Supporting Information

Theranostic fluorescent agents for $\mathbf{H g}^{\mathbf{2 +}}$ detection and detoxification

treatment

Chao Song ${ }^{\text {a }}$, Wen Yang ${ }^{\text {a }}$, Nannan Zhou ${ }^{\text {a }}$, Rui Qian ${ }^{\text {a }}$, Yajun Zhang ${ }^{\text {a }}$, Kaiyan Lou* ${ }^{\text {a }}$, Rui Wang ${ }^{\text {a }}$, Wei Wang* ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
${ }^{\mathrm{b}}$ Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA

General information: Commercial reagents were used as received, unless otherwise stated. All metal ions were purchased as their perchlorates $\left(\mathrm{LiClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaClO}_{4}\right.$, $\mathrm{KClO}_{4}, \quad \mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Al}\left(\mathrm{ClO}_{4}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cr}\left(\mathrm{ClO}_{4}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad$ and $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$), except Cu^{+}and Au^{+}as chloride $(\mathrm{CuCl}$ and AuCl$) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX $400(400 \mathrm{MHz})$ and Bruker DRX 500 $(500 \mathrm{MHz})$, and tetramethylsilane (TMS) was used as a reference. Data for ${ }^{1} \mathrm{H}$ are reported as follows: chemical shift (ppm), and multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Data for ${ }^{13} \mathrm{C}$ NMR are reported as ppm . High Resolution Mass Spectra were obtained from East China University of Science and Technology mass spectral facility. Single crystal X-ray diffraction analysis was obtained from Analysis and Test Center of Shanghai Institute of Organic Chemistry, Chinese Academy of Science.

Spectroscopic materials and methods: The pH was recorded by a METTLER TOLEDO FE20 pH meter. UV absorption spectra were recorded on a Shimadzu UV-1800 UV-Vis spectrophotometer. Fluorescence spectra were obtained on a Horiba Fluoromax-4 fluorometer equipped with a R928 detector. IR spectra were obtained on a Thermo Scientific Nicolet 6700 FT-IR Spectrometer.

Synthetic procedures:

($2 s, 4 S, 5 R$)-2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-1,3-dithiolane-4,5-dicarboxy lic acid (1a)
($2 r, 4 R, 5 S$)-2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-1,3-dithiolane-4,5-dicarboxy lic acid (1b)
To a stirred solution of $\mathbf{3}^{1}(100 \mathrm{mg}, 0.41 \mathrm{mmol})$ in dry DCM (4 ml) under N_{2}
atmosphere at $0{ }^{\circ} \mathrm{C}$, a solution of DMSA ($111 \mathrm{mg}, 0.61 \mathrm{mmol}$) in DMF (4 mL) and $256 \mu \mathrm{~L}$ of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.1 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for overnight. The solvent was evaporated under reduced pressure. The residue was added $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and extracted twice using EtOAc (5 mL each). The combined organic layer was washed with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ for three times and brine $(10 \mathrm{~mL})$. And then the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed under reduced pressure. The residue was purified via column chromatography (silica gel) using DCM:MeOH: $\mathrm{HCOOH}=60: 2: 1(\mathrm{~V} / \mathrm{V} / \mathrm{V})$ as the eluent solvent to obtain 1a ($78 \mathrm{mg}, 47 \%$) and $\mathbf{1 b}$ ($23 \mathrm{mg}, 14 \%$) as white solid. Compound 1a: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 13.03(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H})$, $4.72(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{q}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.12(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO- d_{6}): $\delta 170.0,160.8,155.4,150.7,140.7,129.8,117.2,109.2,107.3,96.3,55.8$, 47.9, 44.1, 12.3. HR-ESI-Mass, (m / z): $\left[\mathrm{M}-\mathrm{H}^{+}\right]$calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{6} \mathrm{~S}_{2}$: 408.0576, obsd: 408.0570. Compound 1b: ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 12.99(\mathrm{~s}, 2 \mathrm{H}), 8.14$ (s, 1H), $7.49(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{q}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.11(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 170.0,160.5,155.4,150.5,139.7,129.8,119.1,109.2$, 107.4, 96.2, 55.5, 48.4, 44.1, 12.3; HR-ESI-Mass (m/z): [M - H ${ }^{+}$] calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{~S}_{2}$: 408.0576, obsd: 408.0571 .

Scheme S1. Synthesis of probe 1a-b and 2a
($2 s, 4 S, 5 R$)-dimethyl
2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-1,3-dithiolane-4,5-di-carboxylate acid (2a)
To a stirred solution of $\mathbf{3}(74 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry DCM (6 ml) under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$, a solution of DMSA dimethylester ${ }^{2}$ ($94.5 \mathrm{mg}, 0.45 \mathrm{mmol}$) and $192 \mu \mathrm{~L}$ of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.6 \mathrm{mmol})$ was added. The reaction mixture was stirred for 30 min at room temperature. The solvent was evaporated under reduced pressure. The residue was purified via column chromatography using petroleum ether: $\mathrm{DCM}: \mathrm{Et}_{2} \mathrm{O}=$ 5:5:1 as eluent to obtain 2a as white solid ($108 \mathrm{mg}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.41(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.33,161.99,156.04$,

Proposed mechanism for formation of the dithiane ring:

As shown in Scheme S2, it was proposed that the dithiane rings were formed via semi-thioacetal intermediates through an intramolecular $\mathrm{S}_{\mathrm{N}} 2$ type cyclization with flip of the previous aldehyde carbonyl carbon and retention of stereocenters in DMSA. Therefore, the ratio of products should equal to the ratio of the semi-thioacetal intermediates (I and II) formed. Since the hydrogen atom is a much smaller group than the carboxylic acid group, formation of the semi-thioacetal intermediate \mathbf{I} was energetically more favored, which led to the dithiane $\mathbf{1 a}$ as the major product. The same model could also be applied to the formation 2a. The improved yield of 2a could be rationalized by increased steric bulkiness of the methyl ester group. The predicted stereochemistry of 1a and 2a was supported by 2D-NOESY spectra. Moreover, the structure of 2a was further confirmed by X-ray crystallography.

