Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Borylstannylation of alkynes with inverse regioselectivity: Copper-catalyzed three-component coupling using a masked diboron

Hiroto Yoshida,*^{*a,b*} Yuki Takemoto,^{*a*} and Ken Takaki^{*a*}

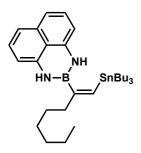
^a Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan ^b ACT-C, Japan Science and Technology Agency, Higashi-Hiroshima 739-8527, Japan

Contents

General Remarks	S2
Materials	S2
Experimental Procedures	S2
References	S17
¹ H and ¹³ C NMR Spectra of Products	S18

General remarks.

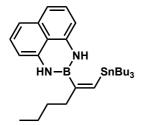
All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique under a purified argon atmosphere. Nuclear magnetic resonance spectra were taken on a Varian System 500 (¹H, 500 MHz; ¹³C, 125 MHz; ¹¹⁹Sn, 186 MHz) spectrometer using residual chloroform (¹H, δ = 7.26) or CDCl₃ (¹³C, δ = 77.0) as an internal standard, and tetramethyltin (¹¹⁹Sn, $\delta = 0.00$) as an external standard. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, m = multiplet), coupling constants (Hz), integration. High-resolution mass spectra were obtained with a Thermo Fisher Scientific LTQ Orbitrap XL spectrometer. Melting points were measured with Yanaco Micro Melting Point apparatus and uncorrected. Preparative recycling gel permeation chromatography was performed with GL Science PU 614 equipped with Shodex GPC H-2001L and -2002L columns (toluene as an eluent). Column chromatography was carried out using Merk Kieselgel 60. Unless otherwise noted, commercially available reagents were used without purification. Toluene was distilled from sodium/benzophenone ketyl. DMF and DMSO were distilled from CaH₂.


Materials.

(SIPr)CuCl,¹ (SIMes)CuCl,¹ (tBu-SIPr)CuCl,² $(IPr^*)CuCl$,² undeca-1,2-diene (3a),³ and propa-1,2-dien-1-ylbenzene $(3b)^4$ were prepared according to literature procedures.

Cu-catalyzed borylstannylation of alkynes: a general procedure.

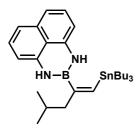
A Schlenk tube equipped with a magnetic stirring bar was charged with (SIPr)CuCl (6.0 μ mol) were added an alkyne (0.30 mmol), a masked diboron (0.36 mmol), tributyltin methoxide (0.60 mmol) and THF (1.0 mL), and the resulting mixture was stirred at room temperature for 1 h. The mixture was diluted with diethyl ether and filtered through a Celite plug. The organic solution was washed with brine, dried over MgSO₄, and evaporated. The residual tin alkoxide was removed by passing through column chromatography (10% w/w anhydrous K₂CO₃–silica gel; diethyl ether as an eluent), and evaporation of the solvent followed by gel permeation chromatography (toluene as an eluent) gave the corresponding product. Stereochemistry of the product was determined by NOE experiment and by H–Sn coupling constants.⁵


(E)-2-(1-(tributylstannyl)oct-1-en-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diaza borinine (2a)

Isolated in 86% as a colorless liquid

¹H NMR (C₆D₆) δ 0.83 (t, *J* = 7.4 Hz, 9H), 0.89 (t, *J* = 7.1 Hz, 3H), 0.93-1.08 (m, 6H), 1.22-1.38 (m, 12H), 1.46-1.64 (m, 8H), 2.3 (t, *J* = 7.8 Hz, 2H), 5.39 (s, 2H), 6.05-6.12 (m, 2H), 6.58 (s, *J*_{H-Sn} = 81.9 Hz, 1H), 7.00-7.06 (m, 4H) ¹³C NMR (C₆D₆) δ 11.0 (*J*_{C-Sn} = 329.0 Hz), 13.9, 14.3, 23.1, 27.8 (*J*_{C-Sn} = 56.1 Hz), 29.6, 29.7, 30.0, 32.1, 42.7 (*J*_{C-Sn} = 71.9 Hz), 106.3, 118.5, 120.5, 137.0, 137.5, 141.1 ¹¹⁹Sn NMR (C₆D₆) δ -62.3 HRMS Calcd for C₃₀H₅₀N₂BSn: [M+H]⁺, 569.30835. Found: m/z 569.30682

(*E*)-2-(1-(tributylstannyl)hex-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diaz aborinine (2b)

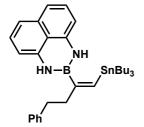

Isolated in 78% as a colorless liquid

¹H NMR (C_6D_6) δ 0.81 (t, J = 7.4 Hz, 9H). 0.91 (t, J = 7.2 Hz, 3H), 0.93-1.07 (m, 6H), 1.21-1.39 (m, 8H), 1.40-1.64 (m, 8H), 2.29 (t, J = 7.4 Hz, 2H), 5.37 (s, 2H), 6.02-6.13 (m, 2H), 6.57 (s, $J_{H-Sn} = 82.3$ Hz, 1H), 6.99-7.07 (m, 4H)

¹³C NMR (C₆D₆) δ 11.0 (J_{C-Sn} = 329.1 Hz), 13.9, 14.2, 23.0, 27.8 (J_{C-Sn} = 56.4 Hz), 29.7 (J_{C-Sn} = 20.2 Hz), 32.2, 42.4 (J_{C-Sn} = 71.7 Hz), 106.3, 118.5, 120.5, 137.0, 137.5, 141.1 ¹¹⁹Sn NMR (C₆D₆) δ -62.4

HRMS Calcd for C₂₈H₄₆N₂BSn: [M+H]⁺, 541.27705. Found: m/z 541.27698

(*E*)-2-(4-methyl-1-(tributylstannyl)pent-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinine (2c)



