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Experimental Section 

Synthesis and Characterization 

All chemical reagents were analytical grade and used as received without any 

further purification. Tris(2-pyridylmethyl)amine (TPA) was synthesized according to 

literature method with 48 % yield.
1
 [Co(TPA)Cl]Cl (1) was prepared by mixing 

methanolic solution containing TPA (0.48 mmol) with CoCl26H2O (0.48 mmol) for an 1 

h with 70 % yield.
2
 Single crystal was obtained by diffusion of diethyl ether into 

dichloromethane solution of 1. Ir(ppy)3 was prepared according to literature method.
3
 
1
H 

NMR spectrum (400 MHz) of 1 was measured at room temperature with a Bruker 

DPX400 NMR Spectrometer. UV-vis spectrum was measure using Hewlett Packard 8453 

Photo-diode Array UV-Visible spectrometer. Electro-spray ionization was recorded with 

The Finnigan LCQ Advantage. FT-IR spectrum on KBr was performed with Nicolet 

Avatar 380 Fourier-transform Infrared Spectrometers. Room temperature magnetic data 

was collected on a Guoy Balance (Sherwood Scientific, Cambridge, UK). Diamagnetic 

contribution was estimated based on the equation D =(MW/2)*10
-6

 emu mol
-1

.
4 

The 

diamagnetic contribution estimated from this equation is only within 12 % difference 

compared with that of using Pascal’s constants.
4
 

X-Ray diffraction data of the single crystal was collected on Bruker X8 Proteum 

diffractometer. The crystal was kept at 100 K during data collection. The diffraction 

images were interpreted and the diffraction intensities were integrated by using the 

SAINT program. Multiscan SADABS was applied for absorption correction. By using 

Olex2,
5
 the structure was solved with the ShelXS

6 
structure solution program using direct 

methods and refined with the XL
5 

refinement package using least-squares minimization. 

The positions of the hydrogen atoms were calculated on the basis of the riding mode with 

thermal parameters equal to 1.2 times that of the associated C atoms, and these positions 

participated in the calculation of the final Rindices. In the final stage of least-squares 

refinement, all non-hydrogen atoms were refined anisotropically. CCDC-1044164 

contains the supplementary crystallographic data for this paper. The data can be obtained 

free of charge from The Cambridge Crystallographic Data Center via 

www.ccdc.cam.ac.uk/data_request/cif. 

1
H NMR spectrum (400 MHz, CD3CN) of 1: δ132.8 (H), 106.9 (NCH2), 60.0 

(H), 46.0 (H'), -3.3 (H). UV/Vis (CH3CN): λmax/ nm (ε/M
-1

cm
-1

) = 273 (3000) (→* 

of TPA ligand), 486 (170) (d-d transition) 616 (130), 634(sh) (110) (d-d transition). FT-

http://www.ccdc.cam.ac.uk/data_request/cif
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IR (KBr pellet): ν/cm
-1 

= 3061(w), 2916(w), 1609(s), 1569(m), 1483(s), 1440(s), 1369(m), 

1311(s), 1295(m), 1265(s), 1159(m), 1103(m), 1054(m), 1025(s). ESI-MS (MeOH): m/z 

(%) = 384 (M – Cl)
+
 (100). eff (298K) = 4.09 B 

Electrochemistry of 1 

 Cyclic voltammetry was performed using a potentiostat CHI electrochemical 

analyzer 1030A or BAS 100 W (Bioanalytical Systems). A conventional three electrode 

system was employed. A glassy carbon electrode (surface area = 0.2 cm
2
) was used as the 

working electrode, a Pt wire as the auxiliary electrode, and an Ag/AgNO3 (0.1 M) 

electrode was used as reference electrode.  Tetrabutylammonium hexafluorophosphate, 

the supporting electrolyte, was crystallized three times and dried in vacuum oven before 

used. The electrolyte solution, 0.1 M [(n-Bu)4N][PF6] in  CH3CN, was saturated with Ar 

or CO2 by purging with Ar or CO2 (purity ⩾ 99.8%, Hong Kong Oxygen and Acetylene 

Co., Ltd.) for 15 min prior to each experiment.  