(more favored)

(less favored)

|||

||

|||

||

Scheme S2. Proposed mechanism of dithiane formation

Proposed mechanism for $\mathbf{H g}^{\mathbf{2 +}}$ - assisted hydrolysis of the dithiane ring:

Scheme S3. Proposed mechanism of dethiolation of Hg^{2+} with probe $\mathbf{1 a}\left({ }^{1} \mathrm{HNMR}\right.$ and IR supporting see Fig. S19 and S20)

Reaction kinetic studies:

Procedure for reaction kinetic measurements was adapted from reported protocol ${ }^{3}$ with minor modifications. The second order reaction between each probe and Hg^{2+} was assumed. The reaction of probe $\mathbf{1}$ or $\mathbf{2 a}(2 \mu \mathrm{M})$ with 100 equiv. Hg^{2+} were conducted in 0.02 M PBS buffer solution containing 0.2% DMSO at $25^{\circ} \mathrm{C}$, and monitored using the fluorescence intensity at 502 nm (excited at $477 \mathrm{~nm}, 2 \mathrm{~nm}$ slit width for both excitation and emission, the excitation and emission wavelength were selected for optimized turn-on fluorescence signal readout of the probe 1a). The pseudo-first-order rate constant (k ') for each probe was determined by fitting the fluorescence intensities of the sample at different time to the following equation I:

$$
\operatorname{Ln}\left[\left(\mathrm{F}_{\max }-\mathrm{F}_{\mathrm{t}}\right) / \mathrm{F}_{\max }\right]=-k^{\prime} \mathrm{t}
$$

Equation I

Where F_{t} and $F_{\text {max }}$ are the fluorescence intensities at 502 nm at time t and the maximum value obtained after the reaction was complete, and k is the pseudo-first-order rate constant, which is related to the second-order rate constant (k in $\mathrm{M}^{-1} \mathrm{~s}^{-1}$) by the following equation II. Thus, the second-order rate constant (k) can be calculated from the pseudo-first-order rate constant (k ') obtained from linear fitting plot based on equation I.

$$
k^{\prime}=k\left[\mathrm{Hg}^{2+}\right]
$$

Equation II

For probe 1a and 2a, the pseudo-first-order rate constants (k ') obtained from the negative slop of the linear fitting plots listed below were $0.00355 \mathrm{~s}^{-1}$, and $0.00302 \mathrm{~s}^{-1}$ respectively. Thus corresponding second-order rate constants (k) for probe $\mathbf{1 a}$ and $\mathbf{2 a}$ towards Hg^{2+} were $17.7 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $15.1 \mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively.

Figure S1. a) The fluorescence intensity of probe $\mathbf{1 a}(2 \mu \mathrm{M})$ incubated with $\mathrm{Hg}^{2+}(100$ equiv.) at 502 nm for $0-60 \mathrm{~min}$; b) Pseudo first-order kinetic plot of the reaction of $\mathbf{1 a}$ $(2 \mu \mathrm{M})$ incubated with Hg^{2+} (100 equiv.).

Figure S2. a) The fluorescence intensity of $\mathbf{1 b}(2 \mu \mathrm{M})$ incubated with $\mathrm{Hg}^{2+}(100$ equiv.) at 502 nm for $0-60 \mathrm{~min}$.

Figure S3. a) The fluorescence intensity of $\mathbf{2 a}(2 \mu \mathrm{M})$ incubated with $\mathrm{Hg}^{2+}(100$ equiv.) at 502 nm for $0-60 \mathrm{~min}$. b) Pseudo first-order kinetic plot of the reaction of $\mathbf{2 a}$ $(2 \mu \mathrm{M})$ incubated with Hg^{2+} (100 equiv.).

Determination of reaction stoichiometry of probe 1a:

Figure S4. Job's plot of probe $\mathbf{1 a}$ and Hg^{2+}. The total concentration of the probe and Hg^{2+} was kept constant at $10 \mu \mathrm{M}$. All measurements were taken in 0.02 M PBS buffer containing 1% DMSO at $25^{\circ} \mathrm{C}$ with incubation time of 15 min .

pH Dependence of probe $\mathbf{1 a}$ and $\mathbf{H g}^{\mathbf{2 +}}$:

Figure S5. Fluorescence response of probe $\mathbf{1}(2 \mu \mathrm{M})$ to 5 equiv. Hg^{2+} at different pHs . All measurements were taken after incubation time of 24 h in 0.02 M PBS buffer solution containing 0.2% DMSO at $25^{\circ} \mathrm{C}$, pHs were adjusted by 1 M HCl or 1 M NaOH .

Chemodosimeter properties of probe 1a and compound 3 towards $\mathbf{H g}^{\mathbf{2 +}}$:

Figure S6. a) Normalized fluorescence excitation $\left(\lambda_{\mathrm{em}}=488 \mathrm{~nm}\right)$ and emission ($\lambda_{\mathrm{ex}}=$ $403 \mathrm{~nm})$ spectra of probe $\mathbf{1 a}(2 \mu \mathrm{M})$; b) Normalized fluorescence excitation $\left(\lambda_{\mathrm{em}}=\right.$

502 nm) and emission spectra ($\lambda_{\mathrm{ex}}=450 \mathrm{~nm}$) of compound $\left.3(2 \mu \mathrm{M}) ; \mathrm{c}\right)$ Normalized fluorescence excitation $\left(\lambda_{\mathrm{em}}=502 \mathrm{~nm}\right)$ and emission spectra $\left(\lambda_{\mathrm{ex}}=450 \mathrm{~nm}\right)$ of probe 1a $(2 \mu \mathrm{M})$ with 5 equiv. of Hg^{2+}; d) Overlap of normalized fluorescence excitation spectra of the probe $\mathbf{1 a}(2 \mu \mathrm{M})$ and $\mathbf{1 a}$ with 5 equiv. of Hg^{2+}, from which an optimal excitation wavelength at 477 nm was determined; e) Fluorescence excitation spectra $\left(\lambda_{\text {ex }}=477 \mathrm{~nm}\right)$ of probe 1a and probe 1a with 5 equiv. Hg^{2+}; f) Normalized fluorescence excitation ($\lambda_{\mathrm{em}}=502 \mathrm{~nm}$) and emission spectra ($\lambda_{\mathrm{ex}}=450 \mathrm{~nm}$) of compound $\mathbf{3}(2 \mu \mathrm{M})$ with 5 equiv. of $\left.\mathrm{Hg}^{2+} ; \mathrm{g}\right)$ Fluorescence excitation spectra $\left(\lambda_{\mathrm{ex}}=\right.$ 477 nm) of compound $\mathbf{3}$ and compound $\mathbf{3}$ with 5 equiv. Hg^{2+};. All measurements were taken in 0.02 M PBS buffer solution containing 0.2% DMSO ($\mathrm{pH}=7.4$) at $25^{\circ} \mathrm{C}$ with incubation time 60 min and slit width 3 nm for both excitation and emission).