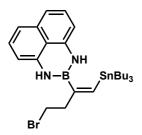
Isolated in 81% as a colorless liquid

¹H NMR (C₆D₆) δ 0.83 (t, *J* = 7.4 Hz, 9H), 0.92 (d, *J* = 6.6 Hz, 6H), 0.94-1.08 (m, 6H), 1.27 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.47-1.65 (m, 6H), 1.72 (sep, *J* = 6.7 Hz, 1H), 2.19 (d, *J* = 7.2 Hz, 2H), 5.39 (s, 2H), 6.05-6.11 (m, 2H), 6.52 (s, *J*_{H-Sn} = 82.3 Hz, 1H), 7.00-7.07 (m, 4H)

¹³C NMR (C₆D₆) δ 11.0 (J_{C-Sn} = 328.8 Hz), 13.9, 22.8, 27.8 (J_{C-Sn} = 55.5 Hz), 28.3, 29.8 (J_{C-Sn} = 20.5 Hz), 52.7 (J_{C-Sn} = 70.6 Hz), 106.4, 118.5, 120.5, 137.0, 139.4, 141.0 ¹¹⁹Sn NMR (C₆D₆) δ -62.6 HRMS Calcd for C₂₈H₄₆N₂BSn: [M+H]⁺, 541.27705. Found: m/z 541.27722

(*E*)-2-(4-phenyl-1-(tributylstannyl)but-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1 ,3,2]diazaborinine (2d)

Isolated in 74% as a colorless liquid

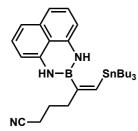

¹H NMR (C₆D₆) δ 0.95 (t, *J* = 7.4 Hz, 9H), 1.02-1.16 (m, 6H), 1.38 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.56-1.73 (m, 6H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.84 (d, *J* = 7.6 Hz, 2H), 5.23 (s, 2H), 6.13-6.23 (m, 2H), 6.69 (s, *J*_{H-Sn} = 79.0 Hz, 1H), 7.12-7.32 (m, 9H)

¹³C NMR (C₆D₆) δ 10.9 (J_{C-Sn} = 329.8 Hz), 13.9, 27.8 (J_{C-Sn} = 57.2 Hz), 29.7 (J_{C-Sn} = 20.5 Hz), 36.9, 43.2, (J_{C-Sn} = 71.6 Hz), 106.3, 118.4, 120.4, 126.3, 128.6, 129.1, 137.0, 139.0, 141.1, 142.2

¹¹⁹Sn NMR (C_6D_6) δ -61.6

HRMS Calcd for C₃₂H₄₆N₂BSn: [M+H]⁺, 589.27705. Found: m/z 589.27698

(*E*)-2-(4-bromo-1-(tributylstannyl)but-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinine (2e)



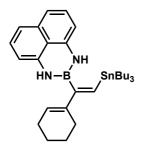
Isolated in 87% as a colorless liquid

¹H NMR (C₆D₆) δ 0.82 (t, *J* = 7.3 Hz, 9H), 0.89-1.05 (m, 6H), 1.25 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.44-1.61 (m, 6H), 2.54 (t, *J* = 7.0 Hz, 2H), 3.13 (t, *J* = 7.0 Hz, 2H), 5.32 (s, 2H), 6.03-6.13 (m, 2H), 6.48 (s, *J*_{H-Sn} = 75.9 Hz, 1H), 6.98-7.09 (m, 4H) ¹³C NMR (C₆D₆) δ 10.9 (*J*_{C-Sn} = 329.9 Hz), 13.9, 27.8 (*J*_{C-Sn} = 56.8 Hz), 29.7 (*J*_{C-Sn} = 20.3 Hz), 32.9, 44.9 (*J*_{C-Sn} = 72.3 Hz), 106.5, 118.6, 120.5, 137.0, 140.8, 141.9 ¹¹⁹Sn NMR (C₆D₆) δ -60.7

HRMS Calcd for C₂₆H₄₁N₂BBrSn: [M+H]⁺, 591.15627. Found: m/z 591.15601

(*E*)-5-(1*H*-naphtho[1,8-*de*][1,3,2]diazaborinin-2(3*H*)-yl)-6-(tributylstannyl)hex-5-en enitrile (2f)

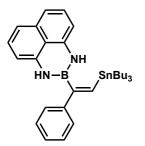
Isolated in 79% as a colorless liquid


¹H NMR (C₆D₆) δ 0.84 (t, *J* = 7.4 Hz, 9H), 0.92-1.11 (m, 6H), 1.16-1.36 (m, 8H), 1.43-1.67 (m, 8H), 2.08 (t, *J* = 7.5 Hz, 2H), 5.43 (s, 2H), 6.13-6.23 (m, 2H), 6.49 (s, *J*_{H-Sn} = 78.0 Hz, 1H), 7.01-7.10 (m, 4H)

¹³C NMR (C₆D₆) δ 10.9 ($J_{C-Sn} = 330.4 \text{ Hz}$), 13.9, 16.4, 24.8, 27.8 ($J_{C-Sn} = 57.2 \text{ Hz}$), 29.7 ($J_{C-Sn} = 20.1 \text{ Hz}$), 41.1 ($J_{C-Sn} = 71.1 \text{ Hz}$), 106.4, 118.6, 119.7, 120.5, 127.9, 137.0, 140.1, 140.9

¹¹⁹Sn NMR (C_6D_6) δ -50.9

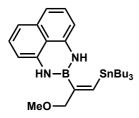
HRMS Calcd for C₂₈H₄₃N₃BSn: [M+H]⁺, 552.25665. Found: m/z 552.25800


(E)-2-(1-(cyclohex-1-en-1-yl)-2-(tributylstannyl)vinyl)-2,3-dihydro-1H-naphtho[1,8de][1,3,2]diazaborinine (2g)

