Supporting Information for:

A new strategy to synthesize well-defined PS brushes on silica particles by combination of lithium-iodine exchange (LIE) and surface-initiated living anionic polymerization (SI-LAP) Jiakang Min,^{a,b} Yichao Lin,^{a,b} Jun Zheng^{*a} and Tao Tang^{*a}

Contents:

Experimental section 1
Characterization ······3
Figure S1. TGA curves: A-SiO ₂ , B-SiO ₂ @ITS-12h, (C, D, E, F)-SiO ₂ @ITS-12h@PSs hybrid particles······4
Figure S2. Number-average molecular weights (M_n) of grafted PS brushes of (a) SiO ₂ @ITS-12h@PSs, (b)
SiO ₂ @ITS-24h@PSs as a function of anionic polymerization time4
Figure S3. TEM images of ultracryotomy: PS composite films containing raw SiPs5
Figure S4. SEC-MALLS curves of grafted PS brushes of ITS-12h@PSs5
Figure S5. HRTEM images of hybrid particles: (a) SiO ₂ @ITS-12h@PS-8h, (b) SiO ₂ @ITS-12h@PS-24h, (c)
SiO ₂ @ITS-24h@PS-16h, (d) SiO ₂ @ITS-24h@PS-24h6
References6

Experimental section

Materials. Styrene (99%), ethanol (99%), ammonium hydroxide solution (28% NH₃), hydrofluoric acid (HF, 40%), tetraethoxysilane (TEOS, 99.9%), acetone, toluene, *n*-hexane, isopropanol, sodium iodide (NaI), diethyl ether and cyclohexane were purchased from China National Medicines Corporation Ltd. 3-Chloropropyltrimethoxysilane (CTS, 94%) was purchased from Aldrich. *tert*-Butyllithium (*tert*-BuLi, 1.6M in pentane) was purchased from Alfa Aesar. Styrene, TEOS, acetone, isopropanol and diethyl ether were dried over CaH₂ or NaH and distilled under reduced pressure prior to use. Toluene, *n*-hexane and cyclohexane were purified by a Braun system. All other reagents were used as received.

Synthesis of 3-Iodopropyltrimethoxysilane (ITS). ITS was prepared by incorporating dry sodium iodide (NaI) into commercially-available 3-chloropropyltrimethoxysilane (CTS, 94%, ¹H NMR (CDCl₃) of CTS: δ 3.65-3.55 (-OCH₃), 3.54-3.48 (-CH₂Cl), 1.9-1.8 (-CH₂), 0.8-0.7 (-Si-CH₂).) as previously reported.¹ The synthesis process was as follows: NaI (4.5 g, 30 mmol) and CTS (4.3 g, 20 mmol) were added to acetone (50 ml) and refluxed for 48 h at 50 °C under nitrogen. Subsequently, the solution was filtered and distilled under reduced pressure to get the

Synthesis and Chemical Modification of Silica Particles. The silica particles (SiPs) were synthesized by hydrolysis of TEOS with ammonia in a mixed solvent of ethanol and ultrapure water, according to the typical solgel method.² Ultrapure water (50 ml) and ethanol (200 ml) were added into a single-necked round-bottom flask (500 ml) equipped with a magnetic agitator and heated to 30 °C. TEOS (5 ml) was added into the solution under magnetic stirring at a speed of 300 rpm. Ammonia (5 ml) was dropwise added after 10 min to the flask while stirring. Subsequently, the mixture was stirred at a speed of 500 rpm for 6 h, purified by centrifugation and redispersion three times using ethanol to get the SiPs powders with a mean diameter of 200 nm ultimately. The powders were stored in a vacuum drying oven at 60 °C.

The above-obtained SiPs powders (3 g) were redispersed in 50 ml of fresh anhydrous toluene while stirring. 5 ml ITS were quickly injected into the solution at 60 °C for 1 h, and then stirred under dry nitrogen at 110 °C for 12 h and cooled to room temperature.³ The resultant ITS-modified silica particles (SiO₂@ITS-12h) were separated by centrifugation and redispersion three times with toluene to remove the excess ITS. The above operation was repeated again with reaction time of 24 h to obtain the SiO₂@ITS-24h. The iodine-functionalized silica particles (SiO₂@ITSs) were finally stored in a vacuum drying oven at 80 °C.

Lithium-Iodine Exchange (LIE) and Surface-Initiated Living Anionic Polymerization (SI-LAP) of PS from SiO₂@ITS. Both the LIE and SI-LAP procedure were conducted under an atmosphere of dry, deoxygenated nitrogen. At the first step, SiO₂@ITSs (2 g) was added to a mixed solvent of *n*-hexane (18 ml) and diethyl ether (2 ml) by stirring for 2 h at -78 °C. Then the reaction of LIE was conducted by adding 2.1-2.2 molar equivalent (relative to Si-I groups) of commercial tert-butyllithium (*tert*-BuLi, 1.6 M) to the mixture, stirred at a speed of 800 rpm for 6 h when the temperature was stable. At last, the mixture was warmed to room temperature and kept for 2 h to remove the residual *tert*-BuLi which was consumed by rapid proton abstraction from diethyl ether⁴ after the reaction was finished.