(a)

(b)

Figure S7. a) UV-Vis spectra of probe $\mathbf{1 a}(10 \mu \mathrm{M}$, black line) and the probe 1a at 10 $\mu \mathrm{M}$ with 10 equiv. Hg^{2+} ions (red line); b) Normalized UV-Vis spectra of probe 1a at $10 \mu \mathrm{M}$ with 10 equiv. Hg^{2+} ions (black line) and compound $3(10 \mu \mathrm{M}$, red line); All measurements were taken in 0.02 M PBS buffer solution containing 1% DMSO ($\mathrm{pH}=7.4$) at $25^{\circ} \mathrm{C}$ with incubation time of 2 h .

Figure S8. Plot of fluorescence intensity of probe 1a (1 $\mu \mathrm{M})$ at different concentrations of $\mathrm{Hg}^{2+}(0-2.5 \mu \mathrm{M})$. All measurements were taken in 0.02 M PBS buffer solution containing 0.1% DMSO at $25^{\circ} \mathrm{C}$ with an incubation time of 15 min . (The detection limit was calculated based on the fluorescence titration. The I_{502} of free probe 1a was collected for 10 times, the S / N ratio and the standard deviation of blank measurements was determined. Under the optimum conditions, a good linear relationship between the fluorescence intensity and the Hg^{2+} concentration could be
obtained in the $0-3.0 \mu \mathrm{M}(\mathrm{R}=0.995)$. The detection limit is calculated with the equation: detection limit $=3 \sigma b \mathrm{i} / \mathrm{m}$, where $\sigma \mathrm{bi}$ is the standard deviation of blank measurements; m is the slope between I_{502} versus Hg^{2+} concentration. The detection limit was measured to be 2.4 nM at $\mathrm{S} / \mathrm{N}=3$.)

Figure S9. a) UV/Vis spectra of probe $\mathbf{1 a}(10.0 \mu \mathrm{M})$ at different concentrations of Hg^{2+} (0-10.0 equiv.). All measurements were taken after incubation time of 30 min in 0.02 M PBS buffer solution containing 1% DMSO at $25^{\circ} \mathrm{C}$. b) Plot of $\mathrm{A}_{445} / \mathrm{A}_{403}$ of probe 1a $(1.0 \mu \mathrm{M})$ at different concentration of $\mathrm{Hg}^{2+}(20 \mathrm{nM}-3.5 \mu \mathrm{M})$. All measurements were taken after incubation time of 30 min in 0.02 M PBS buffer solution containing 1% DMSO at $25^{\circ} \mathrm{C}$. (The detection limit was calculated based on the UV/Vis titration. The $\mathrm{A}_{445} / \mathrm{A}_{403}$ of free probe 1a was collected for 10 times, the S / N ratio and the standard deviation of blank measurements was determined. Under the optimum conditions, a good linear relationship between the $\mathrm{A}_{445} / \mathrm{A}_{403}$ and the Hg^{2+} concentration could be obtained in the $0-3.5 \mu \mathrm{M}(\mathrm{R}=0.998)$. The detection limit is calculated with the equation: detection limit $=3 \sigma \mathrm{bi} / \mathrm{m}$, where $\sigma \mathrm{bi}$ is the standard deviation of blank measurements; m is the slope between $\mathrm{A}_{445} / \mathrm{A}_{403}$ versus Hg^{2+} concentration. The detection limit was measured to be 12.0 nM at $\mathrm{S} / \mathrm{N}=3$.)

Selectivity of probe 1a towards $\mathbf{H g}^{\mathbf{2 +}}$:

Figure S10. Plot of $\mathrm{A}_{445} / \mathrm{A}_{403}$ of probe $\mathbf{1 a}(10 \mu \mathrm{M})$ upon the addition of $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, $\mathrm{Cu}^{+}, \mathrm{Ag}^{+}, \mathrm{Au}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Co}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Al}^{3+}$ (50 equiv., each) and Hg^{2+} (5 equiv., each). Black bars: free probe, or treated with the marked metal ions (50 equiv.). Red bars: treated with the marked metal cations (50
equiv.) followed by Hg^{2+} (5 equiv.). All measurements were taken in 0.02 M PBS buffer solution containing 1% DMSO at $25^{\circ} \mathrm{C}$ after incubation time of 30 min .

Figure S11. a) The fluorescence intensity of probe $\mathbf{1 a}(2 \mu \mathrm{M})$ incubated with Ag^{+} (100 equiv.) in 0.02 M PBS buffer containing 0.2% DMSO at 502 nm for $0-60 \mathrm{~min}$ (excited at $477 \mathrm{~nm}, 2 \mathrm{~nm}$ slit width for both excitation and emission); b) Fluorescence excitation spectra ($\lambda_{\mathrm{ex}}=477 \mathrm{~nm}$) of probe $\mathbf{1 a}(2 \mu \mathrm{M})$ with 50 equiv. Ag^{+}and probe $\mathbf{1 a}$ $(2 \mu \mathrm{M})$ with 5 equiv. Hg^{2+}. All measurements were taken in 0.02 M PBS buffered saline solution containing 0.2% DMSO ($\mathrm{pH}=7.4$) and 154 mM NaCl at $25^{\circ} \mathrm{C}$. The incubation time was 15 min . Slit width 3 nm for both excitation and emission.

Figure S12. a) The fluorescence intensity of probe $\mathbf{1 a}(2 \mu \mathrm{M})$ incubated with Au^{+} (100 equiv.) in 0.02 M PBS buffer containing 0.2% DMSO at 502 nm for $0-150 \mathrm{~min}$ (excited at $477 \mathrm{~nm}, 2 \mathrm{~nm}$ slit width for both excitation and emission); b) Fluorescence excitation spectra ($\lambda_{\mathrm{ex}}=477 \mathrm{~nm}$) of probe $\mathbf{1 a}(2 \mu \mathrm{M})$ with 50 equiv. Au^{+}and probe $\mathbf{1 a}$ $(2 \mu \mathrm{M})$ with 5 equiv. Hg^{2+}. All measurements were taken in 0.02 M PBS buffer containing 0.2% DMSO ($\mathrm{pH}=7.4$) at $25^{\circ} \mathrm{C}$. The incubation time was 2 h . Slit width 3 nm for both excitation and emission.