Isolated in 81% as a colorless liquid

¹H NMR (C₆D₆) δ 0.83 (t, *J* = 7.3 Hz, 9H), 0.93-1.08 (m, 6H), 1.26 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.47-1.61 (m, 8H), 1.62-1.71 (m, 2H), 2.02-2.09 (m, 2H), 2.28-2.35 (m, 2H), 5.30 (s, 2H), 5.90-6.03 (m, 3H), 6.76 (s, *J*_{H-Sn} = 73.7 Hz, 1H), 6.98-7.09 (m, 4H) ¹³C NMR (C₆D₆) δ 10.7 (J = 330.5 Hz), 13.9, 23.0, 23.4, 25.2, 26.6, 27.8, (58 Hz), 29.7 (19.8 Hz), 106.2, 118.3, 120.4, 129.7, 132.5, 137.0, 140.4, 141.2 ¹¹⁹Sn NMR (C₆D₆) δ -56.7 HRMS Calcd for C₃₀H₄₆N₂BSn: [M+H]⁺, 565.27705. Found: m/z 565.27716

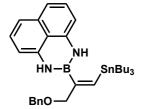
(*E*)-2-(1-phenyl-2-(tributylstannyl)vinyl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]dia zaborinine (2h)


Isolated in 73% as a colorless liquid

¹H NMR (C₆D₆) δ 0.84 (t, *J* = 7.3 Hz, 9H), 0.96-1.10 (m, 6H), 1.27 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.48-1.63 (m, 6H), 5.35 (s, 2H), 5.90-6.00 (m, 2H), 6.99-7.07 (m, 4H), 7.10-7.14 (m, 1H), 7.22 (t, *J* = 7.7 Hz, 2H), 7.34 (s, *J*_{H-Sn} = 71.2 Hz, 1H), 7.50 (d, *J* = 7.3 Hz, 2H) Hz, 2H)

¹³C NMR (C₆D₆) δ 10.9 (J_{C-Sn} = 331.8 Hz), 13.8, 27.8 (J_{C-Sn} = 58.1 Hz), 29.7 (J_{C-Sn} = 19.4 Hz), 106.4, 118.5, 120.5, 127.1, 127.6, 128.9, 137.0, 140.6, 141.0, 143.8 ¹¹⁹Sn NMR (C₆D₆) -57.1

HRMS Calcd for C₃₀H₄₂N₂BSn: [M+H]⁺, 561.24575. Found: m/z 561.24573

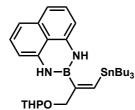

(*E*)-2-(3-methoxy-1-(tributylstannyl)prop-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*d e*][1,3,2]diazaborinine (2i)

Isolated in 66% as a colorless liquid ¹H NMR (C₆D₆) δ 0.82 (t, *J* = 7.4 Hz, 9H), 0.93-1.08 (m, 6H), 1.26 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.46-1.64 (m, 6H), 3.15 (s, 3H), 3.98 (d, *J* = 1.3 Hz, 2H), 5.80 (s, 2H), 6.11-6.16 (m, 2H), 6.78 (s, *J*_{H-Sn} = 76.8 Hz, 1H), 7.00-7.07 (m, 4H) ¹³C NMR (C₆D₆) δ 11.1 (*J*_{C-Sn} = 331.0 Hz), 13.8, 27.7 (*J*_{C-Sn} = 56.3 Hz), 29.6 (*J*_{C-Sn} = 20.7 Hz), 57.6, 81.5 (*J*_{C-Sn} = 76.2 Hz), 106.3, 118.4, 120.7, 127.9, 137.1, 141.2, 142.3 ¹¹⁹Sn NMR (C₆D₆) -60.7

HRMS Calcd for C₂₆H₄₂ON₂BSn: [M+H]⁺, 529.24067. Found: m/z 529.24152

(*E*)-2-(3-(benzyloxy)-1-(tributylstannyl)prop-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1, 8-*de*][1,3,2]diazaborinine (2j)

Isolated in 66% as a colorless liquid

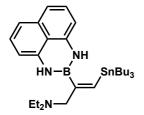

¹H NMR (C₆D₆) δ 0.82 (t, *J* = 7.3 Hz, 9H), 0.92-1.09 (m, 6H), 1.26 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.46-1.62 (m, 6H), 4.11 (s, 2H), 4.39 (s, 2H), 5.83 (s, 2H), 6.13 (t, *J* = 4.0 Hz, 2H), 6.80 (s, *J*_{H-Sn} = 75.7 Hz, 1H), 7.03 (d, *J* = 4.0 Hz, 4H), 7.09 (t, *J* = 7.3 Hz, 1H), 7.16 (t, *J* = 7.3 Hz, 2H), 7.32 (d, *J* = 7.4 Hz, 2H)

¹³C NMR (C₆D₆) δ 11.1 (J_{C-Sn} = 331.6 Hz), 13.8, 27.7 (J_{C-Sn} = 56.6 Hz), 29.6 (J_{C-Sn} = 20.1 Hz), 72.3, 79.1 (J_{C-Sn} = 77.2 Hz), 106.3, 118.4, 120.7, 127.9, 128.1, 128.7, 137.1, 138.9, 141.2, 142.6

¹¹⁹Sn NMR (C_6D_6) δ -60.8

HRMS Calcd for C₃₂H₄₆ON₂BSn: [M]⁺, 605.27197. Found: m/z 605.27332

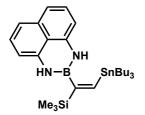
(*E*)-2-(3-((tetrahydro-2*H*-pyran-2-yl)oxy)-1-(tributylstannyl)prop-1-en-2-yl)-2,3-dih ydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinine (2k)


