One hydrogen bond doesn't make a separation or does it? Resolution of amines by diacetoneketogulonic acid

Nikoletta B. Báthori* and Luigi R. Nassimbeni

Crystal Engineering Unit, Department of Chemistry, Faculty of Applied Sciences, Cape Town, 8000, South Africa, Fax: +27 21 460 3854; Tel: +27 21 460 8354; E-mail: <u>bathorin@cput.ac.za</u>

1. Experimental section

Materials. All compounds were purchased from Aldrich and of ACS (≥99%) quality.

Preparation of diastereomeric salts. 100 mg of (–)-2,3:4,6-Di-O-isopropylidene-2-keto-L-gulonic acid, (diacetoneketogulonic acid, DAG) was dissolved in excess amount of the related amines and the crystals were harvested immediately after appearance. Many attempts were made to crystallize DAG with S-MeBUAM (rate of evaporation was varied, as well as the crystallisation temperature) but all experiments yielded gels.

Single Crystal X-Ray Diffraction. Diffraction data for all compounds were collected on a Bruker DUO APEX II diffractometer¹ with graphite monochromated Mo K α 1 radiation (λ = 0.71073 Å) at 173 K using an Oxford Cryostream 700. Data reduction and cell refinement were performed using SAINT-Plus² and the space groups were determined from systematic absences by XPREP³ and further justified by the refinement results. In all cases, the structures were solved in the aid of X-Seed⁴ by direct methods using SHELXS-97⁵ and refined using full-matrix least-squares/difference Fourier techniques using SHELXL-97.⁵ The hydrogen atoms bound to carbon atoms were placed at idealized positions and refined as riding atoms with U_{iso} (H) = 1.2 U_{eq} (Ar-H, CH₂) or 1.5 U_{eq} (CH₃). Diagrams and publication material were generated using PLATON⁶ and X-Seed. Experimental details of the X-ray analyses are provided in Table S1. CIFs for each structure have been deposited with the Cambridge Structural Database (CCDC 950602-950607).

¹ Bruker 2005. APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.

² Bruker 2004. SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.

³ Bruker **2003**, *XPREP2*. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.

⁴ L. J. Barbour, J. Supramol. Chem., 2001, 1, 189-191.

⁵ G. M. Sheldrick, SHELXS-97 and SHELXL-97 *Programs for crystal structure determination and refinement*. University of Göttingen, 1997.

⁶ A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7-13.

Table S1 Crystal data for amine salts of DAG

Compound	(DAG ⁻)(BUAM ⁺)	(DAG ⁻)(<i>R</i> -MeBUAM ⁺)	(DAG ⁻)(<i>R</i> -PEA ⁺)	(DAG ⁻)(<i>S</i> -PEA ⁺)	(DAG ⁻)(S-NEA ⁺)	(DAG ⁻)(<i>R</i> -NEA ⁺)
CCDC no.	950602	950603	950605	950607	950606	950604
Chemical formula	$(C_{12}H_{17}O_7)(C_4H_{12}N^+)$	$(C_{12}H_{17}O_{7})(C_{5}H_{14}N^{+})$	$(C_{12}H_{17}O_{7})(C_{8}H_{12}N^{+})$	$(C_{12}H_{17}O_{7})(C_{8}H_{12}N^{+})$	$(C_{12}H_{17}O_{7})(C_{12}H_{14}N^{+})$	$(C_{12}H_{17}O_{7})(C_{12}H_{14}N^{+})$
M_r	347.40	361.43	395.44	395.44	445.50	445.50
Cell setting, space group	Orthorhombic, $P2_12_12_1$	Orthorhombic, $P2_12_12_1$	Monoclinic, P2 ₁	Monoclinic, P21	Monoclinic, P21	Orthorhombic, P2 ₁ 2 ₁ 2 ₁
Temperature (K)	173(2)	173(2)	173(2)	173(2)	173(2)	173(2)
a, b, c (Å)	6.1806(13), 14.641(3), 20.360(4)	6.3376(5), 15.4586(12), 20.0153(17)	14.4045(11), 6.2322(5), 23.4872(18)	14.634(3), 6.2305(12), 11.855(2)	13.740(5), 6.188(3), 15.056(6)	7.6206(4), 11.4755(9), 26.5274(16)
α, β, γ (°)	90.00, 90.00, 90.00	90.00, 90.00, 90.00	90.00, 103.762(2), 90.00	90.00, 102.86(3), 90.00	90.00, 113.998(8), 90.00	90.00, 90.00, 90.00
$V(Å^3)$	1842.3(7)	1960.9(3)	2048.0(3)	1053.8(4)	1169.4(8)	2319.8(3)
Ζ	4	4	4	2	2	4
$D_x ({ m Mg}\ { m m}^{-3})$	1.252	1.224	1.283	1.246	1.265	1.276
Radiation type	ΜοΚα (λ= 0.71073)	ΜοΚα (λ= 0.71073)	ΜοΚα (λ= 0.71073)	ΜοΚα (λ= 0.71073)	ΜοΚα (λ= 0.71073)	ΜοΚα (λ= 0.71073)
$\mu (mm^{-1})$	0.098	0.094	0.097	0.094	0.093	0.094
Crystal form, colour	rod, colourless	rod, colourless	rod, colourless	rod, colourless	rod, colourless	rod, colourless
Crystal size (mm)	0.41 x 0.35 x 0.35	0.35 x 0.19 x 0.18	0.2 x 0.2 x 0.2	0.20 x 0.18 x 0.15	0.18 x 0.16 x 0.16	0.42 x 0.33 x 0.24
No. of measured, independent and observed reflections	9142, 4552, 3677	11503, 4035, 3545	10530, 7077, 5714	8188, 4682, 4129	6011, 4368, 3950	8259, 4679, 4396
h, k, l (min, max)	-8, 8; -10, 19; -27, 27	-7, 7; -17, 19; -25, 25	-17, 17; -5, 7; -28, 28	-19, 15, -8, 8, -15, 15	-16, 17; -7, 7; -17, 18	-9, 5; -4, -14; -33, 33
Θ (min, max.)	1.71, 28.40	1.66, 26.49	1.46, 25.84	2.01, 28.37	2.60, 26.51	2.35, 26.31
$R[F^2 > 2\sigma(F^2)], wR(F^2),$ S	0.0374, 0.0953, 0.982	0.0323, 0.0812, 0.921	0.0382, 0.0872, 1.007	0.0351, 0.0888, 1.016	0.0429, 0.1191, 1.052	0.0365, 0.0968, 1.023
No. of parameters/ restrains	274/6	236/3	516/7	262/4	298/4	298/3
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.231, -0.168	0.192, -0.146	0.160, -0.151	0.239, -0.158	0.250, -0.214	0.285, -0.320

