Passerini/Tsuji-Trost strategies towards lactams and cyclopentane derivatives.

Marie Cordier, Aurélie Dos Santos, Laurent El Kaïm,* Noisette Narboni.

Experimental part:

NMR spectra were recorded on a 400 MHz spectrometer, using deuterated solvent as reference and/or internal deuterium lock. Two-dimensional NMR spectroscopy $\left[{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ COSY spectra, ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ COSY spectra (HSQC) and long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectra (HMBC)], were carried out to determine the correlation between ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$. The chemical shifts for all NMR spectra are expressed in parts per million to high frequency of TMS reference. Coupling constants (J) are quoted in Hz and are recorded to the nearest 0.1 Hz .

The IR spectra were obtained using ATR accessories. High-resolution (HR) mass spectra were performed on a GC/MS system spectrometer. TLC was carried out using precoated plates of silica gel $60 \mathrm{~F}_{254}$.

General procedure A for Passerini reactions :

A mixture of aldehyde (1.0 equiv), acetic acid (1.0 equiv) and isocyanide (1.0 equiv) was stirred at room temperature for 2 days. The crude was purified by flash chromatography on silica gel.

General procedure Abis for Passerini reactions :

A mixture of aldehyde (1.0 equiv), acetic acid (1.0 equiv) and isocyanide (1.0 equiv) was stirred at $40^{\circ} \mathrm{C}$ for 2 days. The crude was purified by flash chromatography on silica gel.

General procedure B for Tsuji-Trost reactions:

To a 0.25 M solution of Passerini adduct 1 (1.0 equiv.) in toluene were added dimethyl malonate (1.0 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.0 equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ during 30 minutes. The solvent was removed afterwards under reduced pressure and the crude was purified by flash chromatography on silica gel.

General procedure \mathbf{C} for cyclisation reactions:

To a 0.2 M solution of Tsuji-Trost adduct $2(1.0 \mathrm{eq})$ in methanol was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$. The resulting mixture was heated under microwave at $100^{\circ} \mathrm{C}$ during 30 minutes. The solvent was removed afterwards under reduced pressure. The crude was diluted with dichloromethane and the organic phase was washed with water acidified by citric acid. After drying the organic phase with MgSO_{4}, the solvent was removed under reduced pressure. The crude was purified by flash chromatography on silica gel.

General procedure D for Tsuji-Trost reaction followed by cyclisation for bis-nucleophiles :

 To a 0.25 M solution of Passerini adduct $\mathbf{1}(1.0 \mathrm{eq})$ in toluene were added the bis-nucleophile $\mathbf{4}(1.0$ eq), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.2 \mathrm{eq})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ during 30 minutes. The solvent was removed afterwards under reduced pressure and the crude was purified by flash chromatography on silica gel.
Passerini produtcs :

Acetic acid 1-cyclohexylcarbamoyl-3-phenyl-allyl ester (1a)

Compound 1a was prepared according to general procedure A. Purification by flash chromatohraphy with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}(30 / 70$ to $100 / 0)$ gave the desired product ($567 \mathrm{mg}, 94 \%$) as a white solid. CCM Rf $\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.36 ; \mathbf{M p} 129-130^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) 7.38(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, \mathrm{J}=16.0,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.70$ $(\mathrm{m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.2$ $(\mathrm{Cq}), 167.1(\mathrm{Cq}), 135.7(\mathrm{CH}), 134.7(\mathrm{Cq}), 128.6(2 \mathrm{CH}), 128.4(\mathrm{CH}), 126.9(2 \mathrm{CH}), 122.7(\mathrm{CH}), 74.5$ $(\mathrm{CH}), 48.3(\mathrm{CH}), 33.0\left(2 \mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.81\left(2 \mathrm{CH}_{2}\right), 21.12(\mathrm{Me}) ;$ IR $\left(v, \mathrm{~cm}^{-1}\right) 3285,2930$, 2854, 1742, 1658, 1541, 1449, 1370, 1230, 1031; HRMS (EI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}: 301.1678$ found : 301.1681

Benzoic acid 1-cyclohexylcarbamoyl-3-phenyl-allyl ester (1b)

