Electronic Supplementary Information

for

Isotope Effect Profiles in the *N*-demethylation of *N*,*N*-dimethylanilines. A Key to Determine the p*K*a of Nonheme Fe(III)-OH Complexes

Alessia Barbieri, Martina De Gennaro, Stefano Di Stefano, Osvaldo Lanzalunga,* Andrea Lapi, Marco Mazzonna, Giorgio Olivo and Barbara Ticconi

Table of contents

Instrumentation	S2
Starting materials	S2
Oxidation procedures	S3
Calculation of pKa of N,N-dimethylaniline radical cations in CH ₃ CN	S5
References	S 6

Instrumentation. NMR spectra were recorded on a 300 MHz spectrometer. The spectra were internally referenced to the residual proton solvent signal. UV-Vis spectra were registered by a double-ray spectrophotometer. GC analyses were carried out on a gas chromatograph equipped with a capillary methylsilicone column (30 m x 0.25 mm x 25 μ m) Chrompack CP-Sil 5 CB. GC-MS analyses were performed with a mass detector (EI at 70eV) coupled with a gas chromatograph equipped with a melted silica capillary column (30 m x 0.2 mm x 25 μ m) covered with a methylsilicone film (5% phenylsilicone, OV5).

Starting Materials. All chemicals obtained from Sigma-Aldrich were the best available purity and used without further purification. Iodosylbenzene was prepared by a literature method and stored at 0°C under inert atmosphere.^{S1} (N4Py)Fe(OTf)₂ was prepared by metallation of the ligand N4Py^{S2} with Fe(OTf)₂ according to a literature method.^{S3} [(N4Py)Fe^{IV}=O]²⁺ was prepared by reacting Fe(N4Py)(OTf)₂ with excess solid PhIO.^{S4} *N*-methyl-*N*-(trideuteriomethyl)anilines and *N*,*N*-di(trideuteriomethyl)anilines were prepared by reaction of the corresponding *N*-methylanilines or anilines with CD₃I according to literature method.^{S5}

Oxidation Procedures. Iodosylbenzene (12.5 μ mol) was added to a stirred solution of the catalyst (2.5 μ mol) and 4-X-*N*-methyl-*N*-trideuteriomethylanilines (X= OCH₃, CH₃, Br, CF₃, CN, NO₂) (50 μ mol) in acetonitrile (500 μ L). In the case of the intermolecular isotope effects, iodosylbenzene (12.5 μ mol) was added to a stirred solution of the catalyst (2.5 μ mol), 25 μ mol of 4-X-*N*,*N*-di(trideuteriomethyl)anilines and 25 μ mol of 4-X-*N*,*N*-dimethylanilines (X= OCH₃, CH₃, Br, CF₃, CN, NO₂) in acetonitrile (500 μ L). The mixture was vigorously stirred at room temperature for 50 min. An

internal standard were added and an aliquot of the reaction mixture (0.2 mL) was directly analysed by GC, GC-MS and ¹H NMR. Product analysis revealed that 4-X-*N*-methylanilines were produced as major reaction products (comparison with authentic specimens) with yields, referred to the amount of substrate, ranging from 5.5 % to 9.5 % (22 - 38 % referred to the amount of oxidant). Substrate conversion was kept low (< 12.5 %) in order to avoid the further oxidation of N-methylanilines^{S6} which may alter the results of the kinetic isotope effects studies. From the GC-MS and ¹H NMR analysis Nmethylformanilides (yields, referred to the amount of substrate, ranging from 1.0 % to 2.8 %) were also identified by comparison with the spectral data reported in the literature.^{S7} No formation of Nmethylformanilides occurred when the oxidation of 4-NO₂-N,N-dimethylaniline and 4-CH₃-N,Ndimethylaniline was carried out in a degassed (freeze-thaw) reaction mixture. N-methylanilines were the exclusive reaction products. The remaining reaction mixture (0.3 mL) was treated with 2 mL of a 0.2 M dimedone solution in 0.2 M NaOH and stirred at room temperature for 30 min. Then hydrochloric acid (4 M) was added dropwise until the mixture became acidic (pH=4). The dimedone adducts (Figure S1) were extracted with diethyl ether $(3 \times 1 \text{ mL})$, dried over anhydrous sodium sulfate, and analyzed by GC-MS (SIM mode). The $(k_{\rm H}/k_{\rm D})_{\rm intra}$ and $(k_{\rm H}/k_{\rm D})_{\rm inter}$ values was determined as the ratio of the signal intensities at m/z 294 and 292. The KDIE values determined in this way have been confirmed in the N-demethylation of 4-X-N,N-dimethylanilines (X = CH₃, Br, CF₃, NO₂), by measuring the N-methylaniline/N-trideuteriomethylaniline ratio in the reaction mixture. The same method could not be applied in the N-demethylation of 4-CH₃O-N,N-dimethylaniline and 4-CN-N,Ndimethylaniline because of the overlap of the N-methylaniline and N,N-dimethylaniline peaks in the GC-MS analysis. The absence of oxygen had no effect on the intramolecular, $(k_{\rm H}/k_{\rm D})_{\rm intra}$, and intermolecular, $(k_{\rm H}/k_{\rm D})_{\rm inter}$, kinetic isotope effect values.