Figure S13. a-c) Emission intensity of probe $\mathbf{2 a}(2 \mu \mathrm{M})$ upon the addition of different competing metal ions (50 equiv., each) and Hg^{2+} (5 equiv.). Black bars: free probe 2a, or treated with the marked metal ions (50 equiv.); red bars: the probe treated with the marked metal ions (50 equiv.) followed by Hg^{2+} (5 equiv.). (All fluorescence responses were obtained after 15 min incubation time in 20 mM PBS buffer containing 0.2% DMSO at $25^{\circ} \mathrm{C}$ with $\lambda_{\mathrm{ex}}=477 \mathrm{~nm}$ and $\lambda_{\mathrm{em}}=502 \mathrm{~nm}$ unless otherwise stated; 20 mM PBS buffered normal saline containing 0.2% DMSO and 154 mM NaCl was used in b); incubation time was 2 h for c); d) The fluorescence intensity of probe $2 \mathbf{a}(2 \mu \mathrm{M})$ incubated with Au^{+}(100 equiv.) in 0.02 M PBS buffer containing 0.2% DMSO at 502 nm for $0-150 \mathrm{~min}$ (excited at $477 \mathrm{~nm}, 2 \mathrm{~nm}$ slit width for both excitation and emission).

Cell culture:

MCF-7 cells were purchased from the American Type Culture Collection (ATCC). The cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), maintained at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere containing 95% air and $5 \% \mathrm{CO}_{2}$.

Cytotoxicity assay:

Cell survival was evaluated by the MTS assay (CellTiter 96 AQueous One Solution Reagent), based on the conversion of a tetrazolium compound, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H tetrazolium (MTS), to a colored formazan product by living cells. ${ }^{4}$ Absorbance was
read by a microplate reader (Molecular Devices SpectraMax I3) at 490 nm . The quantity of formazan product, as measured by the amount of absorbance, was directly proportional to the metabolic activity of viable cells in the culture.
Cell viability (\% of control) $=\left(\mathrm{OD}_{\mathrm{EG}}-\mathrm{OD}_{\mathrm{ZG}}\right) /\left(\mathrm{OD}_{\mathrm{CG}}-\mathrm{OD}_{\mathrm{ZG}}\right) * 100 \%$
IC_{50} value was calculated using GraphPad Prism software based on the cell viability data at different concentrations.

Determination of $\mathbf{H g}^{\mathbf{2 +}}$ concentration in in vitro imaging experiments:

Cytotoxcicity assay was performed according the protocol above. Hg^{2+} concentration of $10 \mu \mathrm{M}$ with cell viability $65.13 \pm 4.11 \%$ was used in in vitro fluorescent imaging experiment.

Figure S14. Cytotoxicity of Hg^{2+} at various concentrations for MCF-7 cells after 24 h incubation ($\mathrm{IC}_{50}=25.01 \pm 3.16 \mu \mathrm{M}$).

Cytotoxicity of the probes (1a, 2a, and 4) and determination of probe concentration (1a, 2a) in in vitro imaging experiments:
Cytotoxcicity assays were performed according the protocol above. The IC_{50} value of the probe 2 a was determined as $214.13 \pm 6.14 \mu \mathrm{M}$. The IC_{50} value of the probe $\mathbf{4}$ was determined as $28.44 \pm 2.05 \mu \mathrm{M}$. Probe 1a showed no significant toxicity up to $250 \mu \mathrm{M}$. $20.0 \mu \mathrm{M}$ concentration of $\mathbf{1 a}$ and $\mathbf{2 a}$ was selected in in vitro imaging experiment.

Figure S15. Cytotoxicity of the probe 2a at various concentrations for MCF-7 cells after 24 h incubation $\left(\mathrm{IC}_{50}=214.13 \pm 6.14 \mu \mathrm{M}\right)$.

Figure S16. Cytotoxicity of the probe $\mathbf{4}$ at various concentrations for MCF-7 cells after 24 h incubation $\left(\mathrm{IC}_{50}=28.44 \pm 2.05 \mu \mathrm{M}\right)$.

Figure S17. Cell viabilities of probe 1a, DMSA, probe 2a, and probe $\mathbf{4}$ at various concentrations for MCF-7 cells after 24 h incubation.

In vitro fluorescent imaging of $\mathbf{H g}^{\mathbf{2 +}}$ in MCF-7 cells:

MCF-7 cells were seeded at 5×10^{4} per well in a 24 -well culture plate with flat glass bottom and grown in Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum and 1% glutamate in a $5 \% \mathrm{CO}_{2}$ incubator at $37{ }^{\circ} \mathrm{C}$. After 12 h , cell culture media was removed from wells and cells in each well were washed with D-Hanks for three times. The washed cells were incubated in either $10 \mu \mathrm{M} \mathrm{Hg}{ }^{2+}$ DMEM solution without serum for 1 h or DMEM without serum (control). DMEM solution without Hg^{2+} was removed from wells and cells in each well were washed with D-Hanks for three times. The cells were then treated with $20 \mu \mathrm{M}$ probe ($\mathbf{1 a}$ or $\mathbf{2 a}$) DMEM solution for a specific time (30 min or 4 h). DMEM solution containing Hg^{2+} was removed from wells and cells in each well were washed with D-Hanks for three times. The cells were then treated with $20 \mu \mathrm{M}$ probe ($\mathbf{1 a}$ or $\mathbf{2 a}$) DMEM solution for a specific time (30 min or 4 h). After removal of the probe DMEM solution, cells in each well were washed with D-Hanks for three times and DMEM without phenol red was added. The culture plate was then imaged with Nikon A1R Confocal Microscope (excited at 488 nm , emission collected from 514 to 554 nm).