Isolated in 66% as a colorless liquid

¹H NMR (C₆D₆) δ 0.83 (t, *J* = 7.4 Hz, 9H), 0.93-1.08 (m, 6H), 1.17-1.37 (m, 9H), 1.46-1.64 (m, 8H), 1.66-1.78 (m, 1H), 3.33-3.44 (m, 1H), 3.85 (dd, *J* = 11.7 Hz, 8.2 Hz, 1H), 4.17 (dd, *J* = 11.7 Hz, 1.2 Hz, 1H), 4.58 (dd, *J* = 11.7 Hz, 1.2 Hz, 1H), 4.68 (t, *J* = 3.5 Hz, 1H), 5.92 (s, 2H), 6.17-6.23 (m, 2H), 6.88 (s, *J*_{H-Sn} = 76.2 Hz, 1H), 7.03-7.10 (m, 4H)

¹³C NMR (C₆D₆) δ 11.1 (J_{C-Sn} = 331 Hz), 13.8, 19.8, 25.8, 27.7, 29.6 (J_{C-Sn} = 20.3 Hz), 31.0, 62.1, 75.7 (J_{C-Sn} = 79.0 Hz), 98.2, 106.2, 118.4, 120.7, 127.9, 137.1, 141.3, 142.0 ¹¹⁹Sn NMR (C₆D₆) δ -60.9

HRMS Calcd for C₃₀H₄₈O₂N₂BSn: [M+H]⁺, 599.28253. Found: m/z 599.28351

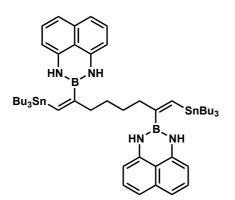

(E)-N,N-diethyl-2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)-3-(tributylstan nyl)prop-2-en-1-amine (2l)

Isolated in 69% as a colorless liquid

¹H NMR (C₆D₆) δ 0.85 (t, *J* = 7.4 Hz, 9H), 0.96 (t, *J* = 7.2 Hz, 6H), 0.99-1.12 (m, 6H), 1.29 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.50-1.67 (m, 6H), 2.4 (q, *J* = 7.2 Hz, 4H), 3.18 (s, 2H), 6.24-6.36 (m, 2H), 6.63 (s, *J*_{H-Sn} = 77.2 Hz, 1H), 68.0 (s, 2H), 7.03-7.10 (m, 4H) ¹³C NMR (C₆D₆) δ 11.4 (*J*_{C-Sn} = 329.0), 12.3, 13.9, 27.7 (*J*_{C-Sn} = 53.9), 29.7 (*J*_{C-Sn} = 20.9), 46.6, 67.1 (*J*_{C-Sn} = 78.1), 106.1, 118.1, 121.1, 128.0, 137.3, 141.7, 143.6 (*J*_{C-Sn} = 372.4) ¹¹⁹Sn NMR (C₆D₆) δ -60.2 HRMS Calcd for C₂₉H₄₉N₃BSn: [M+H]⁺, 570.30360. Found: m/z 570.30371

(*E*)-2-(2-(tributylstannyl)-1-(trimethylsilyl)vinyl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinine (2m)

Isolated in 75% as a colorless liquid


¹H NMR (C₆D₆) δ 0.18 (s, 9H), 0.81 (t, *J* = 7.3 Hz, 9H), 0.92-1.08 (m, 6H), 1.24 (tq, *J* = 7.4 Hz, 7.4 Hz, 6H), 1.46-1.62 (m, 6H), 5.31 (s, 2H), 6.03-6.10 (m, 2H), 6.99-7.07 (m, 4H), 7.73 (s, *J*_{H-Sn} = 113.7 Hz, 1H)

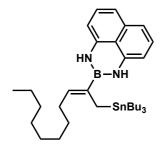
¹³C NMR (C₆D₆) δ -0.69 ($J_{C-Sn} = 51.0 \text{ Hz}$), 11.0 ($J_{C-Sn} = 318.5 \text{ Hz}$), 13.9, 27.8 ($J_{C-Sn} = 55.5 \text{ Hz}$), 29.7 ($J_{C-Sn} = 19.9 \text{ Hz}$), 106.3, 118.4, 120.2, 127.8, 137.0, 141.1, 158.4 ($J_{C-Sn} = 359.9 \text{ Hz}$)

¹¹⁹Sn NMR (C_6D_6) δ -68.1

HRMS Calcd for C₂₇H₄₆N₂BSiSn: [M+H]⁺, 557.25398. Found: m/z 557.25494

2,2'-((1*E*,7*E*)-1,8-bis(tributylstannyl)octa-1,7-diene-2,7-diyl)bis(2,3-dihydro-1*H*-na phtho[1,8-*de*][1,3,2]diazaborinine) (2n)

Isolated in 58% as a colorless solid: mp 55-56 °C


¹H NMR (C₆D₆) δ 0.83 (t, *J* = 7.3 Hz, 18H), 0.91-1.08 (m, 12H), 1.26 (tq, *J* = 7.4 Hz, 7.4 Hz, 12H), 1.46-1.73 (m, 16H), 2.36 (s, 4H), 5.40 (s, 4H), 6.04-6.11 (m, 4H), 6.62 (s, *J*_{H-Sn} = 80.9 Hz, 2H), 6.69-7.11 (m, 8H)

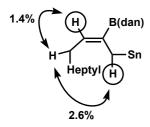
¹³C NMR (C₆D₆) δ 11.0 (J_{C-Sn} = 329.1 Hz), 13.9, 27.8 (J_{C-Sn} = 56.2 Hz), 29.7 (J_{C-Sn} = 20.0 Hz), 30.0, 42.7 (J_{C-Sn} = 71.9 Hz), 106.4, 118.5, 120.4, 127.8, 137.0, 138.0, 141.0 ¹¹⁹Sn NMR (C₆D₆) δ -62.4 HRMS Calcd for C₅₂H₈₁N₄B₂Sn₂: [M+H]⁺, 1023.46858. Found: m/z 1023.46893

Cu-catalyzed borylstannylation of allenes.