Figure S1

Calculation of the pKa of N,N-dimethylaniline radical cations in CH₃CN

The p K_a of the *N*,*N*-dimethylaniline radical cations in CH₃CN were estimated by the following equation:^{S8}

$$pKa = 1/2.3RT[\Delta G^{\circ}_{hom} - 23.06 E^{\circ}_{ArNMe2+\bullet/ArNMe2} + 23.06 E^{\circ}_{H^{+}/H\bullet}]$$

where ΔG°_{hom} is the standard free energy associated with the homolytic cleavage of the NCH₂-H bond, taken as 82.7 kcal mol⁻¹ (at 25°C), resulting from the difference between ΔH°_{hom} (91 kcal mol⁻¹), an average value for the NCH₂-H homolytic bond dissociation enthalpy for a number of *N*,*N*-dimethylanilines,^{S9} and T ΔS°_{hom} , where ΔS° = 27.5 cal K⁻¹ is the standard entropy of the hydrogen atom.^{S10} $E^{\circ}_{ArNMe2+\bullet/ArNMe2}$ are the standard redox potential (V vs NHE in H₂O) of the couple ArN^{+•}Me₂/ArNMe₂ obtained from the values reported in Table 1 by addying 0.24 V. $E^{\circ}_{H^+/H^{\bullet}}$, the standard redox potential of the couple H⁺/H[•], is taken as -1.77 V vs NHE in CH₃CN.^{S11}

References

- S1 H. Salzman, J. G. Sharefkin, Organic Syntheses, Wiley: New York, 1973; Vol. V, p 658.
- S2 M. Lubben, A. Meetsma, E. C. Wilkinson, B. Feringa, L. Que, Jr. Angew. Chem. Int. Ed. 1995, 34, 1512.
- S3 R. A. Geiger, D. F. Leto, S. Chattopadhyay, P. Dorlet, E. Anxolabehere-Mallart, T. A. Jackson *Inorg. Chem.* 2011, **50**, 10190-10203.
- S4 J. Kaizer, E. J. Klinker, N. Y. Oh, J.-U. Rohde, W. J. Song, A. Stubna, J. Kim, E. Münck, W. Nam,
- L. Que, Jr., J. Am. Chem. Soc. 2004, 126, 472.
- S5 J. P. Dinnocenzo, S. B. Karki, J. P. Jones, J. Am. Chem. Soc. 1993, 115, 7111.
- S6 K. Nehru, Y. K. Jang, M. S. Seo, W. Nam, J. Kim, Bull. Korean Chem. Soc. 2007, 28, 843.
- S7 D. Naróg, U. Lechowicz, T. Pietryga, A. Sobkowiak, J. Mol. Catal. A: Chem. 2004, 212, 25.
- S8 E. Baciocchi, M. F. Gerini, O. Lanzalunga, A. Lapi, M. G. Lo Piparo, S. Mancinelli, *Eur. J. Org. Chem.* 2001, 2305.
- S9 G. W. Dombrowski, J. P. Dinnocenzo, S. Farid, J. L. Goodman, I. R. Gould, J. Org. Chem. 1999, 64, 427-431.
- S10 A. M. de P. Nicholas, D. R. Arnold, *Can. J. Chem.* 1982, **60**, 2165-2179. F. G. Bordwell, J.-P.
 Cheng, J. A. Jr. Harrelson, *J. Am. Chem. Soc.* 1988, **110**, 1229-1231.
- S11 D. D. M. Wayner, V. D. Parker, Acc. Chem. Res. 1993, 26, 287-294.