Formation of N₃⁻ during interaction of NO with reduced ceria

Mihail Y. Mihaylov,^{*a*} Elena Z. Ivanova,^{*a*} Hristiyan A. Aleksandrov,^{*b*} Petko St. Petkov,^{*b*} Georgi N. Vayssilov,^{*b*,*} and Konstantin I. Hadjiivanov^{*a*,*}

^a Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
Fax: 00 3592 8705024; Tel: 00 3592 979 3598; E-mail: kih@svr.igic.bas.bg
^b Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; E-mail: gnv@chem.uni-sofia.bg

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

1. Background spectra of the oxidized and reduced ceria

The spectrum of the activated $CeO_2(A)$ sample (Figure S1, spectrum a) contains bands in the OH region that are typical of ceria.¹⁻⁵ In particular, the most intense band at 3654 cm⁻¹ and the shoulder at 3635 cm⁻¹ are assigned to two kinds of type II hydroxyls, (i.e., oxygen bound to two cerium cations).¹⁻⁵ The weak band at 3494 cm⁻¹ is attributed to type III hydroxyls.³ In agreement with published reports, ^{1,2} after reduction the spectrum in the OH region changes, and the type II OH bands are shifted to 3680 and 3640 cm⁻¹.

Figure S1. FTIR spectra of activated (a) and reduced (b) CeO₂(A) sample.

Two bands, at 1482 and 1338 cm⁻¹, are observed with the oxidized sample and are assigned to residual carbonate structures that are normally present on activated samples.⁵⁻⁷ Reduction leads to a shift of the maxima of the carbonate bands to 1458 and 1376 cm⁻¹ and decrease in their intensities (Figure S1, spectrum b).

Finally, a band at 2118 cm⁻¹ was detected only with the reduced sample. It is due to the ${}^{2}F_{5/2} \rightarrow$ ${}^{2}F_{7/2}$ electronic transitions of the Ce³⁺ ions formed during reduction⁸.

2. Adsorption of small amounts of NO and ¹⁵NO on ceria

Figure S2. FTIR spectra of small amounts (10 μ mol g⁻¹) of NO (a) and ¹⁵NO (b) adsorbed on reduced CeO₂(A) sample. The spectra are background corrected.

Figure S3. FTIR spectra of NO adsorbed on $CeO_2(A)$ (a) and $CeO_2(B)$ (b) samples. The spectra are chosen in order to show the maximal intensities in the bands in the region.

3. Statistical distribution of N_3^- species with different numbers of ^{15}N atoms.

Consider the formation of N-N bond during NO adsorption. Adsorption of a $1 : 1 {}^{14}NO + {}^{15}NO$ isotopic mixture should lead to formation of species containing, in average, equal number of ${}^{14}N$ and ${}^{15}N$ atoms. Statistically, the following species should be formed in equal concentrations: ${}^{14}N-{}^{14}N$; ${}^{14}N-{}^{15}N$; ${}^{15}N-{}^{14}N$ and ${}^{15}N-{}^{15}N$. If the two N-atoms are equivalent, the distribution will be: 25 % ${}^{14}N-{}^{14}N$; 50 % ${}^{14}N-{}^{15}N$; and 25 % ${}^{15}N-{}^{15}N$.

In the case when an N-N-N bond is formed, according to the statistical distribution each of the following species will be with 12.5 % population: ${}^{14}N-{}^{14}N-{}^{14}N, {}^{14}N-{}^{15}N, {}^{14}N-{}^{15}N-{}^{14}N, {}^{15}N-{}^{14}N, {}^{15}N-{}^{14}N, {}^{15}N-{}^{14}N, {}^{15}N-{}^{14}N, {}^{15}N-{}^{14}N, {}^{15}N-{}^{14}N, {}^{15}N-{}^{15}N, {}^{15}N-{}^{15}N-{}^{15}N, {}^{15}N-{}^{15}N-{}^{15}N.$ If the species are symmetric, the distribution will be: 12.5 % - ${}^{14}N-{}^{14}N-{}^{14}N-{}^{15}N, {}^{12}S % - {}^{14}N-{}^{14}N-{}^{15}N, {}^{12}S % {}^{14}N-{}^{15}N-{}^{15}N; 25 \% - {}^{14}N-{}^{15}N-{}^{15}N$ and 12.5 % ${}^{14}N-{}^{15}N-{}^{14}N$. Therefore, in this case 6 types of species will be observed and

the concentration of the species having one terminal N atom differing from the others will be two times higher than the concentration of the other species.

Figure S4. FTIR spectra of azide ions produced after adsorption of a ¹⁴NO + ¹⁵NO isotopic mixture (molar ratio ca. 3 : 2) on reduced ceria. The isotopic distribution of labelled. This is consistent with the spectrum shown on Fig. S3. The slightly higher intensity of the bands characterizing ¹⁴N-rich species is due to the slightly higher concentration of ¹⁴NO in the ¹⁴NO +

¹⁵NO isotopic mixture.

4. Oxidation of azide species on ceria

They azide species on ceria are highly stable at 298 K in the presence of NO at low equilibrium pressure. At high NO equilibrium pressure the azide bands slowly start to decrease in intensity. Similarly, the azides are stable in presence of O_2 alone at 298 K. Figure S4 demonstrates the effect of successive addition of small dosed of O_2 to azide species formed after NO adsorption (present in the gas phase). The gradual disappearance of the azide bands in the co-presence of NO and O_2 is seen. Note that no intermediate bands in the region were observed. Note that, except of the slight shift of the azide bands, the only effect if a gradual decrease in intensity and ultimate disappearance. No intermediate bands assignable to N-N bonds were detected.

Figure S5. Azide species formed on reduced CeO₂(A) sample after adsorption of a NO at equilibrium pressure of 300 Pa) (a) and development of the spectra after successive addition of small amounts of O₂ to the system (b-f). The spectra are background corrected.

REFERENCES:

- 1 Badri, A.; Binet, C.; Lavalley, J. C., J. Chem. Soc., Faraday Trans. 1996, 92, 4669–4673.
- 2 Daturi, M.; Finocchio, E.; Binet, C.; Lavalley, J. C.; Fally, F.; Perrichon V., J. Phys. Chem. B 1999, 103, 4884–4891.
- 3 Agarwal, S.; Lefferts, L.; Mojet, B. L., ChemCatChem 2013, 5, 479–489.
- Farra, R.; Wrabetz, S.; Schuster, M. E.; Stotz, E.; Hamilton, N. G.; Amrute, A. P.; Pérez-Ramírez, J.; López, N.; Teschner, D., Phys. Chem. Chem. Phys. 2013, 15, 3454–3465.
- 5 Vayssilov, G. N.; Mihaylov, M.; Petkov, P. St.; Hadjiivanov, K. I.; Neyman, K., J. Phys. Chem. C 2011, 115, 23435–23454.
- 6 Martínez-Arias, A.; Soria, J.; Conesa, J. C.; Seoane, X. L.; Arcoya, A.; Cataluña, R., J. Chem. Soc., Faraday Trans. 1995, 91, 1679–1687.
- 7 Niwa, M.; Furukawa, Y.; Murakami, Y., J. Colloid Interface Sci. 1982, 86, 260–265.
- 8 Binet, C.; Badri, A.; Lavalley, J.-C., J. Phys. Chem. 1994, 98, 6392–6398.