Compound 1b was prepared according to general procedure Abis. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}(30 / 70$ to $100 / 0)$ gave the desired product ($880 \mathrm{mg}, 81 \%$) as a white solid. $\mathbf{C C M} \operatorname{Rf}\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.75 ; \mathbf{M p} 180^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 8.12(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, \mathrm{J}=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.02(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.36$ $(\mathrm{m}, 2 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 167.2(\mathrm{Cq}), 165.0(\mathrm{Cq}), 135.7$ $(\mathrm{Cq}), 134.6(\mathrm{CH}), 133.7(\mathrm{CH}), 129.8(2 \mathrm{CH}), 129.3(\mathrm{Cq}), 128.7(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 128.4(\mathrm{CH})$, $126.9(2 \mathrm{CH}), 122.7(\mathrm{CH}), 74.9(\mathrm{CH}), 48.3(\mathrm{CH}), 33.0\left(2 \mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right)$; IR (v, cm ${ }^{-1}$) 3299, 2930, 2854, 1722, 1660, 1541, 1450, 1264, 1109, 1069, 1026 HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}$: 363.1834 found : 363.1834

Acetic acid 1-tert-butylcarbamoyl-3-phenyl-allyl ester (1c)

Compound 1c was prepared according to general procedure A. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}(10 / 90$ to $30 / 70)$ gave the desired product ($606 \mathrm{mg}, 73 \%$) as a white solid. CCM Rf $\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.55 ; \mathbf{M p} 116-118^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) 7.44(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, \mathrm{J}=16.0,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$,
$100.6 \mathrm{MHz}) 169.2(\mathrm{Cq}), 167.1(\mathrm{Cq}), 135.7(\mathrm{Cq}), 134.7(\mathrm{CH}), 128.6(2 \mathrm{CH}), 128.4(\mathrm{CH}), 126.8$ (2CH), $122.8(\mathrm{CH}), 74.7(\mathrm{CH}), 51.5(\mathrm{Cq}), 28.7\left(3 \mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$; IR (v, cm $\left.{ }^{-1}\right) 3306,2968,1741$, 1665, 1541, 1451, 1366, 1227, 1033 ; HRMS (EI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}: 275.1521$ found : 275.1517

Acetic acid 1-(4-chloro-benzylcarbamoyl)-3-phenyl-allyl ester (1d)

Compound 1d was prepared according to general procedure A. Purification by flash chromatography with a gradient Et2O/EP (30/70 to 100/0) gave the desired product ($621 \mathrm{mg}, 90 \%$) as a cream solid. CCM Rf $(80 / 20 \mathrm{Et} 2 \mathrm{O} / \mathrm{EP})=0.27$; Mp $103-104^{\circ} \mathrm{C} ; \mathbf{1 H - N M R}(\boldsymbol{\delta}, \mathbf{p p m})(\mathrm{CDCl} 3$, $400 \mathrm{MHz}) 7.37(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42$ (br s, 1H), 6.27 (dd, J=15.6, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.75(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ; \mathbf{1 3 C}-$ NMR ($\boldsymbol{\delta}, \mathbf{p p m})(\mathrm{CDCl} 3,100.6 \mathrm{MHz}) 169.3(\mathrm{Cq}), 168.2(\mathrm{Cq}), 136.2(\mathrm{Cq}), 135.4(\mathrm{Cq}), 135.1(\mathrm{CH})$, $133.5(\mathrm{Cq}), 129.0(2 \mathrm{CH}), 128.9(2 \mathrm{CH}), 128.6(\mathrm{CH}), 128.5(2 \mathrm{CH}), 126.8(2 \mathrm{CH}), 122.1(\mathrm{CH}), 74.5$ (CH), 42.6 (CH2), 21.0 (CH3) ; IR (v, cm-1) 3288, 3062, 2927, 1740, 1661, 1538, 1491, 1370, 1228, 1090, 1015 ; HRMS (EI) Calcd. for C19H18CINO3 : 343.0975 found : 343.0979

(E)-1-((4-methoxybenzyl)amino)-1-oxo-4-phenylbut-3-en-2-yl acetate (1e)

Compound $\mathbf{1 e}$ was prepared according to the general procedure A. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{AcOEt}$ (from 70/30 to $50 / 50$) as eluant gave the desired product ($881 \mathrm{mg}, 87 \%$) as an yellow solid. Mp $115-116^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.39-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=15.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J$ $=14.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=14.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})$ $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.2,167.9,159.1,135.5,134.9,129.6,129.1,128.6,128.4,126.8,122.3$, 114.1, 74.5, 55.3, 42.9, 21.0 ; IR ($\mathrm{v} \mathrm{cm}^{-1}$) 3296, 2934, 1742, 1662, 1613, 1513, 1450, 1371, 1301, 1231, 1177, 1111, 1070, 1033 ; HRMS (EI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{4}: 339.1471$ found : 339.1479
(E)-1-(3,4-dimethoxyphenethylamino)-1-oxo-4-phenylbut-3-en-2-yl acetate (1f)

