SUPPLEMENTARY INFORMATION

Effective separation of the actinides Am(III) and Cm(III) by electronic modulation of Bis-(1,2,4-triazin-3yl)phenanthrolines

Ashfaq Afsar, ${ }^{a}$ Laurence M. Harwood, *a Michael J. Hudson, ${ }^{\text {a }}$ James Westwood ${ }^{a}$ and Andreas Geist ${ }^{b}$
${ }^{\text {a S School of Chemistry, University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK. }}$ ${ }^{\text {b }}$ Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), 76021 Karlsruhe, Germany

l.m.harwood@reading.ac.uk

Table of contents

1.0 Experimental Procedures S2
2.0 Extraction Results S9

1.0 Experimental Procedures

General procedure

NMR spectra were recorded using either a Bruker AMX400 or an Avance DFX400 instrument. Deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ and Deuterated DMSO (dimethyl sulfoxide- d_{6}) were used as solvents. Chemical shifts (δ values) were reported in parts per million (ppm) with the abbreviations $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}, \mathrm{qn}, \mathrm{sx}, \mathrm{dd}$, ddd and br denoting singlet, doublet, triplet, quartet, quintet, sextet, double doublets, doublet of doublets of doublets and broad resonances respectively. Coupling constants (J) are quoted in Hertz. IR spectra were recorded as Nujol $_{\circledR}$ mulls (N) on a Perkin Elmer RX1 FT-IR instrument. All the melting points were determined on a Gallenkamp melting point apparatus. Mass spectra (m / z) were recorded under conditions of electrospray ionisation (ESI). The ions observed were quasimolecular ions created by the addition of a hydrogen ion denoted as $[\mathrm{MH}]^{+}$or $[\mathrm{M}+\mathrm{Na}]$. The instrument used was Xcalibur Tune 2.1 (SP1).

2,9-Bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[e][1,2,4]triazin-3-yl)-1,10-phenanthroline (3)

To a suspension of 1,10-phenanthroline-2,9-dicarbohydrazonamide ($0.58 \mathrm{~g}, 2 \mathrm{mmol}$) in THF (75 mL) was added 3,3,6,6-tetramethylcyclohexane-1,2-dione ($0.74 \mathrm{~g}, 4.4 \mathrm{mmol}, 2.2 \mathrm{eq})$. Triethylamine ($3.5 \mathrm{~mL}, 25.3 \mathrm{mmol}$) was added and the mixture was heated under reflux for 3 days. The solution was allowed to cool to room temperature and filtered and the remaining solid residue was washed with $\mathrm{DCM}(25 \mathrm{~mL})$. The filtrate was evaporated and the solid was triturated with $\mathrm{Et}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$. The insoluble solid was filtered and washed with further $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and allowed to dry in air to afford the ligand 3 as a yellow solid ($0.92 \mathrm{~g}, 83 \%$); $\mathrm{Mp}\left(247-250{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR (400.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=1.55(\mathrm{~s}, 12 \mathrm{H}), 1.58(\mathrm{~s}, 12 \mathrm{H}), 1.89(\mathrm{~s}, 8 \mathrm{H}), 7.95(\mathrm{~s}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 8.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}}(\mathrm{ppm})=29.3,29.9,33.7,36.7$, $37.6,123.5,127.6,129.9,137.4,146.5,153.9,161.4,163.3,165.1 ; \mathrm{C}_{68} \mathrm{H}_{76} \mathrm{~N}_{16}[2 \mathrm{M}+\mathrm{Na}]$ requires $\mathrm{m} / \mathrm{z} 1139.6331$; (FTMS + c ESI) MS found $\mathrm{m} / \mathrm{z} 1139.6345$; IR $v_{\text {max }} / \mathrm{cm}^{-1}=3490$, 2962, 2931, 2866, $2224,1622,1588,1554,1516,1499,1472$.

