Supplementary Information

Remarkably Stable Chelating Bis-N-Heterocyclic Carbene Adducts of Phosphorus(I) Cations

Justin F. Binder, Ala'aeddeen Swidan, Martin Tang, Jennifer H. Nguyen and Charles L.B. Macdonald*

Department of Chemistry and Biochemistry, University of Windsor,

Windsor, Ontario, Canada N9B 3P4

General Remarks	S 2
Synthetic Procedures	S2
Crystallographic Details	S 8
Computational Information	S17
References	S37

General Remarks

All manipulations were carried out using standard inert atmosphere techniques. All chemicals and reagents were purchased from Sigma-Aldrich and used without further purification. Deuterated solvents were dried according to literature procedure when necessary, and all other solvents were dried over a series of Grubbs'-type columns and degassed prior to use.¹ Cyclic triphosphenium bromide $([(dppe)P^{I}][Br])^{2}$ and 1,1'-dialkyl-3,3'-methylenediimidazolium bromide salts³ were synthesized according to literature procedures. NMR spectra were recorded at room temperature on a Bruker Avance III 500 MHz, Bruker Avance Ultrashield 300 MHz or Bruker Avance DPX 300 MHz spectrometers. Chemical shifts are reported in ppm relative to internal standards for ¹H and ¹³C (the given deuterated solvent) and external standards for ¹¹B (BF₃·OEt₂), ¹⁹F (CCl₃F) and ³¹P (85% H₃PO₄). Coupling constants |J| are given in Hz. Melting points were recorded on samples sealed in glass capillaries under dry N₂ using an Electrothermal[®] Melting Point Apparatus. HR-ESI-MS and EA were performed by the University of Windsor Mass Spectrometry Service Laboratory using Micromass LCT and Perkin Elmer 2400 combustion CHN analyzer. Cyclic voltammetry was performed in dry MeCN solutions using a [NBu₄][PF₆] (0.1 M) electrolyte with analyte concentration of about 0.01 M. A glassy carbon electrode, a platinum wire, and an Ag/AgCl electrode were used as the working, auxiliary, and reference electrodes, respectively. The experiments were run with a scan rate of 100mV/s and a sensitivity of 100 μ A/V and the potentials reported are referenced to ferrocene/ferrocenium ($E_{1/2}$ = 0.0 V).

Synthetic Procedures

General synthesis of [^RLP][Br]

A solution of [K][N(SiMe₃)₂] in THF (20 mL) is added to a suspension of an equimolar amount of the given imidazolium salt in THF (20 mL) at -78°C. After allowing the reaction mixture to warm to -30°C over a period of 30 minutes, the pale yellow solution is again cooled to -78°C and filtered cold. To the filtrate is added [(dppe)P][Br], and the mixture is allowed to slowly warm to room temperature. The resulting orange precipitate is filtered and washed with THF (3 x 20 mL) and dried under reduced pressure. Recrystallization by slow evaporation of acetonitrile yields crystals suitable for X-ray diffraction.

Alternative synthesis of [^RLP][Br]

The method described above can be altered to facilitate synthesis on larger scales. While the reaction is essentially quantitative by NMR spectroscopy, some product is lost during workup, giving slightly lower isolated yields (\approx 70-83%). Products from this preferred procedure have identical spectroscopic properties to those collected using the former procedure. A cold solution of [K][N(SiMe₃)₂] in THF is added to a suspension of an equimolar quantity of the given imidazolium salt in THF at -78 °C and allowed to stir for 2 hours at -78 °C. A cold suspension of [(dppe)P][Br] in THF is then added to the mixture at -78 °C and allowed to stir for an additional hour before being allowed to warm to room temperature. All volatiles are then removed under reduced pressure and acetonitrile is added to the resulting residue. The orange acetonitrile solution is then filtered through celite and pumped dry under reduced pressure. Toluene or diethyl ether is added to the residue and the mixture is sonicated to yield an orange suspension. The mixture is then filtered to collect the precipitated product, which is washed with toluene or diethyl ether and dried under reduced pressure.

Data for [^{Me}LP][Br]

Reagents: [K][N(SiMe₃)₂] (425 mg, 2.130 mmol); 1,1'dimethyl-3,3'-methylenediimidazolium dibromide (300 mg, 0.887 mmol); [(dppe)P][Br] (450 mg, 0.883 mmol). **Yield:** 60% (152 mg, 0.529 mmol). **Mp:** 170°C (dec.). ³¹P{¹H} **NMR (CDCl₃) \delta:** -83.3 (s). ¹³C{¹H} **NMR (CDCl₃) \delta:** 34.97 (d, CH₃, ³ $J_{CP} = 11.3$), 59.12 (s, NCH₂N), 119.93 (s, CH_{imid}), 122.65 (s, CH_{imid}), 160.94 (d, PCN, ¹ $J_{CP} = 76.9$). ¹H **NMR (CDCl₃) δ:** 3.61 (d, 6H, CH₃, ⁴ J_{PH}), 6.66 (d, 2H, NCH₂N, ⁴ $J_{PH} = 0.9$), 7.19 (m, CH_{imid}), 7.83 (m, CH_{imid}). **Elemental Analysis:** calcd. for C₉H₁₂N₄PBr: C, 37.65; H, 4.21; N, 19.52, found: C, 37.83; H, 4.32; N, 18.18. **HR-ESI-MS:** calcd. for C₉H₁₂N₄P [M – Br]⁺m/z = 207.0800, found: 207.0802.

Date for[^{Bn}LP][Br]

Reagents: [K][N(SiMe₃)₂] (122 mg, 0.612 mmol); 1,1'dibenzyl-3,3'-methylenediimidazolium dibromide (150 mg, 0.306 mmol); [(dppe)P][Br] (120 mg, 0.236 mmol). **Yield:** 97% (100 mg, 0.228 mmol). **Mp:** 205°C (dec.). ³¹P{¹H} **NMR (CD₃CN) δ:** -81.8 (s). ¹³C{¹H} **NMR (CD₃CN) δ:** 51.62 (d, ArCH₂N, ${}^{3}J_{CP} = 10.9$), 59.53 (s, NCH₂N), 119.72 (s, CH_{imid}), 122.31 (s, CH_{imid}), 128.01 (s, Ar), 128.66 (s, Ar), 129.04 (s, Ar), 134.63(s, Ar), 161.04 (d, PCN, ${}^{1}J_{CP} = 75.9$). ¹H **NMR (CD₃CN) δ:** 5.07 (s, 4H,

ArCH₂N), 5.94 (s, 2H, NCH₂N), 7.30 (m, 10H, CH_{Ar}), 7.39 (s, CH_{imid}), 7.41 (s, CH_{imid}). **Elemental Analysis:** calcd. for C₂₁H₂₀N₄PBr: C, 57.41; H, 4.59; N, 12.75, found: C, 57.53; H, 4.75; N, 12.71. **HR-ESI-MS:** calcd. for C₂₁H₂₀N₄P [M – Br]⁺ m/z = 359.1425, found: 359.1423.

Data for [^{*n*Bu}LP][Br]

Reagents: [K][N(SiMe₃)₂] (142 mg, 0.711 mmol); 1,1'di-*n*-butyl-3,3'-methylenediimidazolium dibromide (150 mg, 0.355 mmol); [(dppe)P][Br] (153 mg, 0.300 mmol). **Yield:** 81% (90 mg, 0.242 mmol). **Mp:** 155°C (dec.). ³¹P{¹H} **NMR (CD₃CN) δ:** -83.1 (s). ¹³C{¹H} **NMR (CD₃CN) δ:** 13.77 (s, CH₃), 20.19 (s, CH₂CH₂CH₃), 31.59 (s, CH₂CH₂CH₂), 48.99 (d, NCH₂CH₂, ${}^{3}J_{CP} = 10.4$), 60.23 (s, NCH₂N), 120.27 (s, CH_{imid}), 122.88 (s, CH_{imid}), 161.38 (d, PCN, ${}^{1}J_{CP} = 75.6$). ¹H **NMR (CD₃CN) δ:** 0.93 (t, 6H, CH₃, ${}^{3}J_{HH} = 7.5$), 1.33 (tq, 4H, CH₂CH₂CH₃, ${}^{3}J_{HH} = 7.5$), 1.75 (p, 4H, CH₂CH₂CH₂, ${}^{3}J_{HH} = 7.5$), 3.87 (t, NCH₂CH₂, ${}^{3}J_{HH} = 7.5$), 5.99 (s, 2H, NCH₂N), 7.24 (s, CH_{imid}), 7.36 (s, CH_{imid}). **Elemental Analysis:** calcd. for C₁₅H₂₄N₄PBr: C, 48.53; H, 6.51; N, 15.09, found: C, 48.86; H, 6.39; N, 14.95. **HR-ESI-MS:** calcd. for C₁₅H₂₄N₄P [M – Br]⁺ *m/z* = 291.1739, found: 291.1736.