T۶	ıble	S2	Hydrogen	bond	metrics	for	the	amine	salts	of I	DAG

D-HA	D-H (Å)	HA (Å)	DA (Å)	D-H A (°)	Symmetry descriptor
(DAG ⁻)(BUAM ⁺)*					
N24-H24AO15*	0.91	1.85	2.7520(6)	171	x-1/2,1/2-y,-z
N24-H24BO14*	0.91	1.92	2.8115(6)	167	x-1,y,z
N24-H24CO15	0.91	1.93	2.8009(6)	160	
(DAG ⁻)(<i>R</i> -MeBUAM ⁺)					
N25-H25AO15	0.91	1.93	2.8360(2)	169	
N25-H25BO14*	0.91	1.94	2.8087(2)	159	x-1,y,z
N25-H25CO15*	0.91	1.86	2.7735(2)	175	x-1/2,1/2-y,-z
(DAG ⁻)(<i>R</i> -PEA ⁺)					-
N28-H28AO14*	0.94	1.89	2.8210(2)	174	x,y-1,z
N28-H28BO15	0.93	1.95	2.8500(2)	161	
N28-H28BO1	0.93	2.52	3.0806(2)	119	
N28-H28CO43*	0.88	2.03	2.8907(2)	166	x,y-1,z
N56-H56AO15	0.94	1.93	2.8640(2)	172	-
N56-H56BO42*	0.92	1.83	2.7468(2)	177	x,y-1,z
N56-H56CO43	0.85	2.04	2.8471(2)	158	-
N56-H56CO31	0.85	2.60	3.079(2)	116	
N56-H56CO29	0.85	2.717	3.311(2)	128	
(DAG ⁻)(<i>S</i> -PEA ⁺)					
N28-H28AO15	0.91	1.90	2.7688(6)	161	
N28-H28AO3	0.91	2.56	3.1319(6)	121	
N28-H28BO15*	0.91	1.96	2.8464(6)	165	1-x,y-1/2,-z
N28-H28CO14*	0.91	1.88	2.7898(6)	174	x,y-1,z
C23-H23O6*	0.95	2.55	3.5011(7)	177	x,y,z-1
C27-H27BO3*	0.98	2.44	3.3967(7)	165	1-x,y-1/2,-z
(DAG ⁻)(<i>S</i> -NEA ⁺)					
N32-H32A015	0.91	1.82	2.7334(11)	175	
N32-H32BO15*	0.91	2.00	2.8899(12)	165	1-x,1/2+y,-z
N32-H32C014*	0.91	1.92	2.8352(11)	177	x,1+y,z
C30-H30O6	1.00	2.68	3.671(1)	169	· • •
(DAG ⁻)(<i>R</i> -NEA ⁺)			× /		
N32-H32AO15	0.92	1.81	2.7203(2)	168	
N32-H32BO14*	0.92	1.80	2.7237(2)	175	1-x, -1/2+y, 1/2-z
N32-H32CO6	0.92	1.98	2.8753(2)	162	
C5-H5AO15*	0.99	2.40	3.3777(3)	170	1-x, -1/2+y, 1/2-z

* For (DAG-)(BUAM+) only one of the disorder is included. The hydrogen bonding of the other disorder is virtually the same.