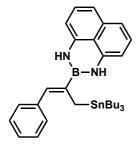
A THF solution (1 mL) of an allene (0.30 mmol), a masked diboron (0.36 mmol), tributyltin methoxide (0.36 mmol) and (IMes)CuCl (6.0 μ mol) was stirred at room temperature for 1 h. Then the mixture was diluted with diethyl ether and filtered through a Celite plug. The organic solution was washed with brine, dried over MgSO₄, and evaporated. The residual tin alkoxide was removed by passing through column chromatography (10% w/w anhydrous K₂CO₃–silica gel; diethyl ether as an eluent), and evaporation of the solvent followed by gel permeation chromatography (toluene as an eluent) gave the corresponding product. Stereochemistry of the product was determined by NOE experiment.

(Z)-2-(1-(tributylstannyl)undec-2-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]di azaborinine (4a)

Isolated in 72% as a colorless liquid

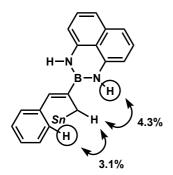

¹H NMR (C₆D₆) δ 0.84-0.97 (m, 18H), 1.24-1.48 (m, 16H), 1.47-1.63 (m, 8H), 1.90 (s, $J_{\text{H-Sn}} = 60.4 \text{ Hz}, 2\text{H}$), 2.22 (q, J = 7.2 Hz, 2H), 5.52 (s, 2H), 5.66 (t, J = 6.6 Hz, 1H), 6.06-6.11 (m, 2H), 7.02-7.10 (m, 4H)

¹³C NMR (C₆D₆) δ 10.1 (J_{C-Sn} = 302.8 Hz), 12.3, 13.9, 14.4, 23.1, 27.9 (J_{C-Sn} = 54.7 Hz), 29.4, 29.7 (J_{C-Sn} = 19.7 Hz), 29.8, 29.9, 30.1, 30.2, 32.3, 106.1, 118.1, 120.4, 133.5 (J_{C-Sn} = 42.9 Hz), 137.0, 141.5


¹¹⁹Sn NMR (C_6D_6) δ -14.2

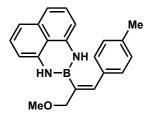
HRMS Calcd for C₃₃H₅₆N₂BSn: [M+H]⁺, 611.35530. Found: m/z 611.35645

The stereochemistry of 4a was determined by NOE experiment as shown below.


(Z)-2-(1-phenyl-3-(tributylstannyl)prop-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]diazaborinine (4b)

Isolated in 65% as a colorless liquid

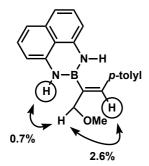
¹H NMR (C₆D₆) δ 0.79-1.02 (m, 15H), 1.25 (tq, J = 7.3 Hz, 7.3 Hz, 6H), 1.37-1.57 (m, 6H), 2.25 (s, $J_{\text{H-Sn}} = 62.1$ Hz, 2H), 5.55 (s, 2H), 6.04-6.19 (m, 2H), 6.57 (s, $J_{\text{H-Sn}} = 21.3$ Hz, 1H), 7.04-7.13 (m, 5H), 7.29 (dd, J = 7.7 Hz, 7.7 Hz, 2H), 7.43 (d, J = 7.7 Hz, 2H) ¹³C NMR (C₆D₆) δ 10.33 ($J_{\text{C-Sn}} = 305.4$ Hz), 13.9, 14.3, 27.8 $J_{\text{C-Sn}} = 56.3$ Hz), 29.5 ($J_{\text{C-Sn}} = 20.2$ Hz), 106.3, 118.3, 120.5, 126.7, 127.9, 128.6, 129.3, 130.5, 137.1, 139.3, 141.4 ¹¹⁹Sn NMR (C₆D₆) δ -14.9


HRMS Calcd for $C_{31}H_{44}N_2BSn$: $[M+H]^+$, 575.26140. Found: m/z 575.26251 The stereochemistry of **4b** was determined by NOE experiment as shown below.

Synthesis

(*E*)-2-(3-methoxy-1-(*p*-tolyl)prop-1-en-2-yl)-2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3,2]d iazaborinine (5)

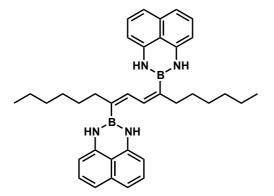
A DMF solution (1 mL) of **2i** (0.10 mmol), 4-iodotoluene (0.12 mmol), LiCl (0.10 mmol), $Pd_2(dba)_3$ (1.0 µmol) and dicyclohexyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine (Xphos, 3.0 µmol) was stirred at 100 °C for 1 h. After the mixture was diluted with diethyl ether and filtered through a Celite plug, the organic solution was washed with brine, dried over MgSO₄, and evaporated. The residual tin halide was removed by passing through column chromatography (10% w/w anhydrous K₂CO₃–silica gel; diethyl ether as an eluent). Evaporation of the solvent followed by gel permeation chromatography (toluene as an eluent) gave **5**.


Isolated in 82% as a colorless solid: mp 103-105 °C

¹H NMR (C_6D_6) δ 2.02 (s, 3H), 3.14 (s, 3H), 3.93 (d, J = 1.3 Hz, 2H), 5.62 (s, 2H), 5.85 (dd, J = 7.1 Hz, 1.2 Hz, 2H), 6.80 (d, J = 7.9 Hz, 2H), 6.96 (s, 2H), 6.97 (dd, J = 8.2 Hz, 7.1 Hz, 2H), 7.02 (dd, J = 8.1 Hz, 1.2 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H) ¹³C NMR (C_6D_6) δ 21.1, 57.6, 78.9, 106.3, 118.1, 120.5, 127.8, 128.8, 129.4, 135.3,

137.0, 137.6, 140.8, 141.3

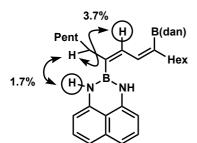
HRMS Calcd for C₂₁H₂₂ON₂B: [M+H]⁺, 329.18197. Found: m/z 329.18195

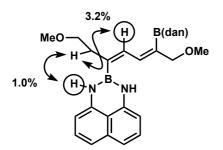

The stereochemistry of **5** was determined by NOE experiment as shown below.