5-Bromo-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[e][1,2,4]triazin-3-yl)-1,10phenanthroline (4)

To a suspension of 5-bromo-1,10-phenanthroline-2,9-dicarbohydrazonamide ($1.47 \mathrm{~g}, 3.9 \mathrm{mmol}$) in 1,4-dioxane (200 mL) was added 3,3,6,6-tetramethylcyclohexane-1,2-dione ($1.72 \mathrm{~g}, 10.2 \mathrm{mmol}, 2.6$ eq). Triethylamine ($6 \mathrm{~mL}, 42.7 \mathrm{mmol}$) was added and the mixture was heated under reflux for 3 days. After allowing the solution to cool to room temperature, the solvent was evaporated and the
remaining semi-solid residue was triturated with ice-cold $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$. The insoluble solid was filtered and washed with further ice-cold $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$ and allowed to dry in air to afford the $\mathbf{4}$ as a yellow solid ($1.23 \mathrm{~g}, 49 \%$); $\mathrm{Mp}\left(197-200{ }^{\circ} \mathrm{C}\right.$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}(\mathrm{ppm})=1.54(\mathrm{~s}$, $12 \mathrm{H}), 1.56(\mathrm{~s}, 12 \mathrm{H}), 1.90(\mathrm{~s}, 8 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=29.3$, $29.8,33.6,33.8,36.7,37.5,122.0,124.0,124.1,128.9,129.8,130.6,136.3,137.3,146.0,146.9$, 154.4, 154.7, 161.1, 161.3, 163.3, 163.4, 165.0, 165.1; $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{8} \mathrm{Br}[\mathrm{MH}]^{+}$requires $\mathrm{m} / \mathrm{z} 637.2397$ and 639.2377; (FTMS + p ESI) MS found $\mathrm{m} / \mathrm{z} 637.2392$ and 639.2371 ; IR $v_{\max } / \mathrm{cm}^{-1}=3531,3486$, 2959, 2927, 2865, 1644, 1609, 1510, 1475, 1452, 1439.

4-(2,9-Bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[1,2,4]triazin-3-yl)-1,10-phenanthrolin-5-yl)phenol (5)

A suspension of 5-bromo-2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[e][1,2,4]triazin-3-yl)-1,10-phenanthroline ($0.51 \mathrm{~g}, 0.8 \mathrm{mmol}$), tetrakis(triphenylphosphane)palladium (0) ($0.04 \mathrm{~g}, 0.04$ mmol, 0.05 eq), (4-hydroxyphenyl)boronic acid ($0.13 \mathrm{~g}, 0.9 \mathrm{mmol}, 1.1 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.15 \mathrm{~g}, 1.1$ mmol, 1.4 eq) in degassed $\mathrm{EtOH}(75 \mathrm{~mL})$ was heated to reflux for 18 h under nitrogen. The solution was allowed to cool to room temperature and filtered and the remaining solid residue was washed with EtOH (20 mL). The filtrate was evaporated and the solid residue was taken up in DCM (150 mL) and water (100 mL) was added. The organic layer was washed with saturated brine $(100 \mathrm{~mL})$ and dried over MgSO_{4}. The filtrate was evaporated and the solid was triturated with $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$. The insoluble solid was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and allowed to dry in air to afford 5 as a yellow solid ($0.31 \mathrm{~g}, 59 \%$); $\mathrm{Mp}\left(250-252{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{H} $(\mathrm{ppm})=1.58(\mathrm{~s}, 12 \mathrm{H}), 1.61(\mathrm{~s}, 12 \mathrm{H}), 1.93(\mathrm{~s}, 8 \mathrm{H}), 6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.87$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}(\mathrm{ppm})=29.3,29.9,33.8,36.7,37.6,115.6$,
$122.9,123.7,127.0,128.2,129.5,129.5,130.0,136.3,137.3,140.2,145.3,146.5,153.2,153.3$, 157.7, 161.0, 161.3, 163.5, 163.6, 165.2, 165.3; $\mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{8} \mathrm{O}[\mathrm{MH}]^{+}$requires $\mathrm{m}_{\mathrm{z}} 651.3554$; (FTMS + p ESI) MS found $\mathrm{m} / \mathrm{z} 651.3553$; IR $v_{\text {max }} / \mathrm{cm}^{-1}=3399$, 2962, 2931, 2865, 1611, 1587, 1514, 1471, 1456, 1389, 1365.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

-

Figure S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of CyMe_{4}-BTPhen 3.

Figure S2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $5-\mathrm{BrCyMe}_{4}$-BTPhen 4.

Figure S3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5-(4-hydroxyphenyl)-CyMe 4 -BTPhen 5.

