Contents

1	Ge	neral experimental methods2		
2	Syı	nthesis of new compounds2		
	2.1	[Ir(IBioxMe ₄) ₃ (2,3-C ₆ H ₃ F ₂)(H)][BAr ^F ₄] (2)2		
	2.2	<i>trans</i> -[lr(IBioxMe ₄) ₂ (COE)CI] (3)3		
	2.3	<i>trans</i> -[lr(lBioxMe ₄) ₂ (2,2'-bipyridine)(C ₆ H ₃ F ₂)(H)][BAr ^F ₄] (5)4		
	2.4	[Ir(IBioxMe ₄) ₃ (2-C ₆ H ₄ F)(H)][BAr ^F ₄] (6)5		
	2.5	[Ir(IBioxMe ₄) ₃ (2,4,6-C ₆ H ₂ F ₃)(H)][BAr ^F ₄] (7)6		
	2.6	[Ir(IBioxMe ₄) ₃ (NCCH ₃)][BAr ^F ₄] (8)7		
3	NN	/IR scale reaction details		
	3.1	[Ir(IBioxMe ₄) ₃ (2,3-C ₆ H ₃ F ₂)(H)][BAr ^F ₄] (2)8		
	3.2	trans-[Ir(IBioxMe ₄) ₂ (COE)Cl] (3)8		
	3.3	<i>trans</i> -[lr(lBioxMe ₄) ₂ (2,2'-bipyridine)(C ₆ H ₃ F ₂)(H)][BAr ^F ₄] (5)9		
	3.4	[Ir(IBioxMe ₄) ₃ (2-C ₆ H ₄ F)(H)][BAr ^F ₄] (6)9		
	3.5	[Ir(IBioxMe ₄) ₃ (2,4,6-C ₆ H ₂ F ₃)(H)][BAr ^F ₄] (7)10		
	3.6	[Ir(IBioxMe ₄) ₃ (NCCH ₃)][BAr ^F ₄] (8)10		
4	Sel	ected NMR spectra11		
	4.1	[Ir(IBioxMe ₄) ₃ (2,3-C ₆ H ₃ F ₂)(H)][BAr ^F ₄] (2)11		
	4.2	<i>trans</i> -[lr(lBioxMe ₄) ₂ (COE)Cl] (3)12		
	4.3	trans-[lr(lBioxMe ₄) ₂ (2,3-C ₆ H ₃ F ₂)(H)][BAr ^F ₄] (4)13		
	4.4	<i>trans</i> -[lr(lBioxMe ₄) ₂ (2,2'-bipyridine)(C ₆ H ₃ F ₂)(H)][BAr ^F ₄] (5)14		
	4.5	[Ir(IBioxMe ₄) ₃ (2-C ₆ H ₄ F)(H)][BAr ^F ₄] (6)16		
	4.6	[Ir(IBioxMe ₄) ₃ (2,4,6-C ₆ H ₂ F ₃)(H)][BAr ^F ₄] (7)17		
	4.7	[Ir(IBioxMe ₄) ₃ (NCCH ₃)][BAr ^F ₄] (8)18		
	4.8	Stability of 6 in perfluorotoluene – attempted preparation of 118		
5	Re	action kinetics19		
	5.1	Kinetic scheme for arene substitution reactions19		
	5.2	Substitution reactions of 2 with 1,3,5-C ₆ H ₃ F ₃ 19		
	5.3	Substitution reaction of 6 with 1,2-C ₆ H ₄ F ₂ 20		
	5.4	Substitution reaction of 7 with 1,2-C ₆ H ₄ F ₂ 20		
	5.5	Substitution reactions of 2, 6 and 7 with acetonitrile21		
6 Crystallography				
	6.1	Crystallographic data21		
7	Re	ferences23		

Experimental

1 General experimental methods

All manipulations were performed under an atmosphere of argon, using Schlenk and glove box techniques. Glassware was oven dried at 150°C overnight and flamed under vacuum prior to use. Anhydrous CH₂Cl₂ and heptane (<0.005% H₂O) were purchased from ACROS or Aldrich and freeze-pump-thaw degassed three times before being placed under argon. CD₂Cl₂, d₃-MeCN and fluoroarenes (C₆H₅F, 1,2-C₆H₄F₂, 1,3,5-C₆H₃F₃, C₆F₅CF₃) were dried over CaH₂, vacuum distilled and the latter stored over thoroughly vacuum-dried 3 Å molecular sieves. C₆H₆, C₆D₆ and *cis*-cyclooctene (COE) were dried over Na and vacuum distilled. IBioxMe₄,¹ $[Ir(COE)_2CI]_2$,² and Na[BAr^F₄]³ were synthesised using literature protocols. All other solvents and reagents are commercial products and were used as received. NMR spectra were recorded on Bruker DPX-400, AV-400, AV-500, AVIIIHD-500 and AVII-700 spectrometers at 298 K unless otherwise stated. ¹H NMR spectra recorded in 1,2-C₆H₄F₂ and C₆H₅F were referenced using the highest intensity peak of the highest (δ 6.87) and lowest (δ 6.86) frequency fluoroarene multiplets, respectively. ¹⁹F NMR spectra recorded in 1,2-C₆H₄F₂ and C₆H₅F were referenced using the solvent peak at δ -138.75 (1,2-C₆H₄F₂) and δ -113.15 (C₆H₅F). An internal sealed capillary of C₆D₆ was used to lock and shim samples for acquisition of NMR data, and additionally reference ${}^{13}C{}^{1}H$ NMR spectra, at 298 K. An internal sealed capillary of d₆-acetone was used to lock and shim samples for acquisition of NMR data at 250 K. Chemical shirts are quoted in ppm and coupling constants in Hz. Microanalyses were performed by Stephan Boyer at London Metropolitan University.

2 Synthesis of new compounds

2.1 $[Ir(IBioxMe_4)_3(2,3-C_6H_3F_2)(H)][BAr_4](2)$

Method 1: To a mixture of $[Ir(COE)_2CI]_2$ (0.033 g, 0.037 mmol), IBioxMe₄ (0.050 g, 0.240 mmol) and Na[BArF₄] (0.069 g, 0.078 mmol) was added 1,2-C₆H₄F₂ (2.0 mL). The resulting suspension was shaken for 15 minutes at room temperature, diluted with heptane (2.0 mL) and filtered. The filtrate was layered with heptane to afford the product as bright orange crystals on diffusion at room temperature. Yield = 0.104 g (76%, orange-red crystals).

Method 2: To a mixture of **3** (0.150 g, 0.199 mmol), Na[BAr^F₄] (0.185 g, 0.209 mmol) and IBioxMe₄ (0.044 g, 0.209 mmol) was added 1,2-C₆H₄F₂ (10 mL). The orange-red solution was stirred at room temperature for one hour and then filtered. Layering the filtrate with heptane gave a solid upon diffusion, which was recrystallised from 1,2-C₆H₄F₂ – heptane to afford the orange-red crystalline product. Yield = 0.281 g (74%, orange-red crystals).

¹**H NMR** (1,2-C₆H₄F₂/C₆D₆, 700 MHz): δ 8.11 – 8.15 (m, 8H, Ar^F), 7.49 (br, 4H, Ar^F), 3.96 – 4.37 (m, 12H, OCH₂), 0.13 – 1.89 (δ 1.89, 1.87, 1.85, 1.82 (d, ^{1h}J_{FH} = 2.5), 1.78, 1.77, 1.70, 1.64, 1.61, 1.56 (d, ^{1h}J_{FH} = 1.5),

1.52, 1.49, 1.01, 0.98, 0.94, 0.85, 0.82, 0.77, 0.73, 0.28, 0.27, 0.18, 0.15; 36H, CH₃), -47.09 (d, ${}^{1h}J_{FH}$ = 3.7, 0.47H, *syn*-IrH), -48.67 (s, 0.53H, *anti*-IrH). The aryl fluoride resonances are obscured by the solvent.