Synthesis of [^{Me}LP][OTf]

TMS-OTf (0.253 mL, 1.398 mmol) was added via syringe to a stirring suspension of [^{Me}LP][Br] (403 mg, 1.398 mmol) in toluene (40 mL). The solution immediately turned a darker colour, after which an oily orange solid crashed out. After ten minutes of further stirring, any volatiles were removed under reduced pressure yielding a light orange powder. Recrystallization by slow evaporation of dichloromethane yielded crystals suitable for X-ray diffraction. **Yield:** 86% (432 mg, 1.209 mmol). ³¹P{¹H} **NMR (CD₃CN) &:** -85.0 (s). ¹⁹F{¹H} **NMR (CD₃CN) &:** -79.45 (s, CF₃). ¹³C{¹H} **NMR (CD₃CN) &:** -85.0 (s). ¹⁹F{¹H} **NMR (CD₃CN) &:** -79.45 (s, CF₃). ¹³C{¹H} **NMR (CD₃CN) &:** -85.0 (g). ¹⁰F{¹H} **NMR (CD₃CN) &:** -79.45 (g). ¹³C{¹H} **NMR (CD₃CN) &:** -85.0 (g). ¹⁰F{¹H} **NMR (CD₃CN) &:** -79.45 (g). ¹³C{¹H} **NMR (CD₃CN) &:** -85.0 (g). ¹⁰F{¹H} **NMR (CD₃CN) &:** -79.45 (g). ¹³C{¹H} **NMR (CD₃CN) &:** -85.0 (g). ¹³C{¹H} **NMR (CD₃CN) &:** -85.0 (g). ¹⁰F{¹H} **NMR (CD₃CN) &:** -79.45 (g). ¹³C{¹H} **NMR (CD₃CN)** (d). CH₃, ³J_{CP} = 12.7), 60.9 (d). CH₂, ³J_{CP} = 2.5), 120.22 (d). J_{CP} = 3.8), 122.46 (q). CF₃, ¹J_{CF} = 320.7), 124.46 (d). J_{CP} = 1.6), 162.21 (d). PCN, ¹J_{CP} = 73.3). ¹H **NMR (CD₃CN)** (d). 3.52 (g). 6H, CH₃N), 5.86 (g). 2H, NCH₂N), 7.18 (m). CH_{imid}), 7.22 (m). CH_{imid}). **Elemental Analysis:** calcd. for C₁₀H₁₂F₃N₄O₃PS: C, 33.71; H, 3.40; N, 15.73, found: C, 33.45; H, 3.34; N, 13.56. **HR-ESI-MS:** calcd. for C₉H₁₂N₄P [M – OTf]⁺ m/z = 207.0800, found: 207.0798. **Cyclic Voltammetry:** $E_p(\text{ox}) = +0.341$ V

Synthesis of [^{Bn}LP][OTf]

TMS-OTf (0.062 mL, 0.341 mmol) was added via syringe to a stirring suspension of [^{Bn}LP][Br] (150 mg, 0.341 mmol) in toluene (20 mL). The solution immediately turned a darker colour, after which an oily orange solid crashed out. After ten minutes of further stirring, any volatiles were removed under reduced pressure yielding a light orange powder. **Yield:** 98% (171 mg, 0.336 mmol). ³¹P{¹H} **NMR** (**CDCl**₃) **δ**: -81.2 (s). ¹⁹F{¹H} **NMR** (**CDCl**₃) **δ**: -78.38 (s, CF₃). ¹³C{¹H} **NMR** (**CDCl**₃) **δ**: 52.23(d, CH₂, ³J_{CP} = 10.8), 59.01 (d, CH₂, ³J_{CP} = 3.1), 120.06 (d, J_{CP} = 3.4), 120.73 (q, CF₃, ¹J_{CF} = 320.3), 121.95 (s, Ar), 128.41 (d, J_{CP} = 2.0), 129.113 (s, Ar), 129.30 (s, Ar), 133.43 (s, Ar), 160.92 (d, PCN, ¹J_{CP} = 77.6). ¹H **NMR** (**CDCl**₃) **δ**: 5.01 (s, 4H, ArCH₂N), 6.20 (s, 2H, NCH₂N), 7.10 (m, CH_{imid}), 7.28-7.35 (m, 10H, Ar), 7.50 (m, CH_{imid}). **Elemental Analysis:** calcd. for C₂₁H₂₀N₄PSO₃F₃: C, 51.97; H, 3.96; N, 11.02, found: C, 52.8; H, 4.15; N, 10.83.

Synthesis of [^{Bn}LP][BPh₄]

A solution of [Na][BPh₄] (183 mg, 0.535 mmol) in THF (10 mL) was added to a stirring suspension of [^{Bn}LP][Br] (235 mg, 0.535 mmol) in THF (10 mL) and allowed to stir overnight. The mixture was then filtered through celite, and the filter-cake was washed with THF (2 x 5 mL). Removal of THF was done under reduced pressure, and the resulting residue was suspended in toluene (20 mL), collected by filtration, washed with toluene (3 x 5 mL) and dried under reduced pressure to yield the product. Recrystallization by slow evaporation of THF or dichloromethane yielded crystals suitable for X-ray diffraction. **Yield:** 98% (354 mg, 0.522 mmol). ³¹P{¹H} NMR (CD₂Cl₂) δ : -81.9 (s). ¹³C{¹H} NMR (CD₂Cl₂) δ : 52.29(d, CH₂, ³J_{CP} = 11.6), 58.59 (s, CH₂), 119.55 (d, J_{CP} = 3.5), 121.54 (s, Ar), 122.55(s, Ar), 126.28(d, J_{CP} = 2.6), 128.53 (s, Ar), 129.35 (s, Ar), 129.55 (s, Ar), 133.72 (s, Ar), 136.24(s, Ar), 160.81 (d, PCN, ¹J_{CP} = 76.5), 164.45 (q, BPh_{ipso}, ¹J_{CB} = 49.2).¹¹B NMR (CD₂Cl₂) δ : -6.15 (s). ¹H NMR (CD₂Cl₂) δ : 4.07 (s, 2H, NCH₂N), 4.86 (s, 4H, ArCH₂N), 6.27 (m, CH_{imid}), 6.64 (m, CH_{imid}), 6.85(m, 4H, BPh₄), 7.00 (m, 8H, BPh₄), 7.24 (m, Ar), 7.44 (m, Ar), 7.46 (br, 8H, BPh₄). Elemental Analysis: calcd. for C₄₅H₄₀N₄PB: C, 79.65; H, 5.94; N, 8.26, found: C, 79.4; H, 6.21; N, 7.63. HR-ESI-MS: calcd. for C₂₁H₂₀N₄P [M – BPh₄]⁺ m/z = 359.1425, found: 359.1420.

Synthesis of [Au(^{Me}LP)₂][OTf]₂[Cl]

A solution of [^{Me}LP][OTf] (154 mg, 0.431 mmol) in dichloromethane (10 mL) was added to a suspension of AuCl (50 mg, 0.215 mmol) in dichloromethane (15 mL). The reaction mixture was stirred overnight, after which all volatiles were removed under reduced pressure. Acetonitrile (5 mL) was added to the residue, resulting in a yellow solution which was filtered. To the stirring filtrate was added dichloromethane (20 mL), which resulted in the formation of a yellow precipitate. This was collected by filtration, washed with dichloromethane (2 x 2 mL) and allowed to dry under reduced pressure. Recrystallization by slow evaporation of acetonitrile yielded colorless to yellow crystals suitable for X-ray diffraction. Yield: 35% (70 mg). . ³¹P{¹H} NMR (CD₃CN) δ : -86.2 (s). ¹⁹F{¹H} NMR (CD₃CN) δ : -79.46 (s, CF₃). ¹³C{¹H} NMR (CD₃CN) δ : 36.80 (d, CH₃, ³J_{CP} = 11.7), 61.28 (d, CH₂, ³J_{CP} = 3.4), 122.44 (q, CF₃, ¹J_{CF} = 320.8), 122.81 (d, J_{CP} = 3.1), 125.79 (s), 154.42 (d, PCN, ¹J_{CP} = 56.1). ¹H NMR (CD₃CN) δ : 3.71 (s, 6H, CH₃N), 6.17 (s, 2H, NCH₂N), 7.34 (m, CH_{imid}), 7.47 (m, CH_{imid}). Elemental Analysis: calcd. for C₂₀H₂₄AuClF₆N₈O₆P₂S₂: C, 25.42; H, 2.56; N, 11.86, found: C, 25.79; H, 2.31; N, 10.22. HR-ESI-MS: the tricationic complex was not observed but the ligand was confirmed; calcd. for C₉H₁₂N₄P m/z = 207.0800, found: 207.0798.