2.0 Extraction Results

General Procedure

Experiments were performed extracting ${ }^{241} \mathrm{Am}$ (III), ${ }^{244} \mathrm{Cm}$ (III), ${ }^{152} \mathrm{Eu}$ (III) ($1 \mathrm{kBq} / \mathrm{mL}$ each), all lanthanides (La(III)-Lu(III) except $\mathrm{Pm}(\mathrm{III})$), and Y (III) ($20 \mathrm{mg} / \mathrm{L}$) from $\mathrm{HNO}_{3}(500 \mu \mathrm{~L})$ into 30 $\mathrm{mmol} / \mathrm{L}$ BTPhen in 1 -octanol ($500 \mu \mathrm{~L}$). After phase separation, ${ }^{241} \mathrm{Am}$ (III) and ${ }^{152} \mathrm{Eu}(I I I)$ were determined by gamma counting ((Packard Cobra Auto Gamma 5003) in $300 \mu \mathrm{~L}$ aliquots of both phases. ${ }^{241} \mathrm{Am}$ (III) and ${ }^{244} \mathrm{Cm}$ (III) were determined by alpha spectrometry (Canberra 7401); inactive lanthanides were determined by ICP-MS (Perkin-Elmer Elan 6100). An error of 20% was estimated for the distribution ratios measurements, which were not repeated.

Table S1 Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ by CyMe_{4}-BTPhen 3 as a function of nitric acid concentration (* gamma measurement).

$\left[\mathrm{HNO}_{3}\right]$ Initial (mol/L)	$D_{\mathrm{Am}}{ }^{*}$	$D_{\mathrm{Eu}}{ }^{*}$	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Eu}}$
0.1	1043.4	1.6	667.0
0.3	1967.6	3.1	634.2
1	560	4.2	133.1
3	335.4	4.6	72.6

Table S2 Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Cm}(\mathrm{III})$ by CyMe_{4} - BTPhen 3 as a function of nitric acid concentration (* alpha measurement).

$\left[\mathrm{HNO}_{3}\right]$ Initial (mol/L)	$D_{\mathrm{Am}}{ }^{* *}$	$D_{\mathrm{Cm}}{ }^{* *}$	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Cm}}$
0.1	377.0	300.1	1.3
0.3	501.3	512.9	1.0
1	369.3	298.3	1.2
3	238.9	210.5	1.1

Table S3 Extraction (reported in mg / L) of $\operatorname{Ln}(\mathrm{III})$ and Y (III) from nitric acid ($0.1-3 \mathrm{M}$) by a 0.03 M solution of CyMe_{4}-BTPhen $\mathbf{3}$ in 1-octanol.

Metal	$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$			
	0.1	0.3	1	3
	0.0267	0.0475	0.0309	0.0137
Ce	0.174	0.0314	0.0189	0.0131
Pr	0.6809	1.0217	0.1711	0.1333
Nd	1.5877	2.4023	0.6115	0.52
Sm	2.3121	4.2039	3.956	1.3203
Eu	1.4755	3.0832	4.253	4.2924
Gd	0.6238	1.323	2.1708	4.6439
Tb	0.5455	1.1354	2.2244	1.3628
Dy	0.3101	0.6687	0.998	0.9335
Ho	0.1764	0.362	0.3593	0.3773
Er	0.1123	0.1915	0.1404	0.1262
Tm	0.0659	0.1062	0.0613	0.0507
Yb	0.0494	0.0692	0.0375	0.0235
Lu	0.028	0.035	0.0215	0.02

Table S4 Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ by $5-\mathrm{Br}-\mathrm{CyMe}_{4}-\mathrm{BTPhen} 4$ as a function of nitric acid concentration (* gamma measurement).

$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$	$D_{\mathrm{Am}}{ }^{*}$	$D_{\mathrm{Eu}}{ }^{*}$	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Eu}}$
0.1	63.7	0.2	317.9
0.3	270.7	0.6	475.8
1	333.9	1.2	287.8
3	507.5	0.7	678.7

Table S5 Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Cm}(\mathrm{III})$ by $5-\mathrm{Br}^{-\mathrm{CyMe}_{4}-\mathrm{BTPhen}} 4$ as a function of nitric acid concentration (* alpha measurement).