¹⁹F{¹H} NMR (1,2-C₆H₄F₂/C₆D₆, 377 MHz): δ -62.3 (s, 24F, Ar^F), -111.7 (dd, ³J_{FF} = 27, ^{1h}J_{FH} = 4, 0.47F, *syn*-2,3-C₆H₃F₂), -115.2 (d, ³J_{FF} = 28, 0.53F, *anti*-2,3-C₆H₃F₂), -139.5 (d, ³J_{FF} = 28, 0.53F, *anti*-2,3-C₆H₃F₂). The *syn*-2,3-C₆H₃F₂ resonances is obscured by the solvent.

¹⁹F{¹H} NMR (CD₂Cl₂, 377 MHz): δ -62.2 (s, Ar^F), -111.6 (dd, ³J_{FF} = 27, ^{1h}J_{FH} = 4, 0.47F, *syn*-2,3-C₆H₃F₂), -114.9 (d, ³J_{FF} = 28, 0.53F, *anti*-2,3-C₆H₃F₂), -139.4 (d, ³J_{FF} = 27, 0.47F, *syn*-2,<u>3</u>-C₆H₃F₂), -139.9 (d, ³J_{FF} = 28, 0.53F, *anti*-2,<u>3</u>-C₆H₃F₂).

¹³C{¹H} NMR (1,2-C₆H₄F₂/C₆D₆, 176 MHz): δ 162.6 (q, ¹J_{BC} = 50, Ar^F), 158.4 (dd, ¹J_{FC} = 226, ²J_{FC} = 9, C₆H₃F₂), 157.6 (dd, ¹J_{FC} = 230, ²J_{FC} = 9, C₆H₃F₂), 153.1 (s, NCN), 152.9 (s, NCN), 152.5 (s, NCN), 152.4 (s, NCN), 135.1 (s, Ar^F), 129.7 (qq, ²J_{FC} = 32, ³J_{BC} = 3, Ar^F), 128.0 (s, COCH₂), 127.9 (s, COCH₂), 127.8 (s, COCH₂), 127.3 (s, COCH₂), 127.2 (s, COCH₂), 127.2 (s, COCH₂), 126.5 (s, COCH₂), 126.5 (s, COCH₂), 126.3 (s, COCH₂), 126.1 (s, COCH₂), 124.9 (q, ¹J_{FC} = 272, Ar^F), 117.6 (sept, ³J_{FC} = 4, Ar^F), 88.1 (s, OCH₂), 87.8 (s, OCH₂), 87.8 (s, OCH₂), 87.7 (s, OCH₂), 87.3 (s, OCH₂), 87.1 (s, OCH₂), 86.8 (s, OCH₂), 86.8 (s, OCH₂), 65.0 (s, C(CH₃)₂), 64.9 (s, C(CH₃)₂), 64.7 (s, C(CH₃)₂), 65.1 (s, C(CH₃)₂), 65.0 (s, C(CH₃)₂), 64.9 (s, C(CH₃)₂), 64.7 (s, C(CH₃)₂), 63.7 (s, C(CH₃)₂), 63.2 (s, C(H₃)₂), 62.2 (s, C(CH₃)₂), 61.9 (s, C(CH₃)₂), 30.3 (s, CH₃), 28.0 (d, ^{2h}J_{FC} = 11, CH₃), 27.4 (s, CH₃), 24.6 (s, CH₃), 24.8 (s, CH₃), 24.7 (s, CH₃), 24.5 (s, CH₃), 24.5 (s, CH₃), 24.1 (s, CH₃), 24.1 (s, CH₃), 24.9 (s, CH₃), 23.9 (s, CH₃), 23.7 (s, CH₃), 23.7 (s, CH₃), 23.6 (s, CH₃), 23.5 (s, CH₃), 23.4 (s, CH₃), 23.3 (s, CH₃), 21.8 (s, CH₃), 21.4 (d, ^{2h}J_{FC} = 2, CH₃), 18.8 (s, CH₃), 18.6 (s, CH₃). The aryl fluoride resonances are partially obscured by the solvent signals.

Anal. Calcd for C₇₁H₆₄BF₂₆IrN₆O₆.(C₆H₄F₂) ([1794.32] 1908.41 gmol⁻¹): C, 48.46; H, 3.59; N, 4.40. Found: C, 48.55; H, 3.50; N, 4.48.

2.2 trans-[Ir(IBioxMe₄)₂(COE)CI] (3)

To a suspension of $[Ir(COE)_2CI]_2$ (0.210 g, 0.23 mmol) in 1,2-C₆H₄F₂ (12 mL) was added a solution of IBioxMe₄ (0.200 g, 0.96 mmol) in 1,2-C₆H₄F₂ (3 mL). The solution was stirred at room temperature for 3 hours, during which time a yellow precipitate formed. The suspension was then reduced to 3 mL and heptane (3 mL) added to aid precipitation. The product was isolated by filtration and washed with heptane (2 × 1 mL). Crystals suitable for X-ray analysis were grown from benzene – heptane. Yield = 0.330 g (94%, yellow microcrystalline solid).

¹**H NMR** (C_6D_6 , 400 MHz): δ 3.91 (d, ${}^2J_{HH}$ = 7.9, 4H, OCH₂), 3.80 (d, ${}^2J_{HH}$ = 7.9, 4H, OCH₂), 2.51 – 2.59 (m, 2H, CH{COE}), 2.37 – 2.44 (m, 2H, CHC<u>H₂</u>{COE}), 2.03 (s, 12H, CH₃), 1.81 (s, 12H, CH₃), 1.54 – 1.67 (m, 4H, CH₂{COE}), 1.36 – 1.50 (m, 2H, CHC<u>H₂</u>{COE}), 1.00 – 1.09 (m, 4H, CH₂{COE}).

¹**H NMR** (1,2-C₆H₄F₂/C₆D₆, 400 MHz): δ 4.17 (d, ²J_{HH} = 8.1, 4H, OCH₂), 4.14 (d, ²J_{HH} = 8.1, 4H, OCH₂), 2.37 – 2.46 (m, 2H, CH{COE}), 2.23 – 2.31 (m, 2H, CHC<u>H₂</u>{COE}), 2.03 (s, 12H, CH₃), 1.96 (s, 12H, CH₃), 1.46 – 1.59

(m, 4H, CH₂{COE}), 1.30 – 1.42 (m, 2H, CHCH₂{COE}), 1.11 – 1.25 (m, 4H, CH₂{COE}).

¹**H NMR** (CD₂Cl₂, 400 MHz): δ 4.40 (d, ²J_{HH} = 7.8, 4H, OCH₂), 4.36 (d, ²J_{HH} = 7.8, 4H, OCH₂), 2.24 – 2.33 (m, 2H, CH{COE}), 2.11 – 2.19 (m, 2H, CHC<u>H₂</u>{COE}), 2.00 (s, 12H, CH₃), 1.98 (s, 12H, CH₃), 1.43 – 1.56 (m, 4H, CH₂{COE}), 1.14 – 1.36 (m, 4H, CH₂{COE}), 0.98 – 1.11 (m, 2H, CHC<u>H₂</u>{COE}).

¹³C{¹H} NMR (CD₂Cl₂, 101 MHz): δ 160.2 (s, NCN), 125.3 (s, <u>C</u>OCH₂), 88.5 (s, OCH₂), 63.2 (s, <u>C</u>(CH₃)₂), 38.4 (s, CH{COE}), 33.5 (s, CH<u>C</u>H₂{COE}), 31.2 (s, CH₂{COE}), 27.2 (s, CH₂{COE}), 26.8 (s, CH₃), 25.3 (s, CH₃).

Anal. Calcd for C₃₀H₄₆IrN₄O₄.0.33(C₆H₆) ([754.39] 780.43 gmol⁻¹): C, 49.25; H, 6.20; N, 7.18. Found: C, 49.03; H, 6.49; N, 7.38. Benzene solvate was confirmed by dissolving in CD₂Cl₂.