When the reaction is done with a 1:1 ratio of [^{Me}LP][OTf] (150 mg, 0.420 mmol) to AuCl (98 mg, 0.422 mmol), ¹H and ¹³C NMR spectra show a mixture of $[Au(^{Me}LP)_2][OTf]_2[Cl]$ and one other product in the crude material **Crude Yield:** 74% (184 mg collected) (the additional resonances are given but unassigned): ¹³C{¹H} NMR (CD₃CN) δ : 37.77 (s), 124.54 (s), 127.58 (s). ¹H NMR (CD₃CN) δ : 4.15 (s), 7.63 (m), 7.78 (m).

Summary of NMR and IR Studies on Reactions of [^{Me}LP]⁺ salts with Rhodium Complexes

An orange solution of $[^{Me}LP][OTf]$ (100 mg, 0.280 mmol) in acetonitrile (2 mL) was added to a yellow solution of $[Rh(CO)_2(\mu-Cl)]_2$ (54 mg, 0.139 mmol) in acetonitrile (2 mL). The reaction mixture immediately turned dark brown. THF (15 mL) was added to the reaction mixture, and the brown precipitate was collected by filtration and washed with THF (2 x 2 mL). The ³¹P{¹H} NMR spectrum of the precipitate showed a broad resonance at -21.1 ppm along with minor peaks at -6.3 ppm and 4.3 ppm. The IR spectrum of the precipitate reveals a single broad absorption at 1992 cm⁻¹; no other peaks are observed in the carbonyl region. These data suggest that $[^{Me}LP]^+$ cations react with $[Rh(CO)_2(\mu-Cl)]_2$ with the elimination of CO to produce either: centrosymmetric dimers of the form *trans*-[(^{Me}LP)Rh(CO)(μ - Cl)]₂²⁺, solvent complexes of the form $[(^{Me}LP)Rh(CO)Cl(solvent)]^{1+}$, or Vaska's-like complexes of the form $[(^{Me}LP)_2Rh(CO)Cl]^{2+}$. For the product isolated from the 2:1 reaction of $[^{Me}LP][OTf]$ with $[Rh(CO)_2(\mu-Cl)]_2$, microanalysis suggests that the product is indeed *trans*- $[(^{Me}LP)Rh(CO)(\mu-Cl)]_2[OTf]_2$ (calcd. for C₂₂H₂₄Cl₂F₆N₈O₈P₂Rh₂S₂: C, 25.28; H, 2.31; N, 10.72, found: C, 25.29; H, 2.24; N, 9.14.) The addition of excess $[^{Me}LP][OTf]$ to that complex produces a brown solution with a very broad signal in the ³¹P NMR signal at ca. -66 ppm but this complex appears to be very labile in solution and decomposes even in the solid state.

The addition [^{Me}LP][OTf] in acetonitrile to Rh(PPh₃)₂(CO)Cl results in no reaction as determined by the ³¹P{¹H} NMR spectrum, which features a broad resonance at around 30.6 ppm at 313 K (consistent with the Rh(PPh₃)₂(CO)Cl starting material) that sharpens to give a doublet at 29.9 ppm (${}^{1}J_{P-Rh} = 121$ Hz) at 233 K and a singlet which appears between at -86.8 at 233 K and -80.5 ppm at 313 K (this signal is consistent with [${}^{Me}LP$]⁺).

An orange solution of $[^{Bn}LP][BPh_4]$ (23 mg, 0.052 mmol) in acetonitrile (2 mL) was added to a yellow solution of $[Rh(CO)_2Cl]_2$ (10 mg, 0.026 mmol) in acetonitrile (2 mL). The reaction mixture immediately turned dark brown. The ³¹P {¹H} NMR spectrum of this solution features one resonance at -17.3 ppm. The IR spectrum of the evaporated reaction mixture showed a single broad absorption at 1992 cm⁻¹ in the carbonyl region. Treatment of this solution with excess PPh₃ results in the appearance of a broad resonance at 30.7 ppm and a singlet at -82.4 ppm in the ³¹P {¹H} NMR spectrum; the observed chemical shifts are consistent with the displacement of $[^{Bn}LP]^+$ by PPh₃. The IR spectrum of the evaporated mixture reveals an intense, sharp carbonyl absorption at 1974 cm⁻¹, which is also consistent with the production of Rh(PPh_3)₂(CO)(Cl).

Overall, solubility problems and lability of the complexes hinder the analysis of the complexation experiments with rhodium(I); the signals for the complexes in solution ¹H and ¹³C NMR spectra were always broad and EPR experiments did not reveal the presence of any paramagnetic species. Regardless of the actual identity of the products in solution, the ligand exchange reactions indicate unambiguously that the [^RLP]⁺ cations are weaker ligands than PPh₃ and the chemical behavior and physical data from the complexes suggest that the electronic properties of the ligands are perhaps most comparable to those of some phosphites or α -cationic phosphine ligands.⁴ This assessment is bolstered by less-ambiguous evidence from the computational investigation of nickel carbonyl complexes (described below) which suggest that [^{Me}LP]⁺ cations have electronic effects that are almost identical to those of PH₃. An attempt to gauge the donor ability of the cations using cyclic voltammetry investigations reveal that [^{Me}LP][OTf] has an oxidation potential of around +0.341 V (vs. Fc⁰/Fc⁺), which is predictably intermediate between

those found for NHC_2P_2 systems⁵ and α -cationic phosphine ligands⁴; unfortunately, the oxidation potentials for this P^I phosphanido-type donor does not appear to be directly comparable to those of P^{III} phosphines in regard to donor ability.

Crystallographic Details

Crystals for investigation were covered in Nujol®, mounted into a goniometer head, and then rapidly cooled under a stream of cold N₂ of the low-temperature apparatus (Oxford Cryostream) attached to the diffractometer. The data were then collected using the APEXII software suite⁶ on a Bruker Photon 100 diffractometer using a graphite monochromator with MoK_a radiation ($\lambda = 0.71073$ Å). For each sample, a hemisphere of data was collected using 10 or 30 seconds/frame at 173 K. APEXII software was used for data reductions and SADABS⁷ was used for absorption corrections (semi-empirical from equivalents). Structures were solved and refined using the SHELX⁸ suite of programs as implemented by WinGX⁹. Validation of the structures was conducted using PLATON.¹⁰ For the compound [^{Bn}LP][BPh₄]·THF, the disordered THF solvent was modeled as a 50/50 mixture of two superimposed orientations in which the ADP values and corresponding bond distances in each model were restrained to be similar. For the compound [BnLP][BPh4]·DCM, a single "peak" representing a small amount of residual electron density (ca. 2.2 $e^{-A^{-3}}$) may suggest the possibility of a small disordered component corresponding to the dichloromethane solvent of crystallization; the magnitudes of all of the other maxima and minima were well below 1.0 e^{A⁻³} so no attempt was made to model this disorder. For the compound [Au(^{Me}LP)₂] [OTf]₂[Cl], the disorder present in the triflate anion was modeled as a mixture of two superimposed orientations (each featuring appropriately constrained ADPs and bond distances) and refined to give a roughly 82/18 ratio of occupancies; the only residual electron density greater than 1.0 e $Å^{-3}$ was located between the disordered F atom positions within the anion.