Evaluation of protective effects of probes (1a, 2a, and 4) against the $\mathbf{H g}^{\mathbf{2 +}}$-induced cytotoxicity through cell viability assays

MCF-7 cells were seeded into 96 wells plates at a density of 1×10^{5} per mL and grown in DMEM with 10% fetal bovine serum and 1% glutamate. After 12 h , cell culture media were removed from wells and cells in each well were washed with D-Hanks for 3 times before experiments. A solution of $10 \mu \mathrm{M} \mathrm{Hg}{ }^{2+}$ in serum free DMEM was prepared by dilution of a stock solution of $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{4}(10 \mathrm{mM})$ in DMSO. Fresh stock solutions of 10 mM of each probe were prepared by first dissolving the probe in small amount of dimethyl sulfoxide (DMSO) and then diluted by serum-free DMEM before experiments. A series of different concentrations (0.5, 1.0, 5.0, 25, 50, $100 \mu \mathrm{M})$ of each probe in serum-free DMEM were prepared by dilution of the corresponding stock solution for experimental I. A series of different concentrations $(0.05,0.1,0.5,2.5,5.0,10 \mu \mathrm{M})$ of each probe in serum-free DMEM were prepared by dilution of the corresponding stock solution for experimental II and III. The wells in the plate were divided into 4 groups: the zero group, the control (DMSA) group, the Hg^{2+} group, and the Hg^{2+} plus probe group.

Experiment I: $100 \mu \mathrm{~L}$ of $10 \mu \mathrm{M} \mathrm{Hg}^{2+}$ in serum free DMEM was added to wells of the Hg^{2+} group and the Hg^{2+} plus probe group. Equal volume of serum-free DMEM was added to wells of the zero and the control group. After $2 \mathrm{~h}, 11.0 \mu \mathrm{~L}$ of different concentrations $(0.5,1.0,5.0,25,50,100 \mu \mathrm{M})$ of each probe in serum free fresh medium were added to wells of the Hg^{2+} plus probe group to the required final concentration $(0.05,0.1,0.5,2.5,5.0,10 \mu \mathrm{M})$. Equal volumes of serum-free DMEM were added to the zero group, the control group, and the Hg^{2+} group. After $24 \mathrm{~h}, \mathrm{MTS}$ $\left(20 \mu \mathrm{~L}\right.$ well $\left.^{-1}\right)$ was added to each well. And 3 h later, the MTS formazan product in each well was measured by determining the absorbance at 490 nm . The data were expressed as the number of percentage of the control value and mean \pm SEM (standard error of measurement) of three independent experiments. (Results was shown in Fig. 5)

Experiment II: $100 \mu \mathrm{~L}$ of $10 \mu \mathrm{M} \mathrm{Hg}^{2+}$ in serum free DMEM was added to wells of the Hg^{2+} group and the Hg^{2+} plus probe group. Equal volume of serum-free DMEM was added to wells of the zero and the control group. After 24 h , the medium was discarded and then washed three times by D-Hanks. $100 \mu \mathrm{~L}$ of different concentrations $(0.05,0.1,0.5,2.5,5.0,10 \mu \mathrm{M})$ of each probe in serum free fresh medium were added to the wells of the Hg^{2+} plus probe group. Equal volumes of serum-free DMEM were added to the zero group, the control group, and the Hg^{2+} group. After 24 h , MTS $\left(20 \mu \mathrm{l} \mathrm{well}^{-1}\right)$ was added to each well. And 3 h later, the MTS formazan product in each well was measured by determining the absorbance at 490 nm . The data were expressed as the number of percentage of the control value and mean \pm SEM of three independent experiments.

Figure S18. Cell viability (24 h) of probe 1, 2, and DMSA at various concentrations for MCF-7 cells pretreated with $10 \mu \mathrm{M} \mathrm{Hg}^{2+}$ for 24 h .

Experiment III: $100 \mu \mathrm{~L}$ of different concentrations ($0.05,0.1,0.5,2.5,5.0,10 \mu \mathrm{M}$) of each probe in serum free fresh medium were added to wells of the Hg^{2+} plus probe group. Equal volume of serum-free DMEM was added to wells of the zero group, the control group, and the Hg^{2+} group. After 24 h , the medium was discarded and then washed three times by D-Hanks. $100 \mu \mathrm{~L}$ of $10 \mu \mathrm{M} \mathrm{Hg}^{2+}$ in serum free DMEM was added to wells of the Hg^{2+} group and the Hg^{2+} plus probe group. Equal volume of serum-free DMEM was added to wells of the zero group and the control group. After 24 h , MTS ($20 \mu \mathrm{l}$ per well) was added to each well. And 3 h later, the MTS formazan product in each well was measured by determining the absorbance at 490 nm . The data were expressed as the number of percentage of the control value and mean \pm SEM (standard error of measurement) of three independent experiments.

Figure S19. Cell viability (24 h) of $10 \mu \mathrm{M} \mathrm{Hg}^{2+}$ pretreated with probe 1a, 2a and DMSA at various concentrations for MCF-7 cells for 24 h .

Figure S20. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) of probe 1a, probe $\mathbf{1 a}$ with 5 equiv. Hg^{2+} in different time points (2,15 and 150 min) and the compound 3. (Clearly, the aldehyde $\mathbf{3}$ was formed as a product.)

Figure S21. IR spectrum of probe 1a, probe 1a with 5 equiv. Hg^{2+} for 12 h and the compound 3. (The highlighted IR region supported formation of the compound $\mathbf{3}$)

NMR spectra of compound 1a

(uldd) IJ

NMR spectra of compound $\mathbf{1 b}$

NMR spectra of compound 2a

(IIId) IJ

Crystal Structure and Data for probe 2a

Figure S22. Crystallographic representation of probe 2a.

Table S1. Crystal data and structure refinement for cd214397.

Identification code
cd214397
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$110.690(2)^{\circ}$.