2.3 $trans-[Ir(IBioxMe_4)_2(2,2'-bipyridine)(C_6H_3F_2)(H)][BAr_4]$ (5)

To a mixture of **3** (0.050 g, 0.066 mmol), Na[BAr^F₄] (0.062 g, 0.070 mmol) and 2,2'-bipyridine (0.011 g, 0.073 mmol) was added 1,2-C₆H₄F₂ (4 mL). The bright orange-red solution was stirred at room temperature for one hour and then filtered. Layering the filtrate with heptane gave the crude product upon diffusion. Recrystallisation from CH_2Cl_2 – heptane afforded the analytically pure product. Yield = 0.095 g (82%, red crystals).

¹**H NMR** (1,2-C₆H₄F₂/C₆D₆, 400 MHz, selected data only): δ 8.10 – 8.16 (m, 8H, Ar^F), 7.50 (br, 4H, Ar^F), -19.28 (s, 0.45H, Ir<u>H(3,4-C₆H₃F₂))</u>, -19.94 (br, 0.55H, Ir<u>H(2,3-C₆H₃F₂))</u>.

¹**H NMR** (CD₂Cl₂, 500 MHz): δ 9.60 (d, ³*J*_{HH} = 5.4, 0.55H, C^aH{bipy, 2,3-C₆H₄F₂}), 9.50 (d, ³*J*_{HH} = 5.4, 0.45H, C^aH{bipy, 3,4-C₆H₄F₂}), 8.74 (d, ³*J*_{HH} = 5.5, 0.55H, C^bH{bipy, 2,3-C₆H₄F₂}), 8.71 (d, ³*J*_{HH} = 5.5, 0.45H, C^bH{bipy, 3,4-C₆H₄F₂}), 8.23 (d, ³*J*_{HH} = 5.1, 0.55H, C^cH{bipy, 2,3-C₆H₄F₂}), 8.21 (d, ³*J*_{HH} = 5.1, 0.45H, C^cH{bipy, 3,4-C₆H₄F₂}), 8.11 (d, ³*J*_{HH} = 8.1, 1H, C^dH{bipy}), 8.01 (app br t, *J* = 8, 1H, C^eH{bipy}), 7.90 (app td, *J* = 8, *J* = 2, 1H, C^fH{bipy}), 7.89 (app td, *J* = 8, *J* = 2, 1H, C^fH{bipy}), 7.71 – 7.76 (m, 8H, Ar^F), 7.62 – 7.68 (m, 1H, C^gH{bipy}), 7.56 (br, 4H, Ar^F), 7.32 – 7.37 (m, 1H, C^hH{bipy}), 6.40 – 6.69 (m, 3H, C₆H₃F₂), 4.18 – 4.28 (m, ~4H, OCH₂), 3.93 – 4.08 (m, ~4H, OCH₂), 1.57 (s, 1.35H, CH₃{3,4-C₆H₄F₂}), 1.56 (s, 1.35H, CH₃{3,4-C₆H₄F₂}), 1.48 (s, 1.35H, CH₃{3,4-C₆H₄F₂}), 0.93 (s, 1.35H, CH₃{3,4-C₆H₄F₂}), 0.9 (vbr, 3.30H, CH₃{2,3-C₆H₄F₂}), -0.19 (s, 1.35H, CH₃{3,4-C₆H₄F₂}), -0.21 (s, 1.35H, CH₃{3,4-C₆H₄F₂}), -0.2 (vbr, 3.30H, CH₃{2,3-C₆H₄F₂}), -19.33 (s, 0.45H, Ir<u>H</u>(3,4-C₆H₃F₂)), -19.99 (br, 0.55H, IrH(2,3-C₆H₃F₂)).

¹**H NMR** (CD₂Cl₂, 500 MHz, 200 K, selected data only): δ 7.71 – 7.75 (m, 8H, Ar^F), 7.53 (br, 4H, Ar^F), -19.17 (s, 0.20H, Ir<u>H(3,4-C_6H_3F_2))</u>, -19.20 (s, 0.25H, Ir<u>H(3,4-C_6H_3F_2))</u>, -19.55 (d, ^{1h}J_{FH} = 4.8, 0.23H, *syn*-Ir<u>H(2,3-C_6H_3F_2))</u>, -20.12 (s, 0.32H, *anti*-Ir<u>H(2,3-C_6H_3F_2))</u>.

¹⁹F{¹H} NMR (CD₂Cl₂, 377 MHz): δ -62.8 (s, 24F, Ar^F), -118.3 (vbr, 0.23F, syn-2, 3-C₆H₃F₂), -119.8 (vbr, 0.32F, anti-2, 3-C₆H₃F₂), -141.6 (br d, ³J_{FF} = 27, 0.55F, 2, 3-C₆H₃F₂), -143.2 (d, ³J_{FF} = 21, 0.45F, 3, 4-C₆H₃F₂), -151.3 (d, ³J_{FF} = 21, 0.45F, 3, 4-C₆H₃F₂).

¹⁹**F NMR** (CD₂Cl₂, 377 MHz, 200 K): δ -62.1 (s, 24F, Ar^F), -117.9 (d, ³J_{FF} = 27, 0.23F, syn-2, 3-C₆H₃F₂), -119.8 (d,

 ${}^{3}J_{FF} = 29, 0.32F, anti-2,3-C_{6}H_{3}F_{2}), -141.4 (dm, {}^{3}J_{FF} = 29, 0.32F, anti-2,3-C_{6}H_{3}F_{2}), -142.0 (dt, {}^{3}J_{FF} = 27, J_{FH} = 8, 0.23F, syn-2,3-C_{6}H_{3}F_{2}), -142.8 (app quint, J = 11, 0.25F, 3,4-C_{6}H_{3}F_{2}), -143.9 (app quint, J = 11, 0.20F, 3,4-C_{6}H_{3}F_{2}), -151.5 (m, 0.20F, 3,4-C_{6}H_{3}F_{2}), -151.8 (m, 0.25F, 3,4-C_{6}H_{3}F_{2}).$

¹³C{¹H} NMR (CD₂Cl₂, 126 MHz): δ 162.3 (q, ¹J_{BC} = 50, Ar^F), 160.3 (s, C{bipy}), 160.0 (s, NCN), 159.1 (br, NCN), 158.5 (s, C{bipy}), 156.3 (s, C^bH{bipy}), 156.2 (s, C^bH{bipy}), 152.9 (s, C^aH{bipy}), 150.4 (dd, ¹J_{FC} = 247, ²J_{FC} = 20, C₆H₃F₂), 149.5 (dd, ¹J_{FC} = 246, ²J_{FC} = 11, C₆H₃F₂), 147.0 (dd, ¹J_{FC} = 239, ²J_{FC} = 13, C₆H₃F₂), 139.7 (s, C^eH{bipy}), 138.5 (s, C^fH{bipy}), 138.4 (s, C^fH{bipy}), 138.2 (d, J = 3, IrC{C₆H₃F₂}), 137.6 (s, IrC{C₆H₃F₂}), 135.4 (s, Ar^F), 133.1 (br d, J = 4, IrC{C₆H₃F₂}), 130.4 (d, ³J_{FC} = 10, C₆H₃F₂), 129.4 (qq, ²J_{FC} = 32, ³J_{BC} = 3, Ar^F), 127.0 (s, COCH₂), 126.9 (s, COCH₂), 126.8 (s, C^hH{bipy}), 126.7 (br, COCH₂), 126.6 (s, C^hH{bipy}), 126.5 (s, C^gH{bipy}), 126.4 (s, C^gH{bipy}), 126.0 (s, COCH₂), 125.9 (s, COCH₂), 125.7 (br, COCH₂), 125.2 (q, ¹J_{FC} = 272, Ar^F), 125.2 (s, C^cH{bipy}), 125.0 (s, C^cH{bipy}), 124.1 (s, C^dH{bipy}), 123.8 (s, C^dH{bipy}), 123.7 (br, C₆H₃F₂), 118.1 (sept, ³J_{FC} = 4, Ar^F), 115.8 (d, ²J_{FC} = 14, C₆H₃F₂), 110.5 (d, ²J_{FC} = 18, C₆H₃F₂), 86.8 – 87.1 (m, OCH₂), 66.8 (s, C(CH₃)₂), 65.0 (s, C(CH₃)₂), 64.9 (s, C(CH₃)₂), 26.2 (br, CH₃), 26.1 (s, CH₃), 26.1 (s, CH₃), 26.0 (s, CH₃), 24.3 (br, CH₃), 24.3 (s, CH₃), 24.2 (br, CH₃), 23.5 (br, CH₃), 23.4 (br, CH₃). We have not assigned/identified all of the signals of the three different isomers observed in this spectrum.