Table S1 Summary of crystal data and structure refinement

Compound	3[^{Me} LP][Br]∙MeCN	[^{Bn} LP][Br]	[^{Bn} LP][BPh ₄]·THF	[^{Bn} LP][BPh ₄]·DCM	[^{Me} LP][OTf]	[Au(^{Me} LP) ₂] [OTf] ₂ [Cl]
CCDC	1042843	1042844	1042846	1042847	1042845	1042848
Empirical formula	$C_{29}H_{39}Br_3N_{13}P_3$	$C_{21}H_{20}BrN_4P$	$C_{49}H_{48}BN_4OP$	$C_{46}H_{42}BCl_2N_4P$	$C_{10}H_{12}F_3N_4O_3PS$	$C_{20}H_{24}AuClF_6N_8O_6P_2S_2\\$
Formula Weight	902.37	439.29	750.69	763.51	356.27	944.95
Temperature (K)	173(2)	173(2)	173(2)	153(2)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	P -1	P 21/c	P -1	P -1	P -1	C 2/c
Unit cell dimensions: a (Å) b (Å) c (Å) α (°) β (°) γ (°)	10.1735(3) 12.6747(4) 16.2901(5) 83.7780(10) 72.5960(10) 73.1770(10)	12.2417(10) 4.8288(4) 33.910(3) 90 98.281(3) 90	11.0003(4) 13.6439(5) 14.0585(5) 77.876(2) 79.118(2) 87.493(2)	11.0120(4) 13.4813(5) 13.8114(4) 78.513(2) 77.1380(10) 87.889(2)	8.2477(3) 8.4833(3) 10.7821(4) 97.8660(10) 104.3960(10) 93.2520(10)	20.7657(7) 14.6302(7) 13.2427(5) 90 123.628(2) 90
Volume (Å ³)	1918.05(10)	1983.6(3)	2025.82(13)	1958.84(12)	720.59(5)	3349.9(2)
Z	2	4	2	2	2	4
Density (Mg/m ³)	1.562	1.471	1.231	1.294	1.642	1.874
Absorption coeff. (mm ⁻¹)	3.320	2.166	0.111	0.246	0.387	4.772
<i>F</i> (000)	908	896	796	800	364	1840
Crystal Size (mm ³)	0.231 x 0.209 x 0.117	0.090 x 0.078 x 0.033	0.350 x 0.300 x 0.210	0.270 x 0.263 x 0.205	0.332 x 0.236 x 0.125	0.21 x 0.101 x 0.079

θ range for data collection (°)	2.900 to 27.913	3.147 to 27.491	2.878 to 28.499	2.944 to 27.500	2.886 to 35.661	3.025 to 27.500
Index ranges	$-13 \le h \le 13$ $-16 \le k \le 16$ $-21 \le 1 \le 21$	$-15 \le h \le 15$ $-6 \le k \le 6$ $-42 \le 1 \le 43$	$\begin{array}{l} -14 \leq h \leq 14 \\ -18 \leq k \leq 18 \\ -18 \leq l \leq 18 \end{array}$	$-14 \le h \le 14$ $-17 \le k \le 17$ $-17 \le l \le 17$	$\begin{array}{l} -10 \leq h \leq 13 \\ -13 \leq k \leq 13 \\ -17 \leq l \leq 17 \end{array}$	$\begin{array}{l} -26 \leq h \leq 26 \\ -18 \leq k \leq 18 \\ -17 \leq l \leq 17 \end{array}$
Reflections collected	36505	34945	93422	67652	19018	61590
Independent reflections	9153	4384	10259	8984	6604	3862
<i>R</i> _{int}	0.0494	0.0573	0.0483	0.0499	0.0408	0.0393
Completeness to θ	99.9	99.8	99.9	99.8	99.8	99.8
Absorption correction			Semi-empirical	l from equivalents		
Max. and Min. Transmission	0.678 and 0.542	0.931 and 0.861	0.977 and 0.933	0.951 and 0.866	0.953 and 0.813	0.686 and 0.558
Refinement method			Full-matrix lea	ast-squares on F ²		
Data / restraints / parameters	9153 / 0 / 439	4384 / 0 / 244	10259 / 37 / 550	8984 / 0 / 487	6604 / 0 / 201	3862 / 18 / 212
Goodness-of-fit on F^2	1.028	1.057	1.038	1.039	1.042	1.069
Final R indices[$I \ge 2\sigma(I)$]	R1 = 0.0318 wR2 = 0.0647	R1 = 0.0320 wR2 = 0.0641	R1 = 0.0524 wR2 = 0.1356	R1 = 0.0560 wR2 = 0.1545	R1 = 0.0530 wR2 = 0.1229	R1 = 0.0293 wR2 = 0.0798
R indices (all data)	R1 = 0.0502 wR2 = 0.0718	R1 = 0.0537 wR2 = 0.0703	R1 = 0.0696 wR2 = 0.1503	R1 = 0.0695 wR2 = 0.1660	R1 = 0.0815 wR2 = 0.1377	R1 = 0.0308 wR2 = 0.0810
Largest diff. peak and hole (e $Å^{-3}$)	0.500 and -0.329	0.367 and -0.258	0.570 and -0.449	2.152 and -0.782	0.642 and -0.373	1.634 and -1.171

 $R1(F): \{\Sigma(|F_o| - |F_c|)/\Sigma|F_o|\} \text{ for reflections with } F_o > 4(\Sigma(F_o)). wR2(F^2): \{\Sigma w(|F_o|^2 - |F_c|^2)^2/\Sigma w(|F_o|^2)^2\}^{1/2} \text{ where } w \text{ is the weight given to each reflection } E(F_o) = E(F_o) + E(F_o)^2 + E(F_o)^2$

Fig. S1 Thermal ellipsoid plot (30% probability surface) of 3[^{Me}LP][Br]·MeCN. Hydrogen atoms are omitted for clarity.

Fig. S2 Thermal ellipsoid plot (30% probability surface) of [^{Bn}LP][Br]. Hydrogen atoms are omitted for clarity.

졜 Br

Fig. S3 Thermal ellipsoid plot (30% probability surface) of [^{Me}LP][OTf]. Hydrogen atoms are omitted for clarity.

Fig. S4 Thermal ellipsoid plot (30% probability surface) of [^{Bn}LP][BPh₄]•THF. Hydrogen atoms are omitted for clarity.

Fig. S5 Thermal ellipsoid plot (30% probability surface) of [^{Me}LP][BPh₄]·DCM. Hydrogen atoms are omitted for clarity.

Fig. S6 Thermal ellipsoid plot (30% probability surface) of [Au(^{Me}LP)₂][OTf]₂[Cl]. Hydrogen atoms are omitted for clarity.

Computational Information

General Remarks

Calculations were performed with the Gaussian 09 suite of programs¹¹ using Compute Canada's Shared Hierarchical Academic Research Computing Network (SharcNet). All model complexes were fully optimized with no symmetry constraints using the PBE1PBE density functional theory (DFT) method¹²⁻¹⁴ in conjunction with the TZVP basis sets^{15,16} for all s- and pblock atoms; Ni atoms were modeled using the SDD effective core potential and associated basis set.¹⁷ Frequency calculations were performed at the same level of theory in order to confirm that the optimized structures were minima on the potential energy hypersurface, to determine thermochemical information, and to compare the frequencies of vibrational modes. Natural bond order (NBO) analyses¹⁸ to determine orbital contributions, Wiberg Bond Indicies and orbital energies were obtained using the routine included in the Gaussian distributions.¹⁹ TD-DFT calculations on the optimized structures were conducted using the PBE1PBE DFT method using the 6-311+G(2d,p) basis sets for all atoms.²⁰ Geometry optimizations were started using models in which the relevant phosphorus, nitrogen and carbon atoms were placed a the positions found experimentally using X-ray crystallography and the hydrogen atoms were placed in geometrically appropriate positions using Gaussview.²¹ Details of the calculated results, including Cartesian coordinates are presented in the following sections; any readers interested in further information regarding these calculations are encouraged to contact the principal investigator (cmacd@uwindsor.ca).

Model	N _{imag}	E _{HOMO} (eV)	E _{LUMO} (eV)	E _{H-L} (eV)	UV-vis (nm)	LP _(P) ^a (NBO)	E _{deloc} . (kcal mol ⁻¹)	r _{C-P} (Å)	а _{С-Р-С} (°)
[(^{Me} NHC ^H) ₂ P] ⁺	0	-8.65	-4.12	4.53	351.95	2	64.64	1.809	99.23
					314.01				
					265.80				
$[H_2C(^{Me}NHC^H)_2P]^+$	0	-8.87	-4.27	4.61	336.93	2	96.53	1.7951	91.73
					271.97				
					268.21				
[(^{Me} NSHC ^H) ₂ P] ⁺	0	-9.20	-5.46	3.74	388.35	1	n/a	1.7833	103.91

Table S2. Summary of Calculated Results for Some Phosphamethine Cyanine Model Compounds

a. Number of lone pairs assigned to the phosphorus atom in the lowest energy configuration determined by the NBO analysis. b. Stabilization energy associated with delocalization of the π -lone pair on P with the adjacent π -bonds as determined by the NBO analysis.

Table S3. Summary of Calculated Metrical Parameters and Carbonyl Vibrational Modes for Model L-Ni(CO)₃ Complexes.