 

Measurement of Photolysis Products 

 Gas chromatographic analysis was conducted using Agilent 7890B gas 

chromatography equipped with a thermal conductivity detector (TCD) and a HP-Plot 5Å  

column with Ar as the carrier gas. The oven temperature was held at 40 
o
C. Inlet and 

detector temperature were set at 80 
o
C and 150 

o
C respectively. A multipoint calibration 

curves were established separately for CO (R
2
 = 0.9995), H2 (R

2
= 0.9997) and CH4 (R

2 
= 

1.000).   

The production of formic acid from the reaction mixtures was analysed by ion 

chromatography (Metrohm 761 SD Compact IC with conductivity detection after 

chemical suppression).  Anions were separated using Metrosep A Supp 5 (diameter: 

100x4.0 mm) with NaHCO3 (1.0 mmol/L) and Na2CO3 (3.2 mmol/L) as eluent at a flow 

rate of 0.7 mL/min. Regarding the analyte preparation, all organic solvents were removed 

and then reconstituted with 2 mL MilliQ water (18.2 m). The solution was then filtered 

through 0.45 M Millipore Filter before injection. 20 L of sample was used in each 

analysis. According to ion chromotagraphic analysis, no formic acid was produced in the 

reaction mixture (detection limit: 0.1 mol). 

Photocatalytic Performance of CO2 reduction 

In a 4 mL mixture of CH3CN/TEA (4:1, v/v; TEA = triethylamine), 1 (5 M) and 

Ir(ppy)3 (0.4 mM) was purged with CO2 (purity ⩾ 99.8%) for 10 min, and 250 L CH4 

was injected to the reaction prior to the irradiation using blue LEDs (centered at 460 nm). 
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All reactions and LEDs were cooled by aluminium blocks cooled using PC cooling fan 

and compressed air.  Gas sample (200 L) was drawn from the headspace of the tube and 

injected to GC-TCD for measurement. 

Emission Quenching of Ir(ppy)3 by 1 and TEA 

Emission and lifetime measurements: Steady-state emission spectra were recorded 

using a SPEX 1681 Fluorolog-3 spectrophotometer. Solutions in a two-compartment cell 

for photophysical studies were degassed by using a high vacuum line with five freeze–

pump–thaw cycles. The emission lifetime measurements were performed using a LP920-

KS Laser Flash Photolysis Spectrometer (Edinburgh Instruments Ltd, Livingston, UK). 

The excitation source was 355 nm output from a Nd:YAG laser. For the quenching 

experiments, the concentration of Ir(ppy)3 was 2×10
-5

 M for each cells, and the 

concentration of 1 varied from 2×10
-5

 M to 6×10
-4

 M, while that of TEA ranged from 

0.72 M to 3.59 M. 
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Fig S1. 
 1

H NMR spectrum (400 MHz) of 1 recorded in CD3CN at room temperature and 

is assigned according to literature.
7,8

 The 
1
H NMR of 1 is consistent with the 

1
H NMR of 

the trigonal bipyramidal structures [Co(TPA)Cl]2[CoCl4] and [Co(TPA)Cl][PF6] (in 

CD3CN) reported by Gal and co-workers.
8
 In addition, [Co(TPA)Cl]

+
 is substitutionally 

inert against CH3CN at room temperature as revealed from the 
1
H NMR. The proton 

signals of 1 remained unchanged over a period of a week in CD3CN solution, and is 

notably different from the chemical shift in [Co(TPA)(CH3CN)][ClO4]2 reported by 

Karlin and co-workers.
9
 Therefore, it is reasonable to assume that the integrity of 

[Co(TPA)(Cl)]
+
 retains in solution state at room temperature. 
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Fig S2. UV-vis absorption spectrum of 1 measured in CH3CN at 1×10
-3

M at room 

temperature.  UV/Vis (CH3CN): λmax/ nm ( / M
-1

cm
-1

) = 273 (3000) (→* of TPA 

ligand), 486 (170) (d-d transition) 616 (130), 634(sh)(110) (d-d transition) which is 

assigned according to literature.
10-14

 The absorption spectrum is consistent with that 

reported by Wang and Thapper,
13 

and is similar to [Co(TPA)Cl][ClO4] reported by 

Massoud and Bernal.
14

  

The UV-vis spectrum of 1 is significantly different from the UV-vis spectrum of 

[Co(TPA)(CH3CN)]
2+

 reported by Kaline and co-workers (no absorption peak after 600 

nm, and two absorption peaks at 472 nm (85 M
-1

cm
- 1

) and 552 nm (72 M
-1

cm
-1

) in 

[Co(TPA)(CH3CN)]
2+

).
9 

Therefore, we exclude the possibility of the replacement of Cl
-
 

by CH3CN.  