Anal. Calcd for C₇₀H₅₆BF₂₆IrN₆O₄ (1742.24 gmol⁻¹): C, 48.26; H, 3.24; N, 4.82. Found: C, 48.19; H, 3.13; N, 4.74.

2.4 $[Ir(IBioxMe_4)_3(2-C_6H_4F)(H)][BAr_4](6)$

To a mixture of **3** (0.050 g, 0.066 mmol), Na[BAr^F₄] (0.062 g, 0.070 mmol) and IBioxMe₄ (0.015 g, 0.070 mmol) was added C₆H₅F (8 mL). The orange-red solution was stirred at room temperature for two hours and then filtered. Layering the filtrate with heptane gave a solid upon diffusion, which was recrystallised from C₆H₅F – heptane to afford the orange-red crystalline product. Yield = 0.081 g (66%, orange-red crystals).

¹**H NMR** (C_6H_5F/C_6D_6 , 700 MHz): δ 8.29 – 8.32 (m, 8H, Ar^F), 7.62 (br, 4H, Ar^F), 3.80 – 4.12 (m, 12H, OCH₂), 0.06 – 1.74 (δ 1.72 (d, ^{1h} J_{FH} = 2.6), 1.70, 1.70, 1.65, 1.56, 1.54, 1.50, 1.47, 1.41 (d, ^{1h} J_{FH} = 2.0), 1.38, 1.38, 0.82, 0.79, 0.77, 0.69, 0.66, 0.62, 0.57, 0.18, 0.17, 0.11, 0.07; 36H, CH₃), -47.28 (d, ^{1h} J_{FH} = 3.4, 0.42H, *syn*-IrH), -48.94 (s, 0.58H, *anti*-IrH). The aryl fluoride resonances are obscured by the solvent.

¹⁹F{¹H} NMR (C₆H₅F/C₆D₆, 377 MHz): δ -62.4 (s, 24F, Ar^F), -84.7 (d, J_{FH} = 3, 0.42F, *syn*-2-C₆H₄F), -88.0 (s, 0.58F, *anti*-2-C₆H₄F).

¹⁹F{¹H} NMR (CD₂Cl₂, 377 MHz): δ-62.1 (s, Ar^F), -84.1 (s, syn-C₆H₄F), -87.0 (s, anti-C₆H₄F).

¹³C{¹H} NMR (C₆H₅F/C₆D₆, 176 MHz): δ 171.1 (d, ¹J_{FC} = 227, C₆H₄F), 170.4 (d, ¹J_{FC} = 232, C₆H₄F), 162.7 (q, ¹J_{BC} = 50, Ar^F), 151.7 (s, NCN), 150.0 (s, NCN), 135.3 (s, Ar^F), 129.7 (qq, ²J_{FC} = 34, ³J_{BC} = 3, Ar^F), 127.8 (s, <u>C</u>OCH₂), 127.8 (s, <u>C</u>OCH₂), 127.7 (s, <u>C</u>OCH₂), 127.5 (s, <u>C</u>OCH₂), 127.2 (s, <u>C</u>OCH₂), 127.1 (s, <u>C</u>OCH₂), 127.1 (s, <u>C</u>OCH₂), 127.0 (s, <u>C</u>OCH₂), 126.4 (s, <u>C</u>OCH₂), 126.2 (s, <u>C</u>OCH₂), 125.9 (s, <u>C</u>OCH₂), 125.2 (q, ¹J_{FC} = 271,

Ar^F), 117.9 (sept, ${}^{3}J_{FC} = 4$, Ar^F), 88.1 (s, OCH₂), 88.0 (s, OCH₂), 87.7 (s, OCH₂), 87.7 (s, OCH₂), 87.6 (s, OCH₂), 87.5 (s, OCH₂), 87.3 (s, OCH₂), 87.2 (s, OCH₂), 87.1 (s, OCH₂), 86.9 (s, OCH₂), 86.8 (s, OCH₂), 86.4 (s, OCH₂), 67.6 (s, <u>C</u>(CH₃)₂), 67.0 (s, <u>C</u>(CH₃)₂), 66.9 (s, <u>C</u>(CH₃)₂), 66.4 (s, <u>C</u>(CH₃)₂), 64.8 (s, <u>C</u>(CH₃)₂), 64.7 (s, <u>C</u>(CH₃)₂), 64.7 (s, <u>C</u>(CH₃)₂), 64.4 (s, <u>C</u>(CH₃)₂), 63.4 (s, <u>C</u>(CH₃)₂), 62.9 (s, <u>C</u>(CH₃)₂), 62.0 (s, <u>C</u>(CH₃)₂), 61.7 (s, <u>C</u>(CH₃)₂), 30.2 (s, CH₃), 27.9 (d, ${}^{2h}J_{FC} = 11$, CH₃), 27.4 (s, CH₃), 26.7 (s, CH₃), 25.0 (s, CH₃), 24.9 (s, CH₃), 24.8 (s, CH₃), 24.7 (s, CH₃), 24.1 (s, CH₃), 24.1 (s, CH₃), 24.0 (s, CH₃), 24.0 (s, CH₃), 23.9 (s, CH₃), 23.6 (s, CH₃), 23.6 (d, ${}^{2h}J_{FC} = 11$, CH₃), 21.8 (s, CH₃), 21.4 (d, ${}^{2h}J_{FC} = 2$, CH₃), 18.8 (s, CH₃), 18.7 (s, CH₃). The aryl fluoride resonances are partially obscured by the solvent signals.

Anal. Calcd for C₇₁H₆₅BF₂₅IrN₆O₆.(C₆H₅F) ([1776.32] 1872.43 gmol⁻¹): C, 49.39; H, 3.77; N, 4.49. Found: C, 49.28; H, 3.77; N, 4.54.

2.5 $[Ir(IBioxMe_4)_3(2,4,6-C_6H_2F_3)(H)][BAr_4^F](7)$

To a mixture of **3** (0.050 g, 0.066 mmol), Na[BAr^F₄] (0.062 g, 0.070 mmol) and IBioxMe₄ (0.015 g, 0.070 mmol) was added 1,3,5-C₆H₃F₃ (8 mL). The orange-red suspension was stirred at room temperature for two hours and periodically sonicated. The supernatant was decanted and the remaining volatiles removed under vacuum, then the solid was dissolved in 1,2-C₆H₄F₂ and the solution filtered. Layering the filtrate with heptane afforded crystals upon diffusion. The crystals were re-suspended in 1,3,5-C₆H₃F₃ and the resulting suspension was sonicated and the solvent was decanted after 16 hours. The whole process was repeated and the microcrystalline solid was dried under high vacuum. Crystals suitable for X-ray analysis were grown from 1,2-C₆H₄F₂ – heptane. Yield = 0.103 g (80%, orange-red microcrystalline solid).

¹**H NMR** (1,2-C₆H₄F₂ – 1,3,5-C₆H₃F₃ (1:1)/C₆D₆, 700 MHz): δ 8.04 – 8.07 (m, 8H, Ar^F), 7.43 (br, 4H, Ar^F), 4.30 (d, ²J_{HH} = 8.3, 1H, OCH₂), 4.17 – 4.24 (m, ²J_{HH} = 8.3, 6H, OCH₂), 4.14 (d, ²J_{HH} = 8.3, 1H, OCH₂), 4.13 (d, ²J_{HH} = 8.5, 1H, OCH₂), 4.10 (d, ²J_{HH} = 8.3, 1H, OCH₂), 4.09 (d, ²J_{HH} = 8.3, 1H, OCH₂), 4.05 (d, ²J_{HH} = 8.3, 1H, OCH₂), 1.89 (s, 3H, CH₃), 1.80 (d, ^{1h}J_{FH} = 3.4, 3H, CH₃), 1.79 (s, 3H, CH₃), 1.64 (s, 3H, CH₃), 1.59 (d, ^{1h}J_{FH} = 3.2, 3H, CH₃), 1.52 (s, 3H, CH₃), 0.95 (s, 3H, CH₃), 0.94 (s, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.76 (s, 3H, CH₃), 0.33 (s, 3H, CH₃), 0.31 (s, 3H, CH₃), -48.06 (br, 1H, IrH). The aryl fluoride resonances are obscured by the solvent.