Model	$\mathbf{N}_{\mathrm{imag}}$	$\nu_{(CQ)}$	$\nu_{(CQ)}$	$\nu_{(CQ)}$	r _{P-Ni}	r _{Ni-C}	r _{c-O}
		(cm^{-1})	(cm^{-1})	(cm^{-1})	(Å)	(Å)	(Å)
[H ₂ P-Ni(CO) ₃] ⁻	0	2093	2025	2025	2.3525	1.7704-1.7773	1.1517-1.1519
H ₃ P-Ni(CO) ₃	0	2188	2125	2125	2.2296	1.7998-1.8000	1.1381-1.1381
Me ₃ P-Ni(CO) ₃	0	2171	2108	2108	2.2305	1.7927-1.7929	1.1404-1.1405
Ph ₃ P-Ni(CO) ₃	0	2174	2113	2113	2.2473	1.7952-1.7953	1.1396-1.1396
$[H_2C(^{Me}NHC^H)_2P-Ni(CO)_3]^+$	0	2187	2135	2115	2.3122	1.7946-1.8185	1.1344-1.1392

Acyclic model [(^{Me}NHC^H)₂P]⁺:

 $1\lower line (1+)\cMACD\14-Oct-2014\0)\CMACD\14-Oct-2014\0)\CMACD\14-Oct-2014\0)\CMACD\14-Oct-2014\0)\0$

PBE1PBE/TZVP scf=tight opt freq pop=(full,nboread) test\\Optimization of P(MeNHCH)2 acyclic cation\\1,1\P,-0.0000496071,-1.8012722169,-0.0

001382017\C,-1.3741111511,-0.6291610028,-0.1029153904\N,-2.5695495497, -0.8359368293,0.5010156469\N,-1.5405792522,0.4744155876,-0.8750618963\ C,-3.4706185544,0.1240251317,0.1079690315\C,-2.8247451075,0.9519701248 ,-0.7406111312\C,-2.8713433874,-1.9330401419,1.4007296466\C,-0.5645082 011,0.9970228029,-1.8074313641\C,1.3740168146,-0.6291699469,0.10271294 5\N,2.5694506128,-0.8358934111,-0.5012452197\N,1.5404857691,0.47435042 54,0.8749388183\C,3.4705198201,0.124040742,-0.1081305467\C,2.824648206 9,0.9519231609,0.7405115058\C,2.8712585803,-1.9329503662,-1.4010106368 \C.0.5644205243.0.9968924387.1.8073507137\H.-1.953411999.-2.2274703705 ,1.9105347221\H,-3.2602145862,-2.7895645952,0.8478427663\H,-3.61108499 58,-1.6026101812,2.1283791444\H,0.1582545458,1.6463308119,-1.310236224 4\H,-1.085214637,1.5664252112,-2.5752533443\H,-0.0403078162,0.15934785 98,-2.2695196957\H,3.2602579544,-2.7894498583,-0.8481756099\H,1.953304 403,-2.2274479233,-1.91073534\H,3.6109001393,-1.6024415109,-2.12872689 66\H,1.0851410774,1.566133944,2.5752829146\H,-0.1582721327,1.646334188 3,1.3102273257\H,0.0401383436,0.1591856857,2.269286989\H,-4.4869400968 ,0.1368841158,0.464011248\H,-3.1664120003,1.8317818093,-1.2593781952\H

```
,3.166312875,1.8317003363,1.2593386302\H,4.4868347881,0.1369364883,-0.
4641904552\\Version=EM64L-G09RevD.01\State=1-A\HF=-950.1877404\RMSD=8.
714e-09\RMSF=7.604e-06\Dipole=0.0000176,1.1499539,0.0000397\Quadrupole
=18.4007872,-9.3118421,-9.0889451,0.0001837,-4.8693487,-0.0000377\PG=C
```

01 [X(C10H16N4P1)]\\@

Zero-point correction=	0.261932 (Hartree/Particle)
Thermal correction to Energy=	0.277930
Thermal correction to Enthalpy=	0.278874
Thermal correction to Gibbs Free Ene	rgy= 0.218075
Sum of electronic and zero-point Ener	gies= -949.925808
Sum of electronic and thermal Energie	es= -949.909811
Sum of electronic and thermal Enthalp	pies= -949.908866
Sum of electronic and thermal Free Er	nergies= -949.969665

NBO results:

1. (1.96125) BD (1) P 1 - C 2

(34.07%) 0.5837* P 1 s(15.06%)p 5.60(84.31%)d 0.04(0.63%) 0.0000 0.0000 0.3858 0.0415 -0.0004 0.0000 -0.6996 -0.0434 -0.0016 -0.0001 -0.5898 -0.0134 0.0002 0.0001 -0.0604 0.0103 0.0023 0.0699 -0.0064 -0.0029 -0.0083 -0.0364 (65.93%) 0.8120* C 2 s(39.24%)p 1.55(60.73%)d 0.00(0.03%) 0.0000 0.6258 -0.0267 -0.0095 0.0001 0.6260 -0.0349 -0.0170 0.4456 -0.0170

-0.0191 -0.1203 0.0144 0.0012 0.0134

```
S20
```

-0.0037 -0.0022 0.0012 -0.0093

2. (1.96125) BD (1) P 1 - C 9

(34.07%) 0.5837* P 1 s(15.06%)p 5.60(84.31%)d 0.04(0.63%)

0.0000 0.0000 0.3858 0.0415 -0.0004

0.0000 0.6996 0.0434 0.0016 -0.0001

-0.5898 -0.0134 0.0002 -0.0001 0.0604

-0.0103 -0.0023 -0.0699 -0.0064 0.0029

-0.0083 -0.0364

(65.93%) 0.8120* C 9 s(39.24%)p 1.55(60.73%)d 0.00(0.03%)

0.0000 0.6258 -0.0267 -0.0095 0.0001

-0.6260 0.0349 0.0170 0.4456 -0.0170

-0.0191 0.1203 -0.0144 -0.0012 -0.0134

-0.0037 0.0022 0.0012 -0.0093

56. (1.92607) LP (1) P 1 s(70.29%)p 0.42(29.66%)d 0.00(0.04%)

0.0000 -0.0005 0.8383 -0.0142 0.0001

0.0000 0.0000 0.0000 0.0000 0.0004

0.5446 0.0003 -0.0005 0.0000 -0.0002

0.0000 0.0000 0.0000 0.0016 0.0000

0.0175 0.0103

57. (1.51950) LP (2) P 1 s(0.00%)p 1.00(99.77%)d 0.00(0.23%)

 $0.0000 \ 0.0000 \ \text{-} 0.0001 \ 0.0000 \ 0.0000$

 $0.0000 \ \text{-} 0.0753 \ \text{-} 0.0141 \ \text{-} 0.0041 \ \ 0.0000$

 $0.0004 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.9955$

 $-0.0276 \ 0.0007 \ 0.0170 \ 0.0000 \ -0.0444$

0.0000 0.0000

S21

TD-DFT results:

Excitation energies and oscillator strengths:

Excited State 1: Triplet-A 2.8117 eV 440.96 nm f=0.0000 <S**2>=2.000 59 -> 60 0.70221

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -950.068257950

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Triplet-A 3.2035 eV 387.03 nm f=0.0000 <S**2>=2.000 59 -> 61 0.68923

Excited State 3: Singlet-A 3.5228 eV 351.95 nm f=0.2294 <S**2>=0.000 59 -> 60 0.69922

Excited State 4: 3.9484 eV 314.01 nm f=0.0257 <S**2>=0.000 Singlet-A

S22

59 -> 61 0.68714

Excited State 5: Triplet-A 3.9992 eV 310.03 nm f=0.0000 <S**2>=2.000

- 57 -> 62 0.17471
- 58 -> 63 0.22330
- 59 -> 62 0.58592
- 59 -> 64 -0.18485

Excited State 6: Singlet-A 4.6647 eV 265.80 nm f=0.0118 <S**2>=0.000

59 -> 62 0.69669

Cyclic model [H₂C(^{Me}NHC^H)₂P]⁺:

1\1\GINC-SAW18\FOpt\RPBE1PBE\TZVP\C9H12N4P1(1+)\CMACD\14-Oct-2014\0\\# PBE1PBE/TZVP scf=tight opt freq pop=(full,nboread) test\\Optimization of P(MeNHCH)2CH2 cation\\1,1\P,-0.0000451712,-1.9239035122,0.53973330 15\C,1.2882616625,-0.7092052315,0.2446674463\N,2.5693980486,-0.9621956 178,-0.0889604871\N,1.1725217968,0.6403278733,0.2788390774\C,3.2543996 874,0.2254290081,-0.2476673932\C,2.3860761974,1.2314961527,-0.01983918 26\C,3.1235785679,-2.2916556384,-0.2612728566\C,0.0000159276,1.2780862 515,0.8208140077\C,-1.2883272798,-0.709162367,0.2447521239\N,-2.569484 8683,-0.9621156552,-0.0888247991\N,-1.1725414882,0.6403677072,0.278906 3097\C,-3.2544499576,0.2255297255,-0.2475340805\C,-2.3861142782,1.2315 699566,-0.0196342836\C,-3.1237083344,-2.2915595707,-0.2611218521\H,2.3 885054325,-2.921315235,-0.7651660592\H,3.3765482146,-2.7312724622,0.70 48978561\H,4.0193227492,-2.2249720825,-0.8753150352\H,-2.3886731103,-2 .921234513,-0.7650507794\H,-3.3766489928,-2.731178259,0.7050559104\H,-4.0194759885,-2.224848427,-0.875126716\H,0.0000252341,2.332899524,0.55 1604453\H,0.000042781,1.171844798,1.9140597632\H,-4.2961501484,0.24997 941,-0.5199364511\H,-2.5202567128,2.2997917483,-0.04775646\H,2.5202391 809,2.2997143,-0.0480038803\H,4.2960998099,0.2498460964,-0.5200726933\ \Version=EM64L-G09RevD.01\State=1-A\HF=-909.7116987\RMSD=9.234e-09\RMS F=7.672e-06\Dipole=0.0000037,1.0066691,-0.2954383\Quadrupole=20.449159 7,-1.0699573,-19.3792024,-0.0003048,-0.0008483,2.7806553\PG=C01 [X(C9H 12N4P1)]\\@

Zero-point correction=	0.213516 (Hartree/Particle)
Thermal correction to Energy=	0.226121
Thermal correction to Enthalpy=	0.227065
Thermal correction to Gibbs Free Ener	rgy= 0.174146
Sum of electronic and zero-point Energy	gies= -909.498182
Sum of electronic and thermal Energie	es= -909.485578
Sum of electronic and thermal Enthalp	nies= -909.484634
Sum of electronic and thermal Free En	ergies= -909.537553

NBO results:

1. (1.96070) BD (1) P 1 - C 2

(33.66%) 0.5802* P 1 s(14.81%)p 5.71(84.53%)d 0.04(0.66%)

S24

0.0000 -0.0001 0.3828 0.0387 0.0015

0.0001 0.7023 0.0411 0.0045 0.0001

0.5876 0.0110 0.0016 -0.0001 -0.0701

-0.0061 0.0002 0.0688 -0.0187 -0.0162

-0.0083 -0.0349

(66.34%) 0.8145* C 2 s(38.76%)p 1.58(61.21%)d 0.00(0.03%)

0.0000 0.6221 -0.0221 -0.0056 0.0003

 $-0.5641 \ 0.0363 \ 0.0217 \ -0.5040 \ 0.0175$

0.0191 0.1933 -0.0104 -0.0058 0.0137

-0.0057 -0.0044 0.0009 -0.0067

2. (1.96070) BD (1) P 1 - C 9

(33.66%) 0.5802* P 1 s(14.81%)p 5.71(84.53%)d 0.04(0.66%)

 $0.0000 - 0.0001 \quad 0.3828 \quad 0.0387 \quad 0.0015$

-0.0001 -0.7023 -0.0411 -0.0045 0.0001

0.5876 0.0110 0.0016 -0.0001 -0.0701

-0.0061 0.0002 -0.0688 0.0187 -0.0162

-0.0083 -0.0349

(66.34%) 0.8145* C 9 s(38.76%)p 1.58(61.21%)d 0.00(0.03%)

0.0000 0.6221 -0.0221 -0.0056 0.0003

 $0.5641 \ \textbf{-}0.0363 \ \textbf{-}0.0217 \ \textbf{-}0.5040 \ \ 0.0175$

0.0191 0.1933 -0.0104 -0.0058 -0.0137

0.0057 -0.0044 0.0009 -0.0067

51. (1.94978) LP (1) P 1 s(70.49%)p 0.42(29.47%)d 0.00(0.04%)

0.0000 -0.0006 0.8395 -0.0130 -0.0006

 $0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ -0.0002$

 $-0.5328 \ 0.0037 \ -0.0003 \ 0.0002 \ 0.1036$

S25

0.0033 -0.0005 0.0000 0.0000 0.0088

0.0158 0.0075

52. (1.43165) LP (2) P 1 s(0.12%)p99.99(99.61%)d 2.37(0.28%) 0.0000 0.0000 0.0331 0.0079 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1403 0.0165 0.0017 0.0000 -0.9877 0.0244 0.0035 0.0000 0.0000 -0.0495 0.0038 0.0168

52. LP (2) P 1 /313. BD*(2) C 2 - N 3 96.53 0.09 0.082

TD-DFT results:

Excitation energies and oscillator strengths:

Excited State 1: Triplet-A 2.8485 eV 435.26 nm f=0.0000 <S**2>=2.000

54 -> 55 0.70336

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -909.593014092

Copying the excited state density for this state as the 1-particle RhoCI density.

- Excited State 2: Triplet-A 3.5657 eV 347.71 nm f=0.0000 <S**2>=2.000 54 -> 56 0.59312
 - 54 -> 57 0.29960
 - 54 -> 59 -0.19137

54 -> 57 -0.22758

- Excited State 3: Singlet-A 3.6798 eV 336.93 nm f=0.2600 <S**2>=0.000 54 -> 55 0.69843
- Excited State 4: Triplet-A 3.8397 eV 322.90 nm f=0.0000 <S**2>=2.000 53 -> 58 0.23313 54 -> 56 -0.26846 54 -> 57 0.56682

Excited State	5:	Singlet-A	4.5588 eV	271.97 nm	f=0.0176	<s**2>=0.000</s**2>
54 -> 58	-0.3	4824				
54 -> 60	0.5	7926				
54 -> 62	-0.1	7066				

Excited State	6:	Singlet-A	4.6226 eV	268.21 nm	f=0.0739	<s**2>=0.000</s**2>
54 -> 56	0.6	55759				

Acyclic thiazolium model [(^{Me}NSHC^H)₂P]⁺:

1\1\GINC-SAW283\FOpt\RPBE1PBE\TZVP\C8H10N2P1S2(1+)\CMACD\29-Jan-2015\0 \\# PBE1PBE/TZVP scf=tight opt freq pop=(full,nboread) test\\Optimizat ion of P(MeNSHCH)2 acyclic cation/\1,1\P,0.0225273065,1.1986042349,0.1 319738583\C,-1.3733325285,0.0992243674,0.2840958764\N,-2.5922435358,0. 6381430704,0.5238851167\C,-3.6227537159,-0.2666863268,0.6293199181\C,-3.2360911682,-1.5416262823,0.4743028346\C,-2.7967407473,2.0735398098,0 .6602112482\C,1.3980093382,0.1053004046,-0.1729135602\N,2.6269988505,0 .6495883646,-0.3372135387\C,3.6407158801,-0.2508143794,-0.5683732543\C ,3.2303020436,-1.5275509949,-0.5911613974\C,2.8582047998,2.0859946435, -0.273514623\H,-2.4964385578,2.5820562931,-0.2579936769\H,-2.207071475 2,2.4567620214,1.4952590379\H,-3.8514176982,2.2598756073,0.8475915001\ H,2.2767758959,2.592117692,-1.0465941743\H,2.5662070208,2.4677777961,0 .7067161393\H,3.9163861659,2.2769535414,-0.4346382828\H,-4.6226518888, 0.0936318033,0.820140716\H,-3.8404147646,-2.4340438948,0.5104926206\H, 3.8180625871,-2.4173813918,-0.751364859\H,4.6473582863,0.1138992542,-0 .7087050149\S,-1.5307798996,-1.6220747433,0.1870179904\S,1.5234158354, -1.6154482207,-0.3156239451\\Version=EM64L-G09RevD.01\State=1-A\HF=-15 57.110151\RMSD=4.123e-09\RMSF=5.163e-06\Dipole=0.0041012,0.4373831,0.0 305137\Quadrupole=27.4531107,-4.6137685,-22.8393422,0.2969205,-8.53051 88,1.3554469\PG=C01 [X(C8H10N2P1S2)]\\@