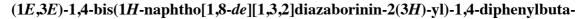
Copper-mediated oxidative homocoupling of 2

A DMF solution (2 mL) of **2** (0.10 mmol) and CuCl (0.25 mmol) was stirred at room temperature for 3 h. After the mixture was diluted with CH_2Cl_2 and filtered through a Celite plug, the organic solution was washed with brine, dried over MgSO₄, and evaporated. The residual tin halide was removed by passing through column chromatography (10% w/w anhydrous K₂CO₃-silica gel; CH_2Cl_2 as an eluent). Evaporation of the solvent followed by gel permeation chromatography (toluene as an eluent) gave the corresponding product. Stereochemistry of the product was determined by NOE experiment.

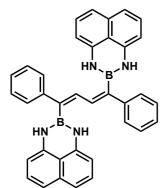
2,2'-((7*E*,9*E*)-hexadeca-7,9-diene-7,10-diyl)bis(2,3-dihydro-1*H*-naphtho[1,8-*de*][1,3, 2]diazaborinine) (6)


Isolated in 97% as a colorless liquid

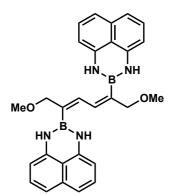

¹H NMR (C_6D_6) δ 0.84 (t, J = 7.1 Hz, 6H), 1.11-1.31 (m, 12H), 1.35-1.49 (m, 4H), 2.14 (t, J = 7.6 Hz, 4H), 5.43 (s, 4H), 5.99 (dd, J = 6.8 Hz, 1.5 Hz, 4H), 6.93 (s, 2H), 7.00-7.10 (m, 8H)


¹³C NMR (C₆D₆) δ 14.3, 23.0, 29.7, 30.4, 32.0, 38.3, 106.3, 118.4, 120.4, 127.9, 137.0, 137.2, 141.2

HRMS Calcd for C₃₆H₄₅N₄B₂: [M+H]⁺, 555.38248. Found: m/z 555.38239


The stereochemistry of 6 was determined by NOE experiment as shown below.

1,3-diene (7)


Isolated in 90% as a colorless solid

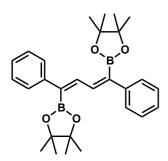
¹H NMR (CDCl₃) δ 5.86 (s, 4H), 6.35 (dd, *J* = 7.2 Hz, 0.9 Hz, 4H), 7.09 (dd, *J* = 8.2 Hz, 0.9 Hz, 2H), 7.15 (dd, *J* = 8.2 Hz, 7.2 Hz, 4H), 7.24 (t, *J* = 7.3 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 4H), 7.34 (s, 2H), 7.46 (d, *J* = 8.2 Hz, 4H)

¹³C NMR (CDCl₃) δ 106.1, 118.0, 119.9, 127.2, 127.5, 127.6, 128.8, 136.3, 136.6, 140.8, 141.6

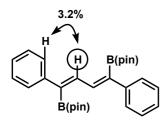
HRMS Calcd for $C_{36}H_{28}N_4B_2$: [M]⁺, 538.24946. Found: m/z 538.24957

2,2'-((2*E*,4*E*)-1,6-dimethoxyhexa-2,4-diene-2,5-diyl)bis(2,3-dihydro-1*H*-naphtho[1,8 -*de*][1,3,2]diazaborinine) (8)

Isolated in 90% as a colorless solid

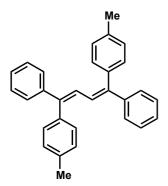

¹H NMR (CDCl₃) δ 3.37 (s, 6H), 4.09 (s, 4H), 5.98 (s, 4H), 6.34 (d, *J* = 7.0 Hz, 4H), 6.94 (s, 2H), 7.04 (d, *J* = 8.4 Hz, 4H), 7.12 (dd, *J* = 8.4 Hz, 7.3 Hz, 4H) ¹³C NMR (CDCl₃) δ 58.2, 78.3, 106.0, 117.8, 118.0, 127.6, 136.3, 139.2, 140.8 HRMS Calcd for C₂₈H₂₈O₂N₄B₂: [M]⁺, 474.23929. Found: m/z 474.23889 The stereochemistry of **8** was determined by NOE experiment as shown below.

Synthesis


(1*E*,3*E*)-1,4-diphenyl-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)buta-1,3-d iene