Compound 1f was prepared according to the general procedure A. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $30 / 70$ to $0 / 100$) as eluant gave the desired product ($580 \mathrm{mg}, 76 \%$) as an yellow solid. Mp $115-116^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.38-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 4 \mathrm{H}), 6.23(\mathrm{dd}, J=15.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=6.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{dt}, J=6.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}$, 3H) ; ${ }^{13} \mathbf{C}$-NMR ($\left.\mathbf{\delta}, \mathbf{p p m}\right)\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.1,168.0,149.0,147.7,135.5,134.7,131.0$, 3304, 2937, 1745, 1666, 1515, 1453, 1371, 1261, 1231, 1158, 1141, 1025 ; HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}: 383.1733$ found : 383.1731

Acetic acid 1-(4-chloro-benzylcarbamoyl)-3-(4-methoxy-phenyl)-allyl ester (1g)

Compound $\mathbf{1 g}$ was prepared according to general procedure A. Purification by flash chromatohraphy with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}(30 / 70$ to $100 / 0$) gave the desired product ($734 \mathrm{mg}, 65 \%$) as a cream solid. $\mathbf{C C M} \operatorname{Rf}\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.31 ; \mathbf{M p} 92-94^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) 7.30(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (br s, $1 \mathrm{H}), 6.12(\mathrm{dd}, \mathrm{J}=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\boldsymbol{\delta}$, ppm) $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.9(\mathrm{Cq}), 169.0(\mathrm{Cq}), 161.53(\mathrm{Cq}), 160.4(\mathrm{Cq}), 136.7(\mathrm{Cq}), 135.5$ $(\mathrm{CH}), 133.9(\mathrm{Cq}), 129.6(2 \mathrm{CH}), 129.5(2 \mathrm{CH}), 129.3(2 \mathrm{CH}), 128.6(2 \mathrm{CH}), 120.2(\mathrm{CH}), 114.5(2 \mathrm{CH})$, $75.2(\mathrm{CH}), 55.7(\mathrm{OMe}), 43.1\left(\mathrm{CH}_{2}\right), 21.4(\mathrm{Me}) ;$ IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3275,3048,2931,2836,1739,1656$, 1605, 1509, 1490, 1370, 1221, 1173, 1088, 1013; HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{4}$: 373.1081 found : 373.1085

(E)-1-((4-chlorobenzyl)amino)-4-(2-nitrophenyl)-1-oxobut-3-en-2-yl acetate (1h)

Compound 1h was prepared according to the general procedure A. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{AcOEt}$ (from $70 / 30$ to $50 / 50$) as eluant gave the desired product ($763 \mathrm{mg}, 65 \%$) as an yellow solid. Mp $106-107^{\circ} \mathrm{C}{ }^{\mathbf{~}}{ }^{\mathbf{1}} \mathbf{H} \mathbf{H M R}(\mathbf{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.99$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}$, $3 \mathrm{H}), 6.50(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ $(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})$ $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.1,167.5,147.7$, 136.0, 133.5, 133.4, 131.6, 129.0, 129.0, 128.9, 128.9, 128.9, 127.9, 124.7, 73.6, 42.7, 20.9 ; IR (v, cm ${ }^{-1}$) 3294, 2934, 1745, 1665, 1523, 1492, 1345, 1227, 1091, 1016 ; HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{5}: 388.0826$ found : 388.0824
(E)-1-((4-methoxybenzyl)amino)-4-(2-nitrophenyl)-1-oxobut-3-en-2-yl acetate (1i)

Compound $1 \mathbf{1 i}$ was prepared according to the general procedure A. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{AcOEt}$ (from 50/50 to $40 / 60$) as eluant gave the desired product $(660 \mathrm{mg}, 57 \%)$ as an yellow solid. Mp $119-120^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{- N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.97$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=$ $15.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=15.9,5.8 \mathrm{~Hz}, 1 \mathrm{H})$,
5.85 (dd, $J=5.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=14.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=14.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.0,167.3,159.1,147.7$, 133.4, 131.7, 129.5, 129.1, 128.9, 128.8, 128.6, 128.1, 124.7, 114.2, 73.5, 55.3, 42.9, 20.9 ; IR ($\mathrm{v}, \mathrm{cm}^{-1}$) 3299, 2936, 1744, 1667, 1517, 1346, 1234, 1175, 1036 ; HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$: 384.1321 found : 384.1327