Zero-point correction=	0.173334 (Hartree/Particle)
Thermal correction to Energy=	0.186715
Thermal correction to Enthalpy=	0.187659
Thermal correction to Gibbs Free Ener	rgy= 0.131865
Sum of electronic and zero-point Ener	gies= -1556.936817
Sum of electronic and thermal Energie	es= -1556.923436
Sum of electronic and thermal Enthalp	bies= -1556.922492
Sum of electronic and thermal Free En	ergies= -1556.978286

NBO results:

1. (1.96973) BD (1) P 1 - C 2

(33.67%) 0.5802* P 1 s(16.74%)p 4.94(82.62%)d 0.04(0.64%)

 $0.0000 \ 0.0000 \ 0.4060 \ 0.0504 \ 0.0007$

0.0001 -0.7027 -0.0343 -0.0039 -0.0001

-0.5754 - 0.0089 - 0.0020 0.0000 0.0001

 $0.0000 \ 0.0000 \ 0.0708 \ 0.0000 \ 0.0000$

0.0010 -0.0379

(66.33%) 0.8145* C 2 s(39.57%)p 1.53(60.39%)d 0.00(0.04%)

0.0000 0.6290 0.0097 -0.0044 -0.0001

 $0.6601 \ \ 0.0167 \ -0.0121 \ \ 0.4092 \ \ 0.0136$

-0.0114 0.0001 0.0000 0.0000 0.0161

0.0000 0.0000 0.0011 -0.0107

2. (1.73957) BD (2) P 1 - C 2

(61.23%) 0.7825* P 1 s(0.00%)p 1.00(99.67%)d 0.00(0.33%)

 $0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000$

 $0.0000 \ 0.0001 \ 0.0000 \ 0.0000 \ 0.0000$

S29

0.0000 0.0000 0.0000 0.0010 0.9983

-0.0067 -0.0009 0.0000 -0.0145 -0.0557

 $0.0000 \ 0.0000$

(38.77%) 0.6227* C 2 s(0.00%)p 1.00(99.98%)d 0.00(0.02%)

 $0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000$

0.0001 0.0000 0.0000 -0.0002 0.0000

0.0000 0.9996 0.0084 0.0209 0.0000

 $0.0121 \ 0.0096 \ 0.0000 \ 0.0000$

3. (1.96973) BD (1) P 1 - C 7

(33.67%) 0.5802* P 1 s(16.74%)p 4.94(82.62%)d 0.04(0.64%)

0.0000 0.0000 0.4060 0.0504 0.0007

-0.0001 0.7027 0.0343 0.0039 -0.0001

-0.5754 -0.0089 -0.0020 0.0000 -0.0001

0.0000 0.0000 -0.0708 0.0000 0.0000

0.0010 -0.0379

(66.33%) 0.8145* C 7 s(39.57%)p 1.53(60.39%)d 0.00(0.04%)

0.0000 0.6290 0.0097 -0.0044 -0.0001

 $-0.6601 \ -0.0167 \ \ 0.0121 \ \ 0.4092 \ \ 0.0136$

 $-0.0114 \ 0.0000 \ 0.0000 \ 0.0000 \ -0.0161$

0.0000 0.0000 0.0011 -0.0107

54. (1.92411) LP (1) P 1 s(66.93%)p 0.49(33.03%)d 0.00(0.03%)

 $0.0000 \ -0.0006 \ \ 0.8179 \ -0.0196 \ -0.0002$

 $0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0003$

0.5747 - 0.0085 - 0.0039 0.0000 0.0000

 $0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000$

0.0136 0.0119

S30

TD-DFT results:

Excitation energies and oscillator strengths:

Excited State 1: Triplet-A 2.0743 eV 597.73 nm f=0.0000 <S**2>=2.000 59 -> 60 0.70648

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1557.03963703

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 3.1926 eV 388.35 nm f=0.3955 <S**2>=0.000 59 -> 60 0.70239

Excited State 3: Triplet-A 3.1976 eV 387.74 nm f=0.0000 <S**2>=2.000 58 -> 60 -0.13445 58 -> 65 0.10154

59 -> 61 0.67279

- Excited State 4: Triplet-A 3.7358 eV 331.88 nm f=0.0000 <S**2>=2.000 59 -> 62 0.69953
- Excited State 5: Singlet-A 3.8895 eV 318.77 nm f=0.0000 <S**2>=0.000 59 -> 62 0.70427
- Excited State 6: Singlet-A 4.3823 eV 282.92 nm f=0.0000 <S**2>=0.000 59 -> 63 0.69875

Nickel Carbonyl Complexes:

[H₂P-Ni(CO)₃]⁻:

1\1\GINC-SAW193\FOpt\RPBE1PBE\Gen\C3H2Ni1O3P1(1-)\CMACD\06-Feb-2015\0\
\# PBE1PBE/gen pseudo=read scf=tight opt freq pop=(full,nboread) test\
\Optimization of H2P-Ni(CO)3 anion complex\\-1,1\Ni,-0.041260322,0.501
7759153,-0.4916313941\P,0.2168818454,-1.3177349899,0.9770572349\C,1.62
88190684,0.9129745343,-0.9130436354\C,-0.875156532,1.639174802,0.58989
60088\C,-1.0182462401,-0.1816430984,-1.8003299975\O,2.7296128224,1.147
8366255,-1.1577846732\O,-1.4092244885,2.2926316247,1.3736545112\O,-1.6
565482067,-0.6671030326,-2.6272329555\H,-1.1175252252,-1.4189448228,1.
4963418812\H,0.6678420183,-0.6348508281,2.1564094697\\Version=EM64L-G0
9RevD.01\State=1-A\HF=-853.1485145\RMSD=7.201e-09\RMSF=3.386e-05\Dipol

e=-0.1937693,0.823364,-0.4533086\Quadrupole=1.2410697,-1.5587506,0.317 6809,0.9843065,-0.0272409,1.182861\PG=C01 [X(C3H2Ni1O3P1)]\\@

H₃P-Ni(CO)₃:

1\1\GINC-SAW216\FOpt\RPBE1PBE\Gen\C3H3Ni1O3P1\CMACD\06-Feb-2015\0\\# P BE1PBE/gen pseudo=read scf=tight opt freq pop=(full,nboread) test\\Opt imization of H3P-Ni(CO)3 complex\\0,1\Ni,-0.0600162257,0.4649761481,-0 .3902598093\P,0.1622864251,-1.2234579879,1.0487630883\C,1.6005603759,0 .9425507053,-0.8938472214\C,-0.9059764621,1.7895285587,0.4869620774\C, -1.0318178972,-0.1535765814,-1.7733886899\O,2.6429020812,1.2581060312, -1.2243812382\O,-1.4400777698,2.6380441344,1.0255472072\O,-1.645571701 4,-0.5269925738,-2.6560826695\H,-0.9823560428,-1.8636759655,1.59196532 09\H,0.8409891773,-1.0351259376,2.2812777158\H,0.8446423595,-2.4090797 417,0.6694890189\\Version=EM64L-G09RevD.01\State=1-A\HF=-853.6924747\R MSD=4.464e-09\RMSF=2.756e-05\Dipole=0.1225606,-0.9321296,0.7943756\Qua drupole=-2.289165,1.6992276,0.5899374,-0.5334829,0.4572977,-3.4553158\ PG=C01 [X(C3H3Ni1O3P1)]\\@

Me₃P-Ni(CO)₃:

1\1\GINC-SAW69\FOpt\RPBE1PBE\Gen\C6H9Ni1O3P1\CMACD\06-Feb-2015\0\\# PB E1PBE/gen pseudo=read scf=tight opt freq pop=(full,nboread) test\\Opti mization of Me3P-Ni(CO)3 complex\\0,1\Ni,-0.0179156824,0.444665745,-0. 4030948758\P,0.1725543315,-1.2277475242,1.0603477393\C,1.6487556495,0. 903424461,-0.8783221781\C,-0.8695855713,1.7735426704,0.4469662134\C,-0 .9650891711,-0.1901425171,-1.7867361463\C,1.0255565761,-0.8325058961,2 .641495336\C,-1.4005944992,-1.972451848,1.6559891632\C,1.101102851,-2. 7094821183,0.4893021208\O,2.7121722227,1.1884621538,-1.1758248075\O,-1 .4114723889,2.6139880964,0.9952356315\0,-1.5682335969,-0.6025766539,-2 1.7031485384,3.3001982961\H,0.4881349767,-0.029692813,3.1491756448\H,0 .6157667988,-3.1195425755,-0.3979207449\H,1.1480480363,-3.4797760306,1 .2633381408\H,2.1147666781,-2.4144219325,0.2130316184\H,-1.2187133263, -2.7805887884,2.3689999962\H,-2.0063704646,-1.2005237454,2.1333736126\ H,-1.9608369775,-2.3627122756,0.8045351662\\Version=EM64L-G09RevD.01\S tate=1-A\HF=-971.5545939\RMSD=9.806e-09\RMSF=6.530e-05\Dipole=0.155994 6,-1.3695331,1.1988748\Quadrupole=-1.6494651,1.1593372,0.4901279,-0.32 57388,0.2872925,-2.4903947\PG=C01 [X(C6H9Ni1O3P1)]\\@