Volume

Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission

C20 H23 N O6 S2
437.51

293(2) K
$0.71073 \AA$
Monoclinic
P 21
$a=9.1418(9) \AA \quad \alpha=90^{\circ}$.
$b=9.3880(10) \AA \quad \beta=$
$\mathrm{c}=12.6939(13) \AA \quad \gamma=90^{\circ}$.
1019.17(18) \AA^{3}

2
$1.426 \mathrm{Mg} / \mathrm{m}^{3}$
$0.299 \mathrm{~mm}^{-1}$
460
$0.176 \times 0.143 \times 0.112 \mathrm{~mm}^{3}$
1.715 to 25.996°.
$-9<=\mathrm{h}<=11,-11<=\mathrm{k}<=11,-15<=1<=15$
6226
$3694[\mathrm{R}(\mathrm{int})=0.0273]$
99.8 \%

Semi-empirical from equivalents
0.7457 and 0.6412

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

Full-matrix least-squares on F^{2}
3694 / $1 / 266$
1.025
$\mathrm{R} 1=0.0403, \mathrm{wR} 2=0.0941$
$\mathrm{R} 1=0.0459, \mathrm{wR} 2=0.0974$
0.09(6)
n/a
0.259 and -0.173 e. \AA^{-3}

Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{c d} 214397$. $U(e q)$ is defined as one third of the trace of the orthogonalized $\mathbf{U}^{\mathbf{i j}}$ tensor.

			y	z
			$\mathrm{U}(\mathrm{eq})$	
$\mathrm{S}(1)$	$10943(1)$	$6325(1)$	$7367(1)$	$41(1)$
$\mathrm{S}(2)$	$8227(1)$	$8251(1)$	$6994(1)$	$42(1)$
$\mathrm{N}(1)$	$4202(4)$	$581(3)$	$8710(3)$	$39(1)$
$\mathrm{O}(1)$	$10832(3)$	$4643(3)$	$9375(2)$	$47(1)$
$\mathrm{O}(2)$	$8697(3)$	$3367(3)$	$9048(2)$	$34(1)$
$\mathrm{O}(3)$	$12048(3)$	$6112(4)$	$5439(2)$	$58(1)$
$\mathrm{O}(4)$	$10295(3)$	$7603(3)$	$4293(2)$	$44(1)$
$\mathrm{O}(5)$	$8199(3)$	$5461(3)$	$4791(3)$	$57(1)$
$\mathrm{O}(6)$	$6157(3)$	$6554(4)$	$4991(2)$	$54(1)$
$\mathrm{C}(1)$	$10346(4)$	$7475(4)$	$6130(3)$	$36(1)$
$\mathrm{C}(2)$	$8591(4)$	$7710(4)$	$5743(3)$	$37(1)$
$\mathrm{C}(3)$	$9414(4)$	$6897(4)$	$7922(3)$	$36(1)$
$\mathrm{C}(4)$	$8503(4)$	$5629(4)$	$8093(3)$	$31(1)$
$\mathrm{C}(5)$	$9442(4)$	$4569(4)$	$8869(3)$	$33(1)$
$\mathrm{C}(6)$	$7099(4)$	$3191(4)$	$8578(3)$	$30(1)$
$\mathrm{C}(7)$	$6186(4)$	$4238(4)$	$7861(3)$	$32(1)$
$\mathrm{C}(8)$	$6949(4)$	$5457(4)$	$7629(3)$	$33(1)$
$\mathrm{C}(9)$	$6493(4)$	$1975(4)$	$8854(3)$	$34(1)$
$\mathrm{C}(10)$	$4853(4)$	$1761(4)$	$8431(3)$	$32(1)$
$\mathrm{C}(11)$	$3923(4)$	$2830(4)$	$7728(3)$	$37(1)$
$\mathrm{C}(12)$	$4563(4)$	$4008(4)$	$7448(3)$	$37(1)$
$\mathrm{C}(13)$	$10992(4)$	$6936(4)$	$5263(3)$	$36(1)$
$\mathrm{C}(14)$	$11005(6)$	$7415(5)$	$3463(3)$	$55(1)$
$\mathrm{C}(15)$	$7655(4)$	$6436(4)$	$5137(3)$	$36(1)$
$\mathrm{C}(16)$	$5155(5)$	$5413(7)$	$4397(4)$	$72(2)$
$\mathrm{C}(17)$	$2525(4)$	$301(4)$	$8263(3)$	$42(1)$
$\mathrm{C}(18)$	$1689(5)$	$884(6)$	$8994(4)$	$56(1)$
$\mathrm{C}(19)$	$5138(5)$	$-533(5)$	$9437(3)$	$43(1)$
$\mathrm{C}(20)$	$5603(7)$	$-1662(6)$	$8789(4)$	$79(2)$

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for cd 214397.

$\mathrm{S}(1)-\mathrm{C}(1)$	$1.823(4)$
$\mathrm{S}(1)-\mathrm{C}(3)$	$1.853(4)$
$\mathrm{S}(2)-\mathrm{C}(2)$	$1.806(4)$
$\mathrm{S}(2)-\mathrm{C}(3)$	$1.811(4)$
$\mathrm{N}(1)-\mathrm{C}(10)$	$1.363(5)$
$\mathrm{N}(1)-\mathrm{C}(19)$	$1.456(5)$
$\mathrm{N}(1)-\mathrm{C}(17)$	$1.459(5)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.206(4)$
$\mathrm{O}(2)-\mathrm{C}(5)$	$1.378(4)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.378(4)$
$\mathrm{O}(3)-\mathrm{C}(13)$	$1.195(5)$
$\mathrm{O}(4)-\mathrm{C}(13)$	$1.327(4)$
$\mathrm{O}(4)-\mathrm{C}(14)$	$1.430(5)$
$\mathrm{O}(5)-\mathrm{C}(15)$	$1.196(5)$
$\mathrm{O}(6)-\mathrm{C}(15)$	$1.320(4)$
$\mathrm{O}(6)-\mathrm{C}(16)$	$1.438(6)$
$\mathrm{C}(1)-\mathrm{C}(13)$	$1.508(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.518(5)$
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9800
$\mathrm{C}(2)-\mathrm{C}(15)$	$1.513(5)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.512(5)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9800
$\mathrm{C}(4)-\mathrm{C}(8)$	1.9600
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.932(5)$
$\mathrm{C}(6)-\mathrm{C}(9)$	$1.449(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.368(5)$
$\mathrm{C}(7)-\mathrm{C}(12)$	$1.398(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.405(5)$
$\mathrm{C}(8)-\mathrm{H}(8)$	$1.424(5)$
$\mathrm{C}(9)-\mathrm{C}(10)$	0.9300
$\mathrm{C}(9)-\mathrm{H}(9)$	$1.417(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	0.9300
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.411(5)$
$\mathrm{C}(11)-\mathrm{H}(11)$	$\mathrm{C}(12)-\mathrm{H}(12)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	$1.356(5)$