We also exclude the possibility of the formation of a six-coordinated 

[Co(TPA)(CH3CN)Cl][Cl] in solution according to UV-vis spectrum. For a six-

coordinated Co
II
 complex, the extinction coefficient (ε) of d-d transitions is < 50 M

-1
cm

-1
 

whereas the ε of d-d transitions of five-coordinated Co
II 

complexes ranges from 50 – 300 

M
-1

cm
-1

.
15 

 The ε of d-d transitions of 1 are 110170 M
-1

cm
-1

. Thus, 1 should preserve as 

five-coordinated in solution. Indeed, Paine and co-workers reported that the ε of d-d 

transitions for a six-coordinated [Co
II
(6Me3TPA)(HSA)][BPh4]  (6Me3TPA  = 

tris(6methyl2pyridylmethyl)amine, H2SA = salicylic acid) in CH3CN is 476 nm (50 

M
-1

cm
-1

), 515 nm (40 M
-1

cm
-1

) and 557 nm (50 M
-1

cm
-1

) whereas that of a five-

coordinated [Co
II
(TPA)(HSA)][ClO4] in CH3CN is 465 nm (200 M

-1
cm

-1
), 605 nm (160 

M
-1

cm
-1

) and 622 nm (140 M
-1

cm
-1

).
11 

Therefore, both NMR and UV-vis spectroscopies suggested that 1 should retain 

its structure in both solid and solution states. 
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Fig S3. Cyclic voltammogram of fac-[Ir(ppy)3] in 0.1 M [(n-Bu)4N][PF6] /CH3CN, scan 

rate = 100 mVs
-1

. 

  

Table S1. Excited state potential of fac-[Ir(ppy)3] from SCE and Fc
+/0

.  

 Ir
IV/III

 (V)
 

Ir
III/II

 (V)
 

E0-0(V) Ir
*/-

(V) Ir
+/*

 (V) 

fac-[Ir(ppy)3]
a
  

(vs SCE) 

0.77 -2.19 2.50 0.31 -1.73
 

fac-[Ir(ppy)3]
 b 

(vs Fc
+/0

) 

0.328
  

-
 

- - -2.17 

a. From reference 16. 

b. Experimental data determined in this work 
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Fig S4. Resumption of CO (black) and H2 (red) production rate after injection of fresh 

Ir(ppy)3 into the CH3CN/TEA (4:1, v/v) solution containing 50 M 1, 0.4 mM Ir(ppy)3 

and re-bubbled with CO2 after 18 h.  

 

Table S2. CO production with different concentration of 1 with 0.4 mM Ir(ppy)3 in  a 

CO2saturated CH3CN/TEA (4:1, v/v) solution for 24h. 

1 (mM) H2 (mol) CO (mol) 

0.005 0.6 10.4 

0.01 0.7 16.1 

0.025 1.4 20.8 

0.05 2.9 41.5 
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Table S3. CO production with different concentration of Ir(ppy)3 with 50 M 1 in  a CO2-

saturated CH3CN/TEA (4:1, v/v) solution for 24h. 
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Fig S5. Plot of CO production versus different concentration of Ir(ppy)3 in the presence 

of 50 M 1 in  a CO2saturated CH3CN/TEA (4:1, v/v) solution for 24h. 

[Ir(ppy)3] (mM) H2 (mol) CO (mol) 

0.025 0.7 20.8 

0.05 1.4 28.8 

0.1 1.8 34.9 

0.3 3.3 41.5 

0.4 2.9 41.5 
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Fig S6. The linear plot (R
2
 =0.9999) of ratio of Ir(ppy)3 excited state lifetime at 524 nm 

versus TEA according to Stern-Volmer equation. Concentration of Ir(ppy)3 = 2×10
-5

M. 
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