¹⁹**F**{¹**H**} **NMR** (1,2-C₆H₄F₂ - 1,3,5-C₆H₃F₃ (1:1)/C₆D₆, 377 MHz): δ -62.6 (s, 24F, Ar^F), -78.5 (m, 1F, <u>2</u>,4,<u>6</u>-C₆H₂F₃), -82.1 (dd, ⁴J_{FF} = 6, ³J_{FH} = 3, 1F, <u>2</u>,4,<u>6</u>-C₆H₂F₃), -116.4 (t, ⁴J_{FF} = 6, 1F, 2,<u>4</u>,6-C₆H₂F₃).

¹⁹F{¹H} NMR (CD₂Cl₂, 377 MHz): δ -62.3 (s, Ar^F), -77.8 (dd, ⁴J_{FF} = 7, ⁴J_{FF} = 3, <u>2</u>, 4, <u>6</u>-C₆H₂F₃), -81.0 (dd, ⁴J_{FF} = 7, ⁴J_{FF} = 3, <u>2</u>, 4, <u>6</u>-C₆H₂F₃), -116.6 (t, ⁴J_{FF} = 7, C₆H₂F₃).

¹³C{¹H} NMR (1,2-C₆H₄F₂ - 1,3,5-C₆H₃F₃ (1:1)/C₆D₆, 176 MHz): δ 170.5 (ddd, ¹J_{FC} = 228, ³J_{FC} = 25, ³J_{FC} = 14, C₆H₂F₃), 170.0 (ddd, ¹J_{FC} = 233, ³J_{FC} = 25, ³J_{FC} = 14, C₆H₂F₃), 162.6 (q, ¹J_{BC} = 50, Ar^F), 147.8 (s, NCN), 146.0 (s, NCN), 135.2 (s, Ar^F), 129.6 (qq, ²J_{FC} = 32, ³J_{BC} = 3, Ar^F), 127.5 (s, COCH₂), 127.2 (s, COCH₂), 126.6 (s, COCH₂), 126.5 (s, COCH₂), 125.0 (q, ¹J_{FC} = 272, Ar^F), 117.4 (sept, ³J_{FC} = 4, Ar^F), 88.3 (s, OCH₂), 87.9 (s, OCH₂), 87.8 (s, OCH₂), 87.2 (s, OCH₂), 87.2 (s, OCH₂), 86.7 (s, OCH₂), 67.4 (s, C(CH₃)₂), 66.7 (s, C(CH₃)₂), 65.4 (s, C(CH₃)₂), 65.4

(s, $\underline{C}(CH_3)_2$), 63.8 (s, $\underline{C}(CH_3)_2$), 62.5 (s, $\underline{C}(CH_3)_2$), 27.9 (d, ^{2h}J_{FC} = 12, CH₃), 27.1 (s, CH₃), 25.0 (s, CH₃), 24.8 (s, CH₃), 24.1 (s, CH₃), 24.0 (s, CH₃), 23.8 (s, CH₃), 23.8 (d, ^{2h}J_{FC} = 12, CH₃), 23.8 (s, CH₃), 23.5 (s, CH₃), 21.7 (d, ^{2h}J_{FC} = 3, CH₃), 18.8 (s, CH₃). The aryl fluoride resonances are partially obscured by the solvent signals. **Anal.** Calcd for C₇₁H₆₃BF₂₇IrN₆O₆.(C₆H₃F₃) ([1812.30] 1944.39 gmol⁻¹): C, 47.56; H, 3.42; N, 4.32. Found: C, 47.46; H, 3.37; N, 4.40.

2.6 [Ir(IBioxMe₄)₃(NCCH₃)][BAr^F₄] (8)

Complex **2** (0.040 g, 0.022 mmol) was dissolved in acetonitrile (5 mL). The solution was stirred at room temperature for 16 hours, during which the solution became bright yellow. The volatiles were removed in vacuo. Repeated suspension in heptane, sonication and filtration afforded yellow microcrystalline **4**. Crystals suitable for X-ray analysis were grown from C_6H_5F – heptane. Yield = 0.033 g (87%, yellow microcrystalline solid).

¹**H NMR** (C_6H_5F/C_6D_6 , 400 MHz): δ 8.26 – 8.32 (m, 8H, Ar^F), 7.61 (br, 4H, Ar^F), 4.13 (d, ${}^2J_{HH}$ = 8.1, 2H, OCH₂), 3.99 – 4.08 (m, 8H, OCH₂), 3.92 (d, ${}^2J_{HH}$ = 8.0, 2H, OCH₂), 2.08 (s, 6H, CH₃), 1.92 (s, 6H, CH₃), 1.91 (s, 6H, CH₃), 1.53 (s, 6H, CH₃), 1.49 (s, 3H, CH₃CN), 0.80 (s, 6H, CH₃), 0.64 (s, 6H, CH₃).

¹**H NMR** (CD₃CN, 400 MHz): δ7.68 – 7.71 (m, 8H, Ar^F), 7.67 (br, 4H, Ar^F), 4.35 – 4.45 (m, 10H, OCH₂), 4.20 (d, ²J_{HH} = 8.2, 2H, OCH₂), 2.28 (s, 6H, CH₃), 2.10 (s, 6H, CH₃), 2.08 (s, 6H, CH₃), 1.96 (s, 3H, NCCH₃), 1.68 (s, 6H, CH₃), 1.02 (s, 6H, CH₃), 0.77 (s, 6H, CH₃).

¹³C{¹H} NMR (CD₃CN, 101 MHz): δ 162.6 (q, ¹J_{BC} = 50, Ar^F), 157.6 (s, NCN), 143.2 (s, NCN), 135.6 (s, Ar^F), 129.7 (qq, ²J_{FC} = 32, ³J_{BC} = 3, Ar^F), 126.0 (s, <u>C</u>OCH₂), 125.9 (s, <u>C</u>OCH₂), 125.4 (q, ¹J_{FC} = 272, Ar^F), 118.7 (sept, ³J_{FC} = 4, Ar^F), 89.8 (s, OCH₂), 89.7 (s, OCH₂), 87.8 (s, OCH₂), 65.8 (s, <u>C</u>(CH₃)₂), 63.7 (s, <u>C</u>(CH₃)₂), 62.3 (s, <u>C</u>(CH₃)₂), 26.6 (s, CH₃), 26.2 (s, CH₃), 25.5 (s, CH₃), 25.0 (s, CH₃), 24.2 (s, CH₃), 21.9 (s, CH₃); coordinated CH₃CN signals not observed.

Anal. Calcd for C₆₇H₆₃BF₂₄IrN₇O₆ (1721.27 gmol⁻¹): C, 46.75; H, 3.69; N, 5.70. Found: C, 46.62; H, 3.74; N, 5.65.