The above-obtained suspension (after clearing the supernate) was divided into four parts and added into cyclohexane (100 ml) separately, preparing for anionic polymerization. The SI-LAP was started by adding designed amount of styrene monomer to each reaction system quickly to react for 8 h, 16 h, 24 h and 32 h, respectively. The SI-LAP was quenched by trace amounts of isopropanol at the end. The hybrid particles were purified by centrifugation/redispersion three times using toluene, dried at 60 °C under a vacuum to generate eight

hybrid particles (SiO₂@PSs) samples with various PS brushes. The resultant products were nominated as $SiO_2@ITS-xh@PS-yh$, here "x" is the reaction time between SiPs and ITS, and "y" is the polymerization time of styrene. For example, SiO₂@ITS-24h@PS-16h means the product synthesized by modified SiPs through the reaction with ITS for 24 h, following by LIE and the polymerization of styrene for 16 h.

Cleavage of SiO₂@PSs hybrid particles. All the SiO₂@PSs hybrid particles (8 β 1 g) were put into an aqueous HF solution with 5 vol% HF (a mixed solution of hydrofluoric acid (HF, 10 ml) with ultrapure water (70 ml)) to perform the cleavage of grafted PS brushes. The mixtures were stirred for 4 h at room temperature. The cleaved polymer brushes were obtained through filtration by using an 0.2 µm syringe filter and then dried in the air.

Preparation of PS Film Composites Containing SiO₂@PS Hybrid Particles. The raw SiPs (0.263 g) and SiO₂@ITS-24h@PS-32h hybrid particles (0.375 g, the content of PS brush accounts for 28.3 wt %) were implanted in 5 g PS matrixes by dissolving in toluene at room temperature. After stirring well, the mixtures were sonicated for 1 h, cast onto three watch-glass plates, dried in air and dried in a vacuum oven at 80 °C for 24 h to get rid of residual solvents, respectively. At last, the relative smooth and flat films of uniform thickness (1 mm) were cured by hot-pressing at 180 °C for 10 min.

Characterization

Transmission Electron Microscope (TEM). TEM observations were conducted on a JEM-1011transmission electron microscope at an acceleration voltage of 100 kV. Ultrathin sections were cut using a Leica Ultracut and a glass knife at room temperature. The samples were collected on carbon-coated copper TEM grids.

High-Resolution Transmission Electron Microscope (HRTEM). HRTEM observations were done on a FEI Tecnai G2 S-Twintransmission electron microscope operating at 200 kV.

Nuclear Magnetic Resonance (NMR) Spectra. ¹H NMR spectra were performed on a Bruker AV400 MHz spectrometer using CDCl₃ as the solvent.

X-ray Photoelectron Spectroscopy (XPS). XPS was carried out on a VG ESCALAB MK II spectrometer using an Al Kα exciting radiation from an X-ray source operated at 10.0 kV and 10 mA.

Thermal Gravimetric Analysis (TGA). TGA was performed on an SDTQ600 (TA Instruments) in the range from room temperature to 800 °C under air flow at a heating rate of 10 °C /min.

SEC-MALLS. Weight-average molecular weights (M_w) and polydispersity indices (PDI) were measured by size exclusion chromatography (SEC). The SEC-MALLS consisted of a Model 1500 Digital HPLC pump, a DAWN

HELEOS II (Wyatt multi-angle LS detector, GaAs 662.0 nm), an Optilab T-rEX (Wyatt RI detector, LED light 658.0 nm) and a viscosity detector (ViscoStar, Wyatt Technology). This instrument had a protected MZ-Gel SD *plus* 50×0.8 mm column (10^2 Å pore size) and two MZ-Gel SD *plus* 300×8.0 mm columns (10^3 and 10^5 Å pore size). For all SEC analyses, HPLC grade tetrahydrofuran was used as the mobile phase at 25 °C (flow rate: 1mL min⁻¹) The increments (dn/dc) of samples were measured based on the calibration constant of the RI detector and the concentration of samples. Data acquisition was performed using Wyatt Technology WinAstra6 software.

Graft Density Calculations (D_s) **.** The graft density $(D_s, \text{chains/nm}^2)$ of PS brushes may be calculated according to eq 1 from the molecular weight $(M_n, \text{g/mol})$, graft amount (W), surface area (S), and Avogadro's number $(N_a, \text{molecules/mol})$.

$$D_s = (W \not \otimes N_a) / (M_n \not \otimes S) \qquad \text{eq}(1)$$

Figure S1. TGA curves: A-SiO₂, B-SiO₂@ITS-12h, (C, D, E, F)-SiO₂@ITS-12h@PSs hybrid particles.

Figure S2. Number-average molecular weights (M_n) of grafted PS brushes of (a) SiO₂@ITS-12h@PSs, (b) SiO₂@ITS-24h@PSs as a function of anionic polymerization time.

Figure S3. TEM images of PS/SiPs composite containing 5 wt% raw SiPs.

Figure S4. SEC-MALLS curves of grafted PS brushes of SiO₂@ITS-12h@PSs.

Figure S5. HRTEM images of hybrid particles: (a) $SiO_2@ITS-12h@PS-8h$, (b) $SiO_2@ITS-12h@PS-24h$, (c) $SiO_2@ITS-24h@PS-16h$, (d) $SiO_2@ITS-24h@PS-24h$.

References:

- 1 B.L. Booth, G.C. Ofunne, C. Stacey, P.J.T. Tait, J. Org. Chem., 1986, 315, 143.
- 2 W. Stöber, A. Fink, Bohn, A. J. Colloid Interface Sci., 1968, 26, 62.
- 3 M. Wåhlandera, F. Nilsson, E. Larsson, W. Tsai, H. Hillborg, A. Carlmark, U. W. Gedde, E. Malmström, Polymer, 2014, 55, 2125.
- 4 T. F. Bates, M. T. Clarke, R. D. Thomas, J. Am. Chem. Soc., 1988, 110, 5109.