$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9600
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9600
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9600
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9600
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9600
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.499(6)$
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9700
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9700
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9600
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9600
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9600
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.493(7)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9700
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9700
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9600
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9600
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9600
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(3)$	$96.83(17)$
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{C}(3)$	$96.89(17)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(19)$	$122.4(3)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(17)$	$122.8(3)$
$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(17)$	$114.7(3)$
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)$	$122.5(3)$
$\mathrm{C}(13)-\mathrm{O}(4)-\mathrm{C}(14)$	$115.6(3)$
$\mathrm{C}(15)-\mathrm{O}(6)-\mathrm{C}(16)$	$116.7(4)$
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(2)$	$117.0(3)$
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{S}(1)$	$110.7(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	$109.0(2)$
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{H}(1)$	106.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	106.5
$\mathrm{~S}(1)-\mathrm{C}(1)-\mathrm{H}(1)$	106.5
$\mathrm{C}(15)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.1(3)$
$\mathrm{C}(15)-\mathrm{C}(2)-\mathrm{S}(2)$	$115.0(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{S}(2)$	$105.0(2)$
$\mathrm{C}(15)-\mathrm{C}(2)-\mathrm{H}(2)$	107.8
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	107.8
$\mathrm{~S}(2)-\mathrm{C}(2)-\mathrm{H}(2)$	107.8

$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{S}(2)$	$114.4(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{S}(1)$	$110.8(3)$
$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{S}(1)$	$108.39(18)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	107.7
$\mathrm{~S}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	107.7
$\mathrm{~S}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	107.7
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.8(3)$
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(3)$	$125.7(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$114.5(3)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{O}(2)$	$116.7(3)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$125.6(3)$
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$117.8(3)$
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{O}(2)$	$116.9(3)$
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)$	$123.4(3)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.7(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$116.4(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118.5(3)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	$125.2(3)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$121.7(3)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{H}(8)$	119.1
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.1
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.4(3)$
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{H}(9)$	120.3
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.3
$\mathrm{~N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.4(3)$
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$121.1(3)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$117.4(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$121.7(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.1
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$121.6(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.2
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{H}(12)$	119.2
$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{O}(4)$	$124.8(4)$
$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(1)$	$125.4(3)$
$\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(1)$	$109.6(3)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5

$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{O}(6)$	123.9(4)
$\mathrm{O}(5)-\mathrm{C}(15)-\mathrm{C}(2)$	123.9(3)
$\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(2)$	112.2(3)
$\mathrm{O}(6)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{O}(6)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{O}(6)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	112.9(3)
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.0
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.0
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.0
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.0
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	107.8
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{C}(20)$	112.3(3)
$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.1
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.1
$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.1
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.1
H(19A)-C(19)-H(19B)	107.9
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for cd214397. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+.+2 h\right.$ $\mathrm{k} \mathrm{a}^{*} \mathbf{b}^{*} \mathbf{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~S}(1)$	$36(1)$	$46(1)$	$41(1)$	$9(1)$	$15(1)$	$0(1)$
$\mathrm{S}(2)$	$56(1)$	$27(1)$	$51(1)$	$2(1)$	$28(1)$	$4(1)$
$\mathrm{N}(1)$	$35(2)$	$36(2)$	$46(2)$	$7(2)$	$13(1)$	$-3(2)$
$\mathrm{O}(1)$	$32(1)$	$49(2)$	$53(2)$	$6(1)$	$7(1)$	$-7(1)$
$\mathrm{O}(2)$	$28(1)$	$31(1)$	$41(1)$	$7(1)$	$10(1)$	$3(1)$
$\mathrm{O}(3)$	$53(2)$	$70(2)$	$57(2)$	$16(2)$	$26(1)$	$21(2)$
$\mathrm{O}(4)$	$52(2)$	$41(2)$	$41(1)$	$9(1)$	$21(1)$	$6(1)$
$\mathrm{O}(5)$	$50(2)$	$42(2)$	$76(2)$	$-16(2)$	$20(2)$	$-4(2)$
$\mathrm{O}(6)$	$37(1)$	$70(2)$	$53(2)$	$-7(2)$	$13(1)$	$-4(2)$
$\mathrm{C}(1)$	$41(2)$	$30(2)$	$35(2)$	$0(2)$	$13(2)$	$-9(2)$
$\mathrm{C}(2)$	$43(2)$	$30(2)$	$39(2)$	$7(2)$	$17(2)$	$3(2)$
$\mathrm{C}(3)$	$43(2)$	$30(2)$	$33(2)$	$-2(2)$	$13(2)$	$-4(2)$
$\mathrm{C}(4)$	$38(2)$	$28(2)$	$28(2)$	$-1(2)$	$15(2)$	$-1(2)$
$\mathrm{C}(5)$	$34(2)$	$34(2)$	$34(2)$	$-3(2)$	$14(2)$	$-2(2)$
$\mathrm{C}(6)$	$28(2)$	$30(2)$	$32(2)$	$1(2)$	$12(1)$	$4(2)$
$\mathrm{C}(7)$	$36(2)$	$28(2)$	$31(2)$	$3(2)$	$11(1)$	$4(2)$
$\mathrm{C}(8)$	$40(2)$	$30(2)$	$31(2)$	$4(2)$	$13(2)$	$5(2)$
$\mathrm{C}(9)$	$36(2)$	$30(2)$	$35(2)$	$5(2)$	$12(2)$	$7(2)$
$\mathrm{C}(10)$	$37(2)$	$31(2)$	$28(2)$	$1(1)$	$13(2)$	$1(2)$
$\mathrm{C}(11)$	$28(2)$	$40(2)$	$39(2)$	$2(2)$	$9(2)$	$-2(2)$
$\mathrm{C}(12)$	$36(2)$	$35(2)$	$35(2)$	$9(2)$	$8(2)$	$5(2)$
$\mathrm{C}(13)$	$34(2)$	$34(2)$	$39(2)$	$2(2)$	$13(2)$	$-6(2)$
$\mathrm{C}(14)$	$73(3)$	$54(3)$	$44(2)$	$5(2)$	$28(2)$	$0(3)$
$\mathrm{C}(15)$	$40(2)$	$36(2)$	$34(2)$	$4(2)$	$12(2)$	$1(2)$
$\mathrm{C}(16)$	$41(2)$	$99(4)$	$71(3)$	$-16(3)$	$13(2)$	$-25(3)$
$\mathrm{C}(17)$	$42(2)$	$38(2)$	$41(2)$	$0(2)$	$10(2)$	$-9(2)$
$\mathrm{C}(18)$	$43(2)$	$78(4)$	$51(2)$	$9(2)$	$21(2)$	$-2(2)$
$\mathrm{C}(19)$	$43(2)$	$41(2)$	$44(2)$	$12(2)$	$16(2)$	$-1(2)$
$\mathrm{C}(20)$	$95(4)$	$56(3)$	$90(4)$	$6(3)$	$35(3)$	$29(3)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for cd214397.