3 NMR scale reaction details

3.1 $[Ir(IBioxMe_4)_3(2,3-C_6H_3F_2)(H)][BAr_4](2)$

- i. Solution stability was tested using a solution of **2** (0.0179 g, 0.0100 mmol) in $1,2-C_6H_4F_2$ (0.5 mL) in a J Young's valve NMR tube. No significant change was observed after 24 hours at 293 K by ¹H and ¹⁹F NMR spectroscopy.
- ii. A solution of **2** (0.0179 g, 0.0100 mmol) in 1,2-C₆H₄F₂ (0.256 mL, 0.0026 mol) was prepared in a J Young's valve NMR tube and C₆H₅F (0.244 mL, 0.0026 mol) was added. The ensuing reaction was followed in situ by ¹H and ¹⁹F NMR spectroscopy. After 2 hours at 298 K an equilibrium mixture of **2** and **6** was obtained corresponding to K = 6.
- iii. A solution of 2 (0.0179 g, 0.0100 mmol) in CD₂Cl₂ (0.5 mL) was prepared in a J Young's valve NMR tube and the ensuing reaction followed in situ by ¹H and ¹⁹F NMR spectroscopy at 298 K. Decomposition of 2 occurred with an apparent first order kinetics and an approximate half-life of 30 minutes (4 hours of data collected).

3.2 trans-[Ir(IBioxMe₄)₂(COE)CI] (3)

- i. Solution stability was tested using solutions of **3** (0.0100 g, 0.0133 mmol) in a J Young's valve NMR tube. No significant change was observed after 24 hours at 293 K by ¹H NMR spectroscopy in C_6D_6 (0.5 mL), 1,2- $C_6H_4F_2$ (0.5 mL) or CD_2Cl_2 (0.5 mL).
- ii. A solution of 3 (0.0050 g, 0.0066 mmol) and IBioxMe₄ (0.0015 g, 0.0073 mmol) in 1,2-C₆H₄F₂ (0.5 mL) was prepared in a J Young's valve NMR tube. Analysis of the solution by ¹H NMR spectroscopy indicated absence of any reaction after 24 hours at 293 K. No reaction was apparent by ¹H NMR spectroscopy after 3 hours at 333 K.
- iii. A solution of **3** (0.0050 g, 0.0066 mmol) and 2,2'-bipyridine (0.0011 g, 0.0073 mmol) in 1,2-C₆H₄F₂
 (0.5 mL) was prepared in a J Young's valve NMR tube. Analysis of the solution by ¹H NMR spectroscopy indicated absence of any reaction after 24 hours at 293 K.
- iv. A solution of **3** (0.0075 g, 0.0100 mmol) and Na[BAr^F₄] (0.0098 g, 0.0110 mmol) in pre-cooled 1,2-C₆H₄F₂ (0.5 mL, ca 250 K) was prepared in a J Young's valve NMR tube and the sample analysed immediately by ¹H and ¹⁹F NMR spectroscopy at 250 K. The ¹H NMR spectrum showed the presence of uncoordinated COE alongside 4 different hydride species as the major organometallic products (> 80%). The ¹⁹F NMR spectrum suggested these major species are the products of C–H bond activation of 1,2-C₆H₄F₂. An additional species, tentatively assigned to dimeric [{Ir(IBioxMe₄)₂(2,3-C₆H₃F₂)H₂CI]⁺ (**9**) based on ¹⁹F data, is also observed. This suggestion would account for the slightly higher amount of *trans*-[Ir(IBioxMe₄)₂(2,2'-bipyridine)(2,3-C₆H₃F₂)(H)][BAr^F₄] formed, in comparison to *trans*-[Ir(IBioxMe₄)₂(2,2'-bipyridine)(3,4-C₆H₃F₂)(H)][BAr^F₄], during the reaction of in situ generated **4** with 2,2'-bipyridine.

¹**H NMR** (1,2-C₆H₄F₂/d₆-acetone, 400 MHz, 250 K, selected data only): δ 8.16 – 8.28 (m, 8H, Ar^F), 7.41 (br, 4H, Ar^F), 5.47 (br, 2H, CH{free COE}), -44.91 (br, 0.24H, IrH{4}), -46.37 (br, 0.25H, IrH{4}), -46.45 (br, 0.09H, IrH{9}), -46.48 (br, 0.17H, IrH{4}), -46.61 (br, 0.14H, IrH{4}). ¹⁹**F NMR** (1,2-C₆H₄F₂/d₆-acetone, 377 MHz, 250 K): δ -62.2 (s, 24F, Ar^F), -117.2 (d, ³J_{FF} = 25, 0.25F, <u>2</u>,3-C₆H₃F₂{4}), -117.6 (m, 0.07F), -118.1 (m, 0.10F), -118.2 (m, 0.15F, <u>2</u>,3-C₆H₃F₂{4}), -140.4 (d, ³J_{FF} = 25, 0.25F, 2,<u>3</u>-C₆H₃F₂{4}), -140.7 (m, 0.14F, 3,4-C₆H₃F₂{4}), -140.9 (m, 0.25F, 3,4-C₆H₃F₂{4}), -147.1 (m, 0.14F, 3,4-C₆H₃F₂{4}). Presumably, the solvent obscures a number of the aryl fluoride resonances.

- v. A solution of **3** (0.0075 g, 0.0100 mmol) and Na[BAr^F₄] (0.0098 g, 0.0110 mmol) in 1,2-C₆H₄F₂ (0.5 mL) was prepared in a J Young's valve NMR tube and after 5 minutes at 293 K, IBioxMe₄ (0.0023 g, 0.0110 mmol) was added. Analysis of the solution by ¹H and ¹⁹F NMR spectroscopy indicated quantitative formation of **2** (< 15 min).
- vi. A solution of **3** (0.0075 g, 0.0100 mmol) and Na[BAr^F₄] (0.0098 g, 0.0110 mmol) in 1,2-C₆H₄F₂ (0.5 mL) was prepared in a J Young's valve NMR tube and after 5 minutes at 293 K, 2,2'-bipyridine (0.0017 g, 0.0110 mmol) was added. Analysis the solution by ¹H and ¹⁹F NMR spectroscopy indicated quantitative formation of **5** (< 15 min).

3.3 trans-[Ir(IBioxMe₄)₂(2,2'-bipyridine)(C₆H₃F₂)(H)][BAr^F₄] (5)

- i. Solution stability was tested using a solution of **5** (0.0200 g, 0.0115 mmol) in CD_2Cl_2 (0.5 mL) in a J Young's valve NMR tube. No change was observed after 24 hours at 293 K by ¹H NMR spectroscopy.
- ii. A solution of **5** (0.010 g, 0.0057 mmol) in C_6H_5F (0.5 mL) was prepared in a J Young's valve NMR tube. Analysis of the solution by ¹H and ¹⁹F NMR spectroscopy indicated the absence of any reaction after 24 hours at 293 K.
- iii. A solution of 5 (0.010 g, 0.0057 mmol) in a 1:1 mixture of 1,2-C₆H₄F₂ and 1,3,5-C₆H₃F₃ (0.5 mL) was prepared in a J Young's valve NMR tube. Analysis of the solution by ¹H and ¹⁹F NMR spectroscopy indicated the absence of any reaction after 24 hours at 293 K.

3.4 $[Ir(IBioxMe_4)_3(2-C_6H_4F)(H)][BAr_4^F](6)$

- i. Solution stability was tested using a solution of **6** (0.0089 g, 0.0050 mmol) in C_6H_5F (0.5 mL) in a J Young's valve NMR tube. No significant change was observed after 24 hours at 293 K by ¹H and ¹⁹F NMR spectroscopy.
- ii. A solution of 6 (0.0178 g, 0.0100 mmol) in CD₂Cl₂ (0.5 mL) was prepared in a J Young's valve NMR tube and the ensuing reaction followed in situ by ¹H and ¹⁹F NMR spectroscopy. Decomposition of 2 occurred with an apparent first order kinetics and an approximate half-life of 2 minutes (40 minutes of data collected).

iii. A suspension of **6** (0.0089 g, 0.005 mmol) in $C_6F_5CF_3$ (0.5 mL) was prepared in a J Young's valve NMR tube and the ensuing reaction followed in situ by ¹H and ¹⁹F NMR spectroscopy. The ¹H NMR spectrum after 20 min showed formation of transient cationic species of apparent D_3 symmetry alongside one equivalent of fluorobenzene (Figure S21). Fluorobenzene and $[BAr_4^{F}]^{-1}$ are observed in the ¹⁹F{¹H} NMR spectrum; no other significant fluorine containing species could be delinated.