$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$	$D_{\mathrm{Am}}{ }^{* *}$	$D_{\mathrm{Cm}}{ }^{* *}$	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Cm}}$
0.1	61.0	9.3	6.6
0.3	208.2	35.2	5.9
1	301.3	138.0	2.2
3	369.6	192.3	1.9

Table S6 Extraction (reported in mg / L) of $\operatorname{Ln}(\mathrm{III})$ and $\mathrm{Y}(\mathrm{III})$ from nitric acid ($0.1-3 \mathrm{M}$) by a 0.03 M solution of 5-Br-CyMe - -BTPhen 4 in 1-octanol.

	$\left[\mathrm{HNO}_{3}\right]$ Initial (mol/L)			
Metal	0.1	0.3	1	3
Y	1.81×10^{-3}	3.41×10^{-3}	4.87×10^{-3}	6.13×10^{-3}
La	2.38×10^{-3}	5.34×10^{-3}	7.39×10^{-3}	7.65×10^{-3}
Ce	0.0147	0.04	0.0549	0.0608
Pr	0.0513	0.1359	0.1796	0.2246
Nd	0.116	0.3228	0.4305	0.5575
Sm	0.2619	0.7306	1.2069	1.537
Eu	0.1929	0.5682	1.0878	0.7184
Gd	0.0805	0.2297	0.3686	0.189
Tb	0.0619	0.1703	0.2673	0.1513
Dy	0.0354	0.0876	0.1299	0.097
Ho	0.0216	0.0478	0.0653	0.0529
Er	0.0192	0.0341	0.0362	0.0278
Tm	0.0155	0.0237	0.0191	0.0171
Yb	0.0136	0.0186	0.0147	0.0124
Lu	0.01	0.0113	8.08×10^{-3}	6.19×10^{-3}

Table S7 Extraction of $\mathrm{Am}(\mathrm{III})$ and $\mathrm{Eu}(\mathrm{III})$ by 5-(4-hydroxyphenyl)-CyMe Cl_{4}-BTPhen 5 as a function of nitric acid concentration (* gamma measurement).

$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$	$D_{\mathrm{Am}}{ }^{*}$	$D_{\mathrm{Eu}}{ }^{*}$	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Eu}}$
0.1	27.9	0.5	54.6
0.3	70.1	1.2	59.1
1	1807.3	4.6	389.6
3	1581.0	5.1	311.3

Table S8 Extraction of Am (III) and Cm (III) by 5-(4-hydroxyphenyl)-CyMe Cl_{4}-BTPhen 5 as a function of nitric acid concentration (* alpha measurement).

$\left[\mathrm{HNO}_{3}\right]$ Initial (mol/L)	$D_{\mathrm{Am}}{ }^{* *}$	$D_{\mathrm{Cm}}{ }^{* *}$	$\mathrm{SF}_{\mathrm{Am} / \mathrm{Cm}}$
0.1	23.7	5.7	4.2
0.3	63.3	13.8	4.6
1	831.8	153.2	5.4
3	2496.3	1110.9	2.2

Table S9 Extraction (reported in mg / L) of $\mathrm{Ln}(\mathrm{III})$ and $\mathrm{Y}(\mathrm{III})$ from nitric acid ($0.1-3 \mathrm{M}$) by a 0.03 M solution of 5-(4-hydroxyphenyl)-CyMe 4 -BTPhen 5 in 1-octanol.

Metal	$\left[\mathrm{HNO}_{3}\right]$ Initial $(\mathrm{mol} / \mathrm{L})$			
	0.1	0.3	1	3
La	0.0188	0.0296	0.0158	6.61×10^{-3}
Ce	0.262	0.0372	0.025	0.0174
Pr	0.7203	0.3674	0.2593	0.1711
Nd	0.8555	1.2413	1.0235	0.8784
Sm	0.6576	1.4962	2.605	2.3609
Eu	0.4787	1.1086	6.2924	9.1194
Gd	0.2546	0.5899	4.7113	5.2025
Tb	0.2219	0.5187	1.9159	1.0156
Dy	0.1509	0.3163	1.3779	0.5717
Ho	0.0927	0.1546	0.4965	0.1747
Er	0.0524	0.0651	0.0406	0.0408
Tm	0.0282	0.0291	0.0212	7.98×10^{-3}
Yb	0.0221	0.0248	0.0256	0.012
Lu	0.018	0.0192	0.0299	0.0262