of

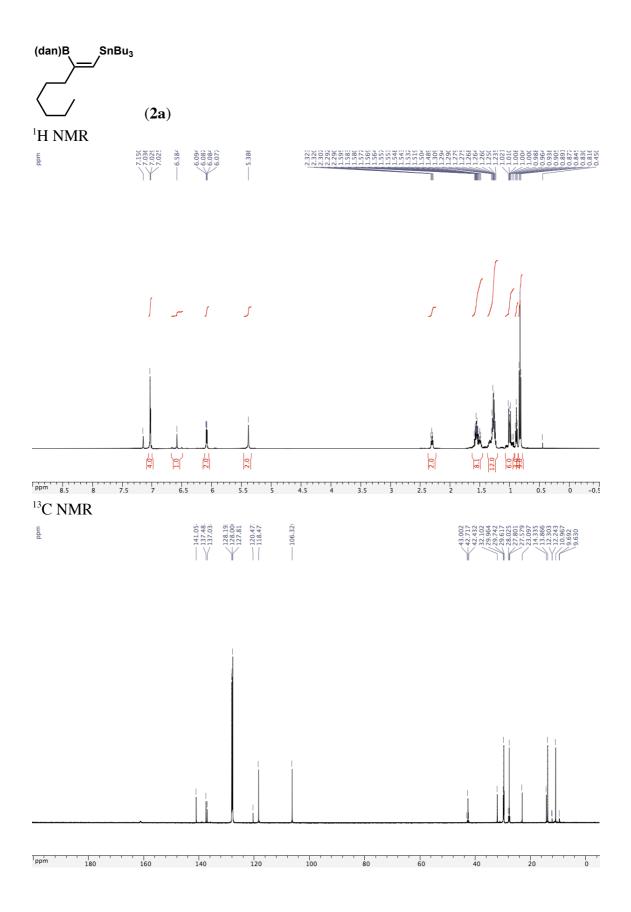
A THF solution (2 mL) of 7 (0.20 mmol), 6M H_2SO_4aq (1.60 mmol) and pinacol (1.2 mmol) was stirred at 50 °C for 48 h. Then the mixture was diluted with ethyl acetate and filtered through a Celite plug. The organic solution was washed with brine and dried over MgSO₄. Evaporation of the solvent followed by gel permeation chromatography (toluene as an eluent) gave the corresponding product. Stereochemistry of the product was determined by NOE experiment.

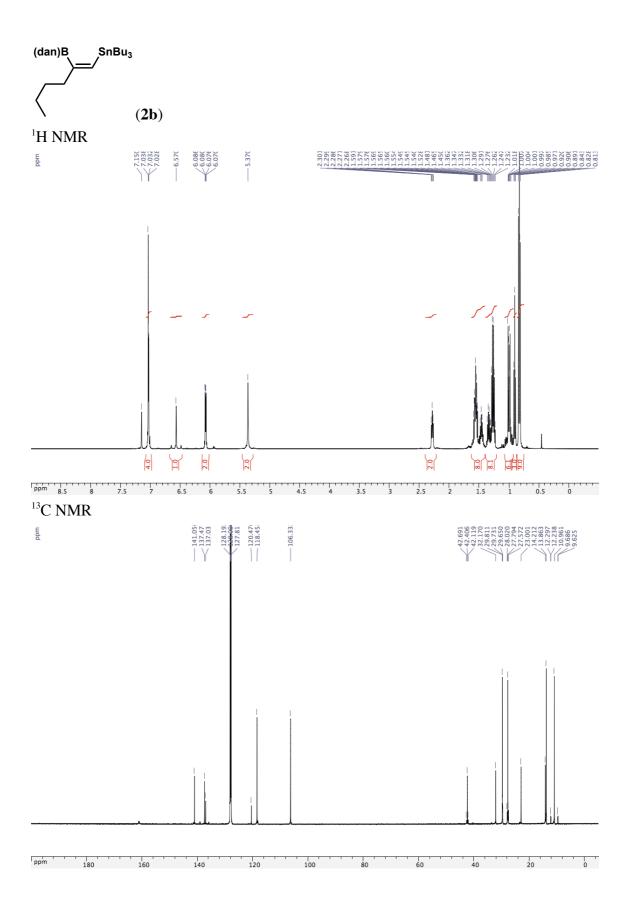


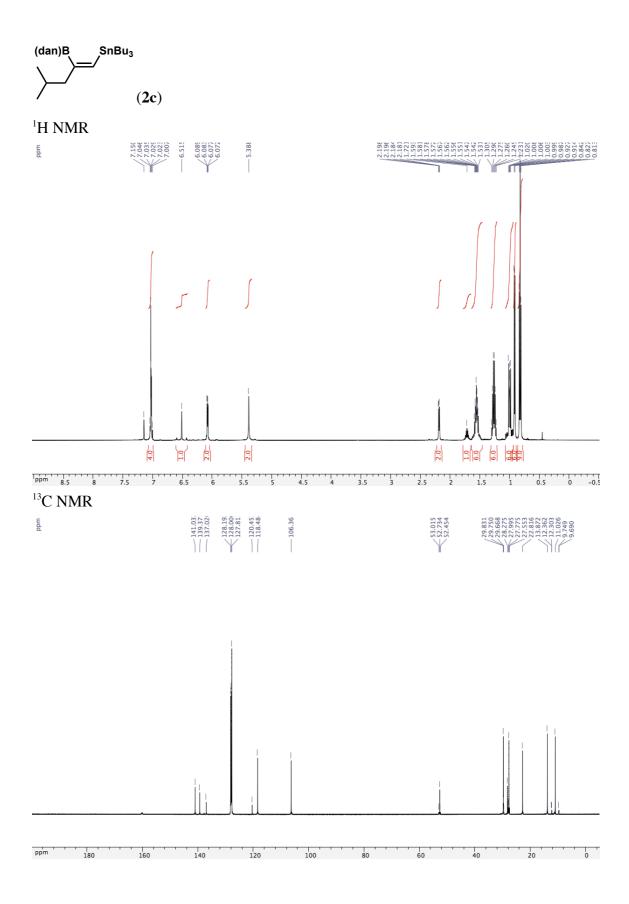
Isolated in 52% as a colorless solid: 215-216 °C ¹H NMR (C₆D₆) δ 1.04 (s, 24H), 7.10 (t, *J* = 7.5 Hz, 2H), 7.28 (t, *J* = 7.5 Hz, 4H), 7.83 (d, *J* = 7.9 Hz, 4H), 8.41(s, 2H) ¹³C NMR (C_6D_6) δ 24.8, 83.6, 127.1, 128.5, 144.2, 144.9 HRMS Calcd for $C_{28}H_{37}O_4B_2$: [M]⁺, 459.28769. Found: m/z 459.28769 The stereochemistry of the product was determined by NOE experiment as shown below.