¹**H NMR** (C₆F₅CF₃/C₆D₆, 400 MHz): δ 7.56 – 7.61 (m, 8H, Ar^F), 7.21 (br, 4H, Ar^F), 4.28 (s, 12H, OCH₂), 1.62 (s, 18H, CH₃), 1.30 (v br, 18H, CH₃).

3.5 $[Ir(IBioxMe_4)_3(2,4,6-C_6H_2F_3)(H)][BAr_4^F](7)$

- i. Solution stability was tested using a solution of **7** (0.0091 g, 0.0050 mmol) in a 1:1 mixture of 1,2- $C_6H_4F_2$ and 1,3,5- $C_6H_3F_3$ (0.5 mL) in a J Young's valve NMR tube. No significant change was observed after 24 hours by ¹H and ¹⁹F NMR spectroscopy at 293 K.
- ii. A solution of **7** (0.0181 g, 0.0100 mmol) in $1,2-C_6H_4F_2$ (0.5 mL) was prepared in a J Young's valve NMR tube and the ensuing reaction followed in situ by ¹H and ¹⁹F NMR spectroscopy. After 16 days, the concentration of **7** was not changing significantly within the error of integration. By integration of the hydride signals, an approximate value for arene exchange was calculated (K = 1/106).
- iii. A solution of 7 (0.0181 g, 0.0100 mmol) in CD₂Cl₂ (0.5 mL) was prepared in a J Young's valve NMR tube and the ensuing reaction followed in situ by ¹H and ¹⁹F NMR spectroscopy. Decomposition of 7 occurred with an apparent first order kinetics and an approximate half-life of 6 days at 293 K (25 days of data collected).

3.6 [Ir(IBioxMe₄)₃(NCCH₃)][BAr^F₄] (8)

A solution of 8 (0.0172 g, 0.0100 mmol) in 1,2-C₆H₄F₂ (0.5 mL) was prepared in a J Young's valve NMR tube. Analysis of the solution by ¹H and ¹⁹F NMR spectroscopy indicated partial conversion to 2 (24%) after 14 hours at 298 K. Subsequent removal of the volatiles under high vacuum and redissolution of the solid in 1,2-C₆H₄F₂ (0.5 mL) allowed higher conversion; after 6 cycles, a yield of 70% was reached.

4 Selected NMR spectra

4.1 [Ir(IBioxMe₄)₃(2,3-C₆H₃F₂)(H)][BAr^F₄] (2)

Figure S1: ¹H NMR spectrum in $1,2-C_6H_4F_2$ (C_6D_6 capillary; 400 MHz, 298 K).

Figure S2: ${}^{19}F{}^{1}H{}$ NMR spectrum in 1,2-C₆H₄F₂ (C₆D₆ capillary; 377 MHz, 298 K). * Impurities in 1,2-C₆H₄F₂.

Figure S3: ¹³C{¹H} APT NMR spectrum in 1,2-C₆H₄F₂ (C₆D₆ capillary; 176 MHz, 298 K).

4.2 trans-[lr(IBioxMe₄)₂(COE)Cl] (3)

4.3 $trans-[Ir(IBioxMe_4)_2(2,3-C_6H_3F_2)(H)][BAr_4^F] (4)$

Figure S6: ¹H NMR spectrum in $1,2-C_6H_4F_2$ (d₆-acetone capillary; 400 MHz, 250 K).

Figure S7: Selected regions of the ¹⁹F NMR spectrum in 1,2-C₆H₄F₂ (d₆-acetone capillary; 377 MHz, 250 K).

4.4 trans-[Ir(IBioxMe₄)₂(2,2'-bipyridine)(C₆H₃F₂)(H)][BAr^F₄] (5)

Figure S8: ¹H NMR spectrum in CD_2Cl_2 (500 MHz, 298 K; L = IBioxMe₄).

Figure S9: ¹H NMR spectrum in CD₂Cl₂ (500 MHz, 200 K).

30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 Figure S10: $^{19}\mathsf{F}$ NMR spectrum in $\mathsf{CD}_2\mathsf{CI}_2$ (377 MHz, 200 K).

Figure S11: ${}^{13}C{}^{1}H$ APT NMR spectrum in CD₂Cl₂ (126 MHz, 298 K).

Figure S12: ¹H NMR spectra in CD₂Cl₂ (500 MHz, from top to bottom: 298; 273; 250; 225; 200 K).

Figure S14: $^{19}\text{F}\{^1\text{H}\}$ NMR spectrum in C₆H₅F (C₆D₆ capillary; 377 MHz, 298 K).

Figure S15: ${}^{13}C{}^{1}H$ APT NMR spectrum in C₆H₅F (C₆D₆ capillary; 176 MHz, 298 K).

Figure S16: ¹H NMR spectrum in 1,2-C₆H₄F₂ – 1,3,5-C₆H₃F₃ (1:1, C₆D₆ capillary; 400 MHz, 298 K).

Figure S17: ¹⁹F{¹H} NMR spectrum in 1,2-C₆H₄F₂ – 1,3,5-C₆H₃F₃ (1:1, C₆D₆ capillary; 377 MHz, 298 K).

Figure S18: ¹³C{¹H} APT NMR spectrum in 1,2-C₆H₄F₂ – 1,3,5-C₆H₃F₃ (1:1, C₆D₆ capillary; 176 MHz, 298 K).

4.7 [Ir(IBioxMe₄)₃(NCCH₃)][BAr^F₄] (8)

4.8 Stability of 6 in perfluorotoluene – attempted preparation of 1

Figure S21: ¹H NMR spectrum of **6** dissolved in $C_6F_5CF_3$ recorded after 20 minutes (C_6D_6 capillary; 400 MHz, 298 K). * Signals from C_6D_6 capillary (residual C_6H_6 , H_2O and grease).

5 Reaction kinetics

5.1 Kinetic scheme for arene substitution reactions

The kinetics for the substitution reaction between **A** and **b** to afford **B** and **a** is modelled using the following four equations, involving the intermediate presence of a species **X**:

(1)
$$\mathbf{A} \xrightarrow{k_1} \mathbf{X} + \mathbf{a}$$
 (2) $\mathbf{X} + \mathbf{a} \xrightarrow{k_2} \mathbf{A}$ (3) $\mathbf{X} + \mathbf{b} \xrightarrow{k_3} \mathbf{B}$ (4) $\mathbf{B} \xrightarrow{k_4} \mathbf{X} + \mathbf{b}$

Application of the steady state approximation for **X** affords leads to equation 5, where $[A]_0$ is the initial concentration of **A**, which can be simplified to equations 6 and 7.

(5)
$$\frac{d[\mathbf{A}]}{dt} = \frac{-k_1[\mathbf{A}] + \frac{k_2[\mathbf{a}]}{k_3[\mathbf{b}]}k_4([\mathbf{A}]_0 - [\mathbf{A}])}{\frac{k_2[\mathbf{a}]}{k_3[\mathbf{b}]} + 1}$$

(6)
$$\frac{d[\mathbf{A}]}{dt} = \frac{-k_1[\mathbf{A}]}{\frac{k_2[\mathbf{a}]}{k_3[\mathbf{b}]} + 1} \{\text{when } k_1 \gg k_4\}$$

(7)
$$\frac{d[\mathbf{A}]}{dt}|_{t=0} = -k_1[\mathbf{A}]_0 \; \{\text{when } [\mathbf{b}] \gg [\mathbf{a}]\}$$

5.2 Substitution reactions of 2 with 1,3,5-C₆H₃F₃

A solution of **2** (0.0179 g, 0.0100 mmol) in $1,2-C_6H_4F_2$ (0.448 mL) was prepared in a J Young's valve NMR tube and 50 equivalents of $1,3,5-C_6H_3F_3$ (0.052 mL) added. The ensuing reaction was followed in situ by ¹H and ¹⁹F{¹H} NMR spectroscopy. The reaction was repeated with 100, 150, 200 and 250 equivalents of $1,3,5-C_6H_3F_3$, keeping the total volume of the solution constant (0.5 mL, see Figure S22). In each case, quantitative formation of **7** was observed. The measured first order rate constants are given in Table S1.