	x	y	z	U (eq)
H(1)	10835	8404	6380	43
H(2)	8332	8515	5218	44
H(3)	9940	7338	8659	43
H(8)	6354	6152	7143	40
H(9)	7152	1294	9316	41
H(11)	2842	2724	7449	44
H(12)	3911	4681	6972	44
H(14A)	12055	7775	3748	83
H(14B)	10414	7925	2792	83
H(14C)	11022	6421	3293	83
H(16A)	5171	5353	3646	109
H(16B)	4106	5592	4365	109
H(16C)	5519	4531	4784	109
H(17A)	2355	-720	8186	50
H(17B)	2081	720	7519	50
H(18A)	2166	521	9745	84
H(18B)	611	600	8698	84
H(18C)	1755	1905	9008	84
H(19A)	4544	-963	9853	51
H(19B)	6071	-112	9976	51
H(20A)	4697	-1985	8182	119
H(20B)	6063	-2447	9279	119
H(20C)	6350	-1280	8490	119

Table 6. Torsion angles [${ }^{\circ}$] for $\mathbf{c d} 214397$.

$\mathrm{C}(3)-\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(13)$	$-160.4(2)$
$\mathrm{C}(3)-\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-30.3(3)$
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	$50.8(4)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	$-75.7(3)$
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{S}(2)$	$176.9(3)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{S}(2)$	$50.4(3)$
$\mathrm{C}(3)-\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(15)$	$78.9(3)$
$\mathrm{C}(3)-\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$-46.1(3)$
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-98.8(3)$
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{S}(1)$	$25.3(2)$
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$125.2(3)$
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{S}(2)$	$-1.0(2)$
$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$-0.3(5)$
$\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$-123.2(3)$
$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-177.8(2)$
$\mathrm{S}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$59.4(3)$
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{O}(1)$	$175.8(3)$
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$-4.3(5)$
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$-176.3(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	$1.3(5)$
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	$3.8(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$	$-178.6(3)$
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(9)$	$-177.6(3)$
$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$2.1(5)$
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$1.9(5)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$-177.7(3)$
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-179.6(3)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$0.7(5)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$-1.2(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	$-178.5(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(4)$	$-1.1(5)$
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(4)$	$177.1(3)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$177.6(3)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$-2.0(5)$
$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$-179.7(4)$
$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	

$\left.\begin{array}{lc}\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9) & -1.0(5) \\ \mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9) & -178.0(3) \\ \mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1) & -178.3(3) \\ \mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11) & 0.5(5) \\ \mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12) & 179.9(3) \\ \mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12) & 1.1(5) \\ \mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7) & -1.2(6) \\ \mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11) & -0.3(5) \\ \mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11) & -178.6(3) \\ \mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{O}(3) & -7.3(6) \\ \mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(13)-\mathrm{C}(1) & 167.8(3) \\ \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(3) & -143.3(4) \\ \mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(3) & -17.7(5) \\ \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(4) & 41.7(4) \\ \mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{O}(4) & 167.3(2) \\ \mathrm{C}(16)-\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{O}(5) & 1.3(6) \\ \mathrm{C}(16)-\mathrm{O}(6)-\mathrm{C}(15)-\mathrm{C}(2) & 178.6(4) \\ \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{O}(5) & -14.3(5) \\ \mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{O}(5) & -134.9(4) \\ \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{O}(6) & 168.4(3) \\ \mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{O}(6) & 47.8(4) \\ \mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(18) & -91.3(4) \\ \mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(18) & 91.4(4) \\ \mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{C}(20) & 87.6(5) \\ \mathrm{C}(17)-\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{C}(20) & \\ & \\ \hline\end{array}\right)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for cd214397 [\AA and ${ }^{\circ}$].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C}) \ldots \mathrm{S}(2) \# 1$	0.96	3.01	$3.849(6)$	147.0
$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(1) \# 2$	0.93	2.53	$3.455(4)$	173.9
$\mathrm{C}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3) \# 3$	0.98	2.56	$3.489(5)$	158.2
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C}) \ldots \mathrm{S}(2) \# 1$	0.96	3.01	$3.849(6)$	147.0
$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(1) \# 2$	0.93	2.53	$3.455(4)$	173.9
$\mathrm{C}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3) \# 3$	0.98	2.56	$3.489(5)$	158.2
$\mathrm{C}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3) \# 3$	0.98	2.56	$3.489(5)$	158.2
$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(1) \# 2$	0.93	2.53	$3.455(4)$	173.9
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C}) \ldots \mathrm{S}(2) \# 1$	0.96	3.01	$3.849(6)$	147.0
$\mathrm{C}(2)-\mathrm{H}(2) \ldots \mathrm{O}(3) \# 3$	0.98	2.56	$3.489(5)$	158.2
$\mathrm{C}(9)-\mathrm{H}(9) \ldots \mathrm{O}(1) \# 2$	0.93	2.53	$3.455(4)$	173.9
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C}) \ldots \mathrm{S}(2) \# 1$	0.96	3.01	$3.849(6)$	147.0

Symmetry transformations used to generate equivalent atoms:
\#1 $\mathrm{x}, \mathrm{y}-1, \mathrm{z} \quad \# 2-\mathrm{x}+2, \mathrm{y}-1 / 2,-\mathrm{z}+2 \quad \# 3-\mathrm{x}+2, \mathrm{y}+1 / 2,-\mathrm{z}+1$

References:

(1) Xuan, W. M.; Chen, C.; Cao, Y. T.; He, W. H.; Jiang, W.; Liu, K. J.; Wang, W. Chem. Commun. 2012, 48, 7292.
(2) Gerecke, M.; Brossi, A.; Friedheim, E. A. H. Helv. Chim. Acta 1961, 44, 955.
(3) Yuan, L.; Lin, W. Y.; Yang, Y. T. Chem. Commun. 2011, 47, 6275.
(4) Cory, A. H.; Owen, T. C.; Barltrop, J. A.; Cory, J. G. Cancer Commun. 1991, 3, 207.