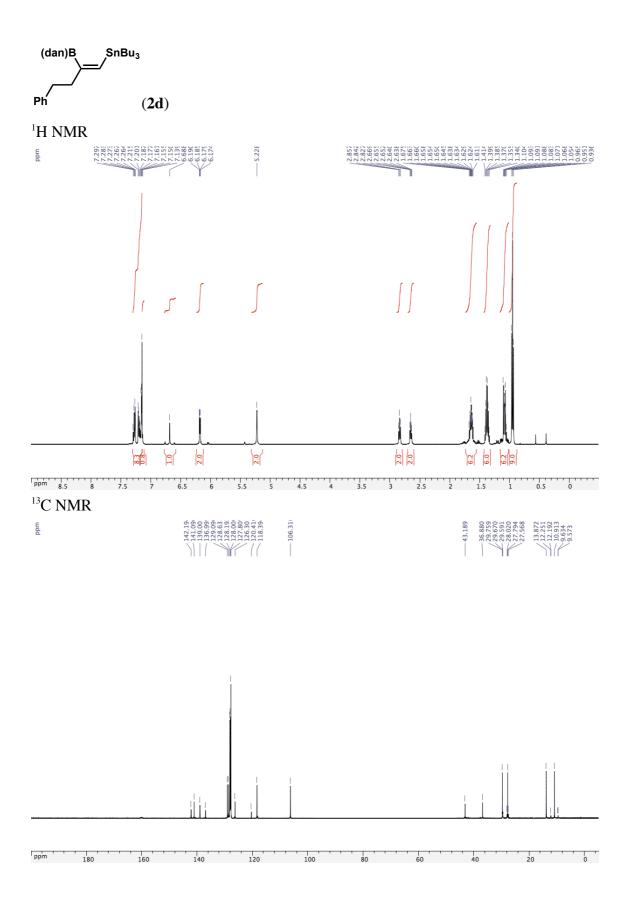
Synthesis of (12,32)-1,4-diphenyl-1,4-di-*p*-tolylbuta-1,3-diene (9)

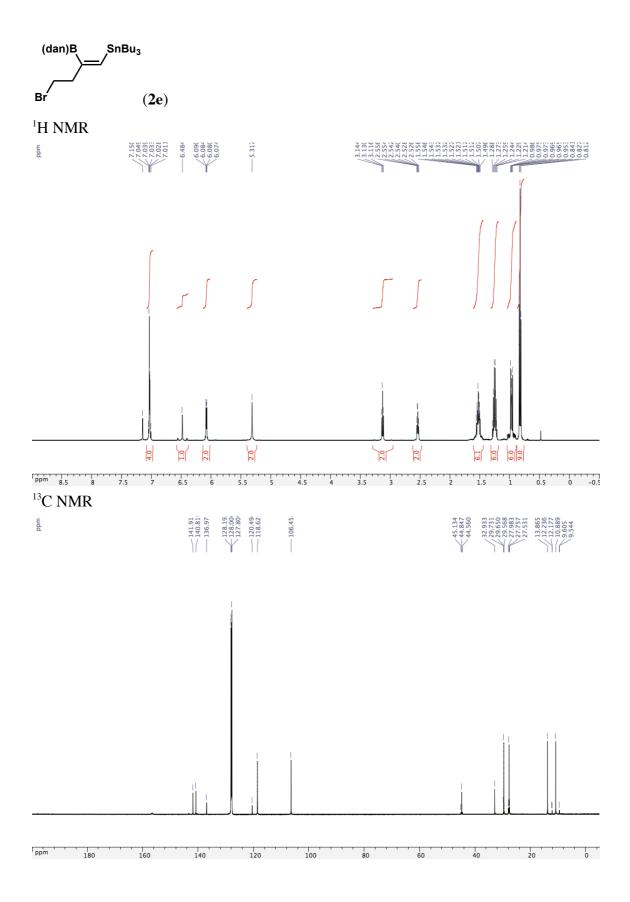
A DMSO Solution (1 mL) of (1E,3E)-1,4-diphenyl-1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)buta-1,3-dien e (0.0436 mmol), 4-iodotoluene (0.113 mmol), K₃PO₄ (0.523 mmol) and PdCl(dppf)•CH₂Cl₂ (2.2 µmol) was stirred at 45 °C for 24 h. The mixture was diluted with diethyl ether and filtered through a Celite plug. Then the organic solution was washed with brine and dried over MgSO₄. Evaporation of the solvent followed by gel permeation chromatography (toluene as an eluent) gave **9**.


Isolated in 65% as a olorless solid


¹H NMR (CDCl₃) δ 2.42 (s, 6H), 6.78 (s, 2H), 7.14-7.25 (m, 18H)


¹³C NMR (CDCl₃) δ 21.3, 126.1, 127.2, 127.8, 128.0, 128.9, 130.6, 136.9, 137.1, 142.8, 143.8


References


- (1) C. A. Citadelle, E. Le Nouy, F. Bisaro, A. M. Z. Slawin and C. S. J. Cazin, *Dalton Trans.*, 2010, **39**, 4489.
- (2) H. Yoshida, Y. Takemoto and K. Takaki, Asian J. Org. Chem., 2014, 3, 1204.
- (3) K. Jinqiang and M. Shengming, J. Org. Chem., 2009, 74, 1763.
- (4) T. Matsubara, K. Takahashi, J. Ishihara and S. Hatakeyama, *Angew. Chem. Int. Ed.*, 2014, **53**, 757.
- (5) H. Yoshida, Y. Takemoto and K. Takaki, Chem.-Eur. J., 2012, 18, 14841.

