39-7.42 (m, 3H), 7.29-7.36 (m, 3H), 7.15-7.25 (m, 3H), 7.10 (d, *J* = 6.2 Hz, 1H), 6.99 (s, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 151.4, 149.7, 138.4, 138.2, 137.9, 137.2, 130.6, 128.7, 127.8, 126.6, 123.0, 122.1, 121.6, 121.5, 120.6, 118.4, 111.0, 102.4. HRMS (ESI): *m/z* calculated for C₂₁H₁₇N₂⁺ [M+H⁺]: 297.1386, found 297.1382.

2-(2, 5-distyryl-1H-pyrrol-1-yl)pyrimidine (3la)

¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 4.8 Hz, 2H), 7.34-7.37 (m, 5H), 7.25-7.3 (m, 4H), 7.19 (d, J = 7.3 Hz, 2H), 7.14 (d, J = 16.2 Hz, 2H), 6.91 (d, J = 16.1 Hz, 2H), 6.73 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.8, 157.6, 138.0, 134.6, 128.7, 127.2, 127.1, 126.3, 119.2, 118.8, 109.9. HRMS (ESI): m/z calculated for C₂₄H₁₉N₃Na⁺ [M+Na⁺]: 372.1471, found 372.1457.

2, 4-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4a)

¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 1.5 Hz, 1H), 8.87 (d, J = 4.8 Hz, 2H), 8.76 (d, J = 8.4 Hz, 1H), 7.76-7.79 (m, 2H), 7.63-7.66 (m, 2H), 7.37-7.57 (m, 8H), 7.34 (d, J = 8.2 Hz, 1H), 7.15 (t, J = 4.7 Hz, 1H), 7.06-7.10 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.2, 158.2, 142.0, 141.2, 140.2, 140.0, 139.5, 137.5, 129.5, 128.9, 128.7, 127.8, 127.3, 126.4, 125.2, 123.7, 122.4, 122.1, 122.0, 116.5, 115.5, 113.4. HRMS (ESI): m/z calculated for C₂₈H₁₉N₃Na⁺ [M+Na⁺]: 420.1471, found 420.1455.

9-(pyrimidin-2-yl)-2, 4-dip-tolyl-9H-carbazole (4b)

¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 1.1 Hz, 1H), 8.84 (d, J = 4.8 Hz, 2H), 8.76 (d, J = 8.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.7 Hz, 2H), 7.45 (d, J = 1.2 Hz, 1H), 7.39-7.42 (m, 2H), 7.35 (d, J = 7.7 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 7.06-7.13 (m, 2H), 2.50 (s, 3H), 2.40 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.2, 158.1, 140.2, 139.9, 139.4, 139.2, 138.3, 137.5, 137.4, 137.0, 129.6, 129.3, 127.6, 126.3, 125.4, 123.6, 122.2, 122.1, 121.9, 116.4, 115.5, 113.0, 21.5, 21.3. HRMS (ESI): *m/z* calculated for C₃₀H₂₃N₃Na⁺ [M+Na⁺]: 448.1784, found 448.1784.

6-methyl-2, 4-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4c)

¹H NMR (400 MHz, CDCl₃) δ 9.11 (d, *J* = 1.5 Hz, 1H), 8.84 (d, *J* = 4.8 Hz, 2H), 8.67 (d, *J* = 8.6 Hz, 1H), 7.76-7.78 (m, 2H), 7.63-7.65 (m, 2H), 7.51-7.57 (m, 3H), 7.45-7.49 (m, 3H), 7.34-7.38 (m, 1H), 7.21-7.24 (m, 1H), 7.10-7.12 (m, 2H), 2.28 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.2, 158.1, 142.1, 141.2, 140.4, 139.3, 138.2, 137.4, 131.3, 129.5, 128.8, 128.6, 127.8, 127.6, 127.2, 125.4, 123.6, 122.4, 122.2, 116.2, 115.4, 113.5, 21.6. HRMS (ESI): *m/z* calculated for C₂₉H₂₁N₃Na⁺ [M+Na⁺]: 434.1628, found 434.1629.

6-bromo-2, 4-diphenyl-9-(pyrimidin-2-yl)-9H-carbazole (4d)

¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 1.5 Hz, 1H), 8.85 (d, J = 4.7 Hz, 2H), 8.68 (d, J = 9.0 Hz, 1H), 7.75-7.77 (m, 2H), 7.53-7.62 (m, 5H), 7.46-7.50 (m, 4H), 7.41 (d, J = 2.0 Hz, 1H), 7.36-7.39 (m, 1H), 7.16 (t, J = 4.82 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.9, 158.2, 141.8, 140.5, 140.4, 140.2, 138.7, 137.7, 129.3, 129.0, 128.9, 128.8, 128.2, 127.8, 127.5, 127.1, 124.6, 123.9, 121.3, 117.2, 116.7, 115.0, 113.6. HRMS (ESI): m/z calculated for C₂₈H₁₈N₃BrNa⁺ [M+Na⁺]: 498.0576, found 498.0560.

9-(pyrimidin-2-yl)-2, 4-di(thiophen-2-yl)-9H-carbazole (4e)

¹H NMR (400 MHz, CDCl₃) δ 9.15 (d, J = 1.5 Hz, 1H), 8.86 (d, J = 4.9 Hz, 2H), 8.77 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 1.6 Hz, 1H), 7.51 (dd, J = 5.1, 1.1 Hz, 1H), 7.41-7.46 (m, 3H), 7.29-7.32 (m, 2H), 7.23-7.25 (m, 1H), 7.10-7.16 (m, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 159.0, 158.1, 145.1, 141.5, 140.0, 132.3, 129.5, 128.2, 127.5, 127.3, 126.7, 126.1, 125.04, 125.00, 123.8, 123.71,

123.69, 122.3, 122.0, 116.6, 115.7, 113.2. HRMS (ESI): m/z calculated for $C_{24}H_{15}N_3S_2Na^+$ [M+Na⁺]: 432.0600, found 432.0600.

(E)-3-methyl-2-styryl-1H-indole (5a)

¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 7.4 Hz, 2H), 7.34-7.38 (m, 2H), 7.25-7.28 (m, 2H), 7.17-7.23 (m, 2H), 7.08-7.11 (m, 1H), 6.74 (d, *J* = 16.5 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 137.3, 136.6, 132.4, 129.8, 128.9, 127.6, 126.3, 125.7, 123.3, 119.6, 119.1, 117.3, 112.8, 110.5, 8.9. HRMS (ESI): *m/z* calculated for C₁₇H₁₅NNa⁺ [M+Na⁺]: 256.1097, found 256.1090.

2, 4-diphenyl-9H-carbazole (6a)

¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.66-7.72 (m, 4H), 7.58 (d, J = 1.6 Hz, 1H), 7.43-7.56 (m, 6H), 7.32-7.29 (m, 4H), 6.97-7.01 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 141.7, 141.3, 140.6, 140.3, 139.1, 138.0, 129.4, 128.9, 128.6, 127.8, 127.6, 127.3, 125.9, 122.8, 123.7, 122.5, 121.0, 119.3, 110.6, 108.1. HRMS (ESI): m/z calculated for C₂₄H₁₇NNa⁺ [M+Na⁺]: 342.1253, found 342.1240.

9. References

(a) Z. Ding and N. Yoshikai, *Angew. Chem. Int. Ed.*, 2012, **51**, 4698; (b) L. Ackermann and A. V. Lygin, *Org. Lett.*, 2011, **13**, 3332.

10. ¹H NMR and ¹³C NMR copies of products.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

г