Figure S22: Concentration of 2 on dissolution in mixtures of $1,2-C_6H_4F_2$ and $1,3,5-C_6H_3F_3$ (50, 100, 150, 200, 250 equiv./2) at 298 K

equiv. 1,3,5-C ₆ H ₃ F ₃ / 2	R^2 (fit)	$k_{obs}/10^{-3} s^{-1}$	error $/10^{-3} s^{-1}$	data collected /h
50	0.999	0.01218	0.00014	24
100	0.999	0.0326	0.0005	65
150	0.999	0.0530	0.0005	23
200	0.999	0.0788	0.0011	45
250	0.998	0.120	0.002	23

Table S1: Observed rate constants for substitution reactions of 2 with 1,3,5-C₆H₃F₃ at 298 K⁴

In the presence of an excess of 1,3,5-C₆H₃F₃, this substitution reaction can be considered irreversible – the measured equilibrium constant at 298 K for the exchange of 1,2-C₆H₄F₂ with 1,3,5-C₆H₃F₃ is very large (K > 100, i.e. $k_1 >> k_4$). Rate constants for the processes were determined from a fit of the data using equation 6 ($R^2 = 0.998$, Figure S23). The resulting rate constants are: $k_1 = (1.5 \pm 0.9) \times 10^{-3} \text{ s}^{-1}$ and $k_2/k_3 = 12 \pm 7.4$

Figure S23: Observed rate constants for substitution reactions of 2 at 298 K as a function of the solution composition.

5.3 Substitution reaction of 6 with 1,2-C₆H₄F₂

A solution of **6** (0.0089 g, 0.0050 mmol) in 1,2-C₆H₄F₂ (0.5 mL) was prepared in a J Young's valve NMR tube. Analysis of the solution by ¹H and ¹⁹F NMR spectroscopy indicated the quantitative formation of **2** within 10 minutes at 298 K. Assuming the substitution proceeds with pseudo first order reaction kinetics (i.e. $k_1 >> k_4$ and [**b**] >> [**a**] in equation 5) and is complete after approximately $3 \times t_{1/2}$, the rate constant for arene dissociation (k_1) has a lower bound of 3×10^{-3} s⁻¹.

5.4 Substitution reaction of 7 with 1,2-C₆H₄F₂

A solution of **7** (0.0181 g, 0.0100 mmol) in 1,2-C₆H₄F₂ (0.5 mL) was prepared in a J Young's valve NMR tube and the ensuing reaction followed in situ by ¹H and ¹⁹F NMR spectroscopy. Complex **2** was formed slowly, with the initial rate for the decrease in [**7**] measured allowing the calculation of the rate constant for arene dissociation (k_1) = (1.96 ± 0.15) × 10⁻⁶ s⁻¹ (using equation 7; 11 days of data collected).⁴

5.5 Substitution reactions of 2, 6 and 7 with acetonitrile

Solutions of the aryl hydride complexes (0.0100 mmol) in d₃-MeCN (0.5 mL) were prepared in a J Young's valve NMR tube and the ensuing reactions followed in situ by ¹H and ¹⁹F NMR spectroscopy at 298 K. In each case pseudo first order (i.e. $k_1 >> k_4$ and [**b**] >> [**a**] in equation 5) and quantitative formation of **8** was observed (Table S2).

complex	R ² (fit)	$k_{obs}/10^{-3} s^{-1}$	error /10 ⁻³ s ⁻¹	data collected /h
2	0.995	0.120	0.007	10
6	0.999	2.7	0.3	0.5
7	0.988	0.000384	0.000013	744

Table S2: Observed rate constants for the formation of **8** in d_3 -MeCN at 298 K⁴

6 Crystallography

6.1 Crystallographic data

Crystallographic data for **2**, **5**, **6**, **7**, and **8** are summarised in Table S3. Data were collected on an Oxford Diffraction Gemini Ruby CCD diffractometer using graphite monochromated Mo K α (λ = 0.71073 Å) radiation and a low-temperature device [150(2) K]. Data were collected and reduced using CrysAlisPro.⁵ All non-hydrogen atoms were refined anisotropically using SHELXL,⁶ through the Olex2 interface.⁷ Hydride ligands could not be reliably located in the solutions of **2**, **5**, **6**, and **7**; all other hydrogen atoms were placed in calculated positions using the riding model. Full crystallographic details are documented in CIF format and have been deposited with the Cambridge Crystallographic Data Centre (see Table S3). These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

	$2.^{1}/_{2}(C_{6}H_{4}F_{2})$	5.CH ₂ Cl ₂	6 .C ₆ H ₅ F	7	8
CCDC	1037606	1037607	1037610	1037611	1037618
Formula	$C_{74}H_{66}BF_{27}IrN_6O_6$	$C_{71}H_{58}BCl_2F_{26}IrN_6O_4$	$C_{77}H_{70}BF_{26}IrN_6O_6$	$C_{71}H_{63}BF_{27}IrN_6O_6$	$C_{67}H_{63}BF_{24}IrN_7O_6$
Μ	1851.33	1827.14	1872.40	1812.28	1721.25
Crystal System	Triclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	<i>P</i> -1	P2 ₁ /n	P21/c	<i>P</i> -1	P21/c
<i>a</i> [Å]	14.29260(15)	19.5682(4)	20.7249(5)	14.3353(2)	13.7820(2)
<i>b</i> [Å]	17.57617(19)	18.7483(3)	22.1162(3)	17.5209(2)	20.0926(2)
<i>c</i> [Å]	30.9787(4)	20.3900(5)	18.7709(4)	30.9758(4)	25.2535(3)
α [deg]	96.4495(9)	90	90	95.9306(10)	90
eta [deg]	91.4551(9)	104.772(2)	116.331(3)	91.1596(11)	91.1355(12)
γ[deg]	106.0089(9)	90	90	106.1582(12)	90
V [Å ³]	7420.03(14)	7233.2(3)	7711.1(3)	7423.00(18)	6991.72(16)
Ζ	4 (<i>Z</i> ′ = 2)	4	4	4(Z' = 2)	4
Density [gcm⁻³]	1.657	1.678	1.613	1.622	1.635
μ (mm⁻¹)	1.925	2.041	1.851	1.922	2.030
heta range [deg]	$2.9 \le \theta \le 25.7^{\circ}$	3.3 ≤ <i>θ</i> ≤ 25.7°	$3.3 \le \theta \le 25.7^{\circ}$	$3.3 \le \theta \le 27.9^\circ$	$3.4 \le \theta \le 27.9^{\circ}$
Reflns collected	140009	84388	53806	173726	57568
R _{int}	0.0475	0.0566	0.0605	0.0656	0.0618
Completeness	99.8%	99.8%	99.8%	99.8%	99.8%
No. of data/restr/ param	28177/2984/2493	13701/663/1154	14602/1905/1368	35340/1830/2313	16651/360/1024
$R_1[l > 2\sigma(l)]$	0.0400	0.0543	0.0500	0.0379	0.0410
wR ₂ [all data]	0.0897	0.1423	0.1247	0.0957	0.0967
GoF	1.060	1.043	1.049	1.035	1.015
Largest diff. pk and hole [eÅ ⁻³]	1.41/-1.23	6.09/-1.56	4.11/-2.13	1.18/-0.64	1.44/-1.33

 Table S3:
 Crystallographic data.

7 References

- ¹ A. B. Chaplin, *Organometallics*, 2014, **33**, 624–626.
- ² J. L. Herde, J. C. Lambert, C. V. Senoff, M. A. Cushing, *Inorg. Synth.*, 1974, **15**, 18–20.
- ³ W. E. Buschmann, J. S. Miller, K. Bowman-James, C. N. Miller, *Inorg. Synth.*, 2002, **33**, 83–91.
- ⁴ Errors calculated from data fit.
- ⁵ Oxford Diffraction Ltd, Abingdon, England, 2014.
- ⁶ G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112–122.
- ⁷ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, H. *J. Appl. Cryst.*, 2009, **42**, 339–341.