Ph₃P-Ni(CO)₃:

1/1/GINC-SAW280/FOpt/RPBE1PBE/Gen/C21H15Ni1O3P1/CMACD/09-Feb-2015/0//# PBE1PBE/gen pseudo=read scf=tight opt freq pop=(full,nboread) test\\O ptimization of Ph3P-Ni(CO)3 complex\\0,1\Ni,2.1535358006,-0.0024473032 ,0.0024837418\P,-0.0937138688,-0.000616787,0.0012700988\C,2.6816837719 ,0.5078402992,-1.6356304805\C,2.677597601,-1.6774568163,0.3800819527\C ,2.680113395,1.1604903544,1.2647716031\0,3.0274339117,0.8277315447,-2. 6733353095\0,3.0206554408,-2.7368841494,0.622220331\0,3.0248509796,1.8 987874977,2.0614769742\C,-0.8802437628,-0.4981736684,-1.587961465\C,-0 .2930158017,-1.5378681121,-2.3085919761\C,-2.0251724585,0.1151486659,-2.0911918312\C,-0.8521932447,-1.9699664969,-3.5013436742\H,0.612393584 7,-2.0046279679,-1.9346894367\C,-2.577196337,-0.3117348401,-3.29200056 72\H,-2.4846888486,0.9332837354,-1.548217248\C,-1.9951558236,-1.355710 689,-3.9964951711\H,-0.3871067641,-2.7804913803,-4.0514297685\H,-3.465 255825,0.1768300385,-3.6778852579\H,-2.4271565377,-1.6863079659,-4.934 5866702\C,-0.8795065581,1.625234941,0.3638383203\C,-2.0188405274,1.756 7216041,1.1544743431\C,-0.2961460768,2.7677945426,-0.1833919893\C,-2.5 692038224,3.0107516574,1.3855686888\H,-2.4757973621,0.8791017538,1.597 638213\C,-0.8537804815,4.0173500825,0.0392265521\H,0.6051334411,2.6759 491026,-0.7805509394\C,-1.9912000414,4.1412869736,0.8264568444\H,-3.45

2839943,3.1023315924,2.0076958986\H,-0.3915978062,4.8977550697,-0.3933 177222\H,-2.4218108811,5.1195364758,1.0095183322\C,-0.8825408889,-1.12 68459351,1.2263977367\C,-2.0287747707,-1.8670291432,0.9456024806\C,-0. 2958681078,-1.2341063373,2.4871224134\C,-2.582915648,-2.6935443838,1.9 14457643\H,-2.4881948128,-1.80408705,-0.0343132512\C,-0.8571712123,-2. 0510814339,3.4564615121\H,0.6107857839,-0.6794219483,2.7054556959\C,-2 .0016735666,-2.7841704185,3.1709462778\H,-3.4719813205,-3.2700054282,1 .6832054964\H,-0.3923493409,-2.1245920691,4.4333890433\H,-2.4350882692 ,-3.4312636073,3.9254805649\\Version=EM64L-G09RevD.01\State=1-A\HF=-15 46.2429218\RMSD=4.299e-09\RMSF=3.388e-05\Dipole=-1.8683486,0.0001194,-0.0011885\Quadrupole=-3.9398609,1.9464353,1.9934255,-0.0027944,-0.0134 286,-0.0130915\PG=C01 [X(C21H15Ni1O3P1)]\\@

 $[H_2C(^{Me}NHC^H)_2P-Ni(CO)_3]^+$:

1\1\GINC-SAW193\FOpt\RPBE1PBE\Gen\C12H12N4Ni1O3P1(1+)\CMACD\06-Feb-201 5\0\\# PBE1PBE/gen pseudo=read scf=tight opt freq pop=(full,nboread) t est\\Optimization of LP-Ni(CO)3 cation complex\\1,1\P,6.3847147097,5.0 283330155,2.1772394162\C,5.5724541537,6.2508733263,3.2512806886\N,5.16 85035476,7.4851191904,2.9101066161\N,5.2407600256,6.092357817,4.550386 218\C,4.6016414786,8.1085161936,4.0024504255\H,4.2119537578,9.11117010 98,3.9480203973\C,4.6402178913,7.2380612832,5.0330391505\H,4.295923289 2,7.3308437609,6.0494069003\C,5.6929640901,4.9494828186,5.306107021\H, 6.7696562006,5.047314644,5.491309138\H,5.1510891487,4.8955275732,6.248 2825554\C,5.0727014146,2.5100287342,5.0089379954\H,4.752352582,2.34512 74201,6.0239718158\C,5.1918728477,1.6579707194,3.968997478\H,4.9908127 124,0.6018411872,3.9037940389\C,5.8080442915,3.6687629369,3.2384986825 \N,5.4549875644,3.7508084133,4.5391834098\N,5.6348993568,2.3854132141, 2.8838706526\C,5.3325670204,8.0764394895,1.5932057884\H,6.2940678631,8 .5868477105,1.5232008597\H,4.5259389875,8.7861595689,1.4197924567\H,5. 2837189005,7.2858701025,0.8439700435\C,5.9044405256,1.8493542971,1.560 769699\H,5.6725227471,2.6120075347,0.8167440852\H,5.2707888072,0.98043 66711,1.3943033969\H,6.9532306404,1.5621140813,1.4736877457\Ni,8.63210 16022,5.2398126031,2.6780782706\C,8.8568659072,6.8361973143,3.46647594 11\C,9.3994134394,5.1829908389,1.0303450956\C,9.1331053749,3.851825248 9,3.6995852471\0,9.9076518104,5.1518179221,0.0166132888\0,8.9860502358 ,7.8529857176,3.9632703416\O,9.4456442461,2.9679902319,4.3467622598\\V ersion=EM64L-G09RevD.01\State=1-A\HF=-1420.3878582\RMSD=6.871e-09\RMSF =3.895e-06\Dipole=-4.0041047,-0.3903603,1.3234338\Quadrupole=-11.97615 56,15.8511972,-3.8750416,-2.5059497,-7.0976316,-0.4697876\PG=C01 [X(C1 2H12N4Ni1O3P1)]\\@

References

- A. B. Pangborn, M. a. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518–1520.
- 2 E. L. Norton, K. L. S. Szekely, J. W. Dube, P. G. Bomben and C. L. B. Macdonald, *Inorg. Chem.*, 2008, **47**, 1196–1203.

- 3 H. M. Lee, C. Y. Lu, C. Y. Chen, W. L. Chen, H. C. Lin, P. L. Chiu and P. Y. Cheng, *Tetrahedron*, 2004, **60**, 5807–5825.
- 4 M. Alcarazo, *Chem. Eur. J.*, 2014, 20, 7868-7877.
- 5 O. Back, B. Donnadieu, P. Parameswaran, G. Frenking and G. Bertrand, *Nature Chemistry*, 2010, 2, 369-373.
- 6 *APEX* II, Bruker AXS Inc., Madison, WI, 2012.
- 7 SADABS, Bruker AXS Inc., Madison, WI, 2008.
- 8 G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 9 L. J. Farrugia, J. Appl. Crystallogr., 1999, **32**, 837–838.
- 10 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7–13.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian09, Revision D.01, (2009) Gaussian, Inc., Wallingford CT.
- 12 J. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 13 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, 78, 1396.
- 14 C. Adamo and V. Barone, J. Chem. Phys., 1999, **110**, 6158-6170.
- 15 A. Schafer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571–2577.
- 16 A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.
- 17 M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987, 86, 866-872.
- 18 A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899–926.
- 19 *NBO 3.0*, E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold.
- 20 L. A. Curtiss, M. P. McGrath, J. P. Bladeau, N. E. Davis, R. C. Binning and L. Radom, *J. Chem. Phys.*, 1995, **103**, 6104–6113.

21 *Gaussview 3.0*, Gaussian Inc., Pittsburgh, PA, 2003.