Figure S1 Packing diagrams of (DAG⁻)(*R*-PEA⁺) (DAG⁻)(*S*-PEA⁺), *a* and *b* respectively. The symmetry equivalent molecules are coloured accordingly and the unit cells are presented with the positions of the 2 fold screw axes.

Table S3 Torsion angles of the -COO⁻ moiety of DAG in the different structures

	C10-C2-C13-O14 (º)
DAG ⁻)(BUAM ⁺)	0.1
(DAG ⁻)(<i>R</i> -MeBUAM ⁺)	-5.9
(DAG ⁻)(<i>R</i> -PEA ⁺) mol A	-0.5
mol B	-2.7*
DAG ⁻)(S-PEA ⁺)	-12.1
(DAG ⁻)(S-NEA ⁺)	-10.8
$(DAG^{-})(R^{-}NEA^{+})$	-50.6

Figure S2 Fingerprint plots for the guest components *S*-PEA⁺ and *R*-PEA⁺ (full and highlighted sections of the relevant interactions, such as C...H, H...H and O...H) in structures (DAG⁻)(*S*-PEA⁺) and (DAG⁻)(*R*-PEA⁺), respectively. Note the higher amount of O...H contacts of the *R*-PEA⁺ cation (red) in the crystal obtained from the racemic mixture of the amine.

Figure S3 Fingerprint plots for the guest components *S*-NEA⁺ and *R*-NEA⁺ (full and highlighted sections of the relevant interactions, such as C...H, H...H and O...H) in structures (DAG⁻)(*S*-NEA⁺) and (DAG⁻)(*R*-NEA⁺), respectively. Note the higher amount of O...H contacts of the *S*-NEA⁺ cation (red) in the crystal obtained from the racemic mixture of the amine.

Lattice-energy calculations

The crystal structures were energy-minimised in full (including the unit-cell parameters) with the experimental space-group symmetry imposed. The energy-minimisations were carried out in *GRACE*¹, which in turn calls *VASP*²³⁴ for single-point pure density functional theory calculations. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional⁵ was employed. *GRACE* adds a dispersion correction⁶ and an efficient energy-minimisation algorithm that takes full advantage of chemical information in the form of delocalized internal coordinates and approximate first and second derivatives. The energies are the total lattice enthalpies at *T* = 0 K and *P* = 0 GPa. This is the same method and these are the same energies that were used so successfully in the 2007 crystal structure prediction Blind Test⁷. The method was further validated on 225 molecular single crystal structures⁸. The calculation of lattice energies combining ionic interactions, hydrogen bonds, $\pi \cdots \pi$ interactions and Van der Waals interactions was validated by means of a successful crystal structure prediction on pyridinium chloride⁹. In addition to the lattice energies, the calculations also provide idealised positions for the hydrogen atoms.

The –COO torsion angles in S-PEA, R-PEA (Z'=2), S-NEA and R-NEA are 12, 0, 3, 11 and 51°, respectively. The energy difference between the geometries of the DAG molecules in R-NEA and S-NEA is 0.83 kcal/mol in favour of R-NEA as determined from a dispersion-corrected PBE calculation.

2. Vapour sorption experiments

50 g of DAG was dried, sieved (30 μ m), spread evenly in a Petri dish (Ø 70 mm) and placed in a vacuum desiccator which contained 100 ml of the racemic amine (PEA or NEA). The system was incubated for 30 mins on 50 °C to obtain an acceptable vapour pressure of the amine (ca. 4 mmHg for PEA and 0.02 mmHg for NEA).

Powder X-ray diffraction experiments were carried out on a Bruker D8 diffractometer using Cu-K α radiation. The sample was ground to a fine powder and loaded into an aluminium tray. Where available these spectra were compared with those determined from the single crystal structures.

6

Figure S4 PXRD patterns obtained from DAG exposed to vapor of the different amines are compared to the single crystal structures obtained from crystallization experiments.

- ¹ M. A. Neumann, *GRACE*, Avant-garde Materials Simulation, Freiburg, Germany (http://www.avmatsim.eu).
- ² Kresse G., Furthmüller J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 54, 11169–11186.
- ³ Kresse G., Hafner J. (1993). Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 47, 558–561.
- ⁴ Kresse G., Joubert D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter 59, 1758–1775.
- ⁵ Perdew J. P., Burke K., Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.

⁶ Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154119 (2010).

⁸ Van de Streek J., Neumann M. A. (2010). Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations. Acta Crystallogr, Sect B: Struct Sci 66, 544–558.

⁹ Van de Streek J., Neumann M. A., Perrin M.-A. (2010). Validation of dispersion-corrected density functional theory

Calculations for the crystal structure prediction of molecular salts: A crystal structure prediction study of pyridinium chloride, CrystEngComm 12, 3827–3833.

⁷ Neumann, M. A., Leusen, F. J. J. & Kendrick, J. A major advance in crystal structure prediction. Angew. Chem. Int. Ed. 47, 2427–2430 (2008).