Acetic acid 1-(4-chloro-benzylcarbamoyl)-3-furan-2-yl-allyl ester (1j)

Compound $\mathbf{1 j}$ was prepared according to general procedure Abis. Purification by flash chromatohraphy with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}(25 / 75$ to $75 / 25$) gave the desired product ($451 \mathrm{mg}, 62 \%$) as a brown solid. CCM $\operatorname{Rf}\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.44 ; \mathbf{M p} 86-88^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) 7.36$ (br s, 1H), $7.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 6.40$ (br s, 1H), 6.37 (dd, J=3.6, 2.0Hz, 1H), $6.32(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (dd, J=15.6, 6.8Hz, 1H), 5.76 $(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.3(\mathrm{Cq})$, $168.1(\mathrm{Cq}), 151.2(\mathrm{Cq}), 142.8(\mathrm{CH}), 136.2(\mathrm{Cq}), 133.5(\mathrm{Cq}), 129.1(2 \mathrm{CH}), 129.0(2 \mathrm{CH}), 123.2$ $(\mathrm{CH}), 120.4(\mathrm{CH}), 111.5(\mathrm{CH}), 110.2(\mathrm{CH}), 74.2(\mathrm{CH}), 42.7\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3725$, 3627, 3292, 3082, 2933, 1742, 1662, 1538, 1491, 1371, 1226, 1091, 1015 ; HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{4}: 333.0768$ found : 333.0771

(E)-1-(cyclohexylamino)-4-(furan-2-yl)-1-oxobut-3-en-2-yl acetate (1k)

Compound $1 \mathbf{k}$ was prepared according to the general procedure A. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $30 / 70$ to $0 / 100$) as eluant gave the desired product ($267 \mathrm{mg}, 46 \%$) as an yellow solid. Mp $133-134^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) ; 7.35$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.16(\mathrm{dd}, J=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.74$ $(\mathrm{m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR (δ, ppm) $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.1,166.8,151.4,142.6,122.8,121.0,111.4,109.8$, $74.2,48.2,33.0,33.0,25.4,24.8,21.1$; IR ($\mathrm{v}_{\mathrm{cm}} \mathrm{cm}^{-1}$) 3287, 2930, 2858, 1744, 1655, 1546, 1453, 1371, 1230, 1155, 1107, 1021 ; HRMS (EI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}: 291.1471$ found : 291.1461

Acetic acid 1-(4-chloro-benzylcarbamoyl)-2-methyl-3-phenyl-allyl ester (11)

Compound 11 was prepared according to the general procedure Abis. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}$ (from $20 / 80$ to $100 / 0$) as eluant gave the desired product ($804 \mathrm{mg}, 75 \%$) as a brown solid. CCM $\operatorname{Rf}\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.25 ; \mathbf{M p} 92-93^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}$ ($\boldsymbol{\delta}$, ppm) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{br}$
$\mathrm{s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($\left.\boldsymbol{\delta}, \mathbf{p p m}\right)\left(\mathrm{CDCl}_{3}, 100.6\right.$ $\mathrm{MHz}) 169.3(\mathrm{Cq}), 168.1(\mathrm{Cq}), 136.5(\mathrm{Cq}), 136.2(\mathrm{Cq}), 133.5(\mathrm{Cq}), 132.0(\mathrm{Cq}), 131.7(\mathrm{CH}), 129.2$ $(\mathrm{CH}), 129.1(4 \mathrm{CH}), 129.0(2 \mathrm{CH}), 128.3(2 \mathrm{CH}), 127.3(\mathrm{CH}), 79.2(\mathrm{CH}), 42.7\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3281,3055,2922,1737,1655,1523,1490,1368,1221,1088,1014$; HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{3}: 357.1132$ found : 357.1136

(E)-1-((4-chlorobenzyl)amino)-1-oxohept-3-en-2-yl acetate (1m)

Compound 1m was prepared according to the general procedure A. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{AcOEt}$ (from $80 / 20$ to $70 / 30$) as eluant gave the desired product $(647 \mathrm{mg}, 71 \%)$ as an yellow oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\mathbf{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.93-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.53(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=14.9$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), .2 .06(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{sext}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 169.3,168.6$, 137.7, 136.3, 133.4, 129.0, 128.9, 123.3, 74.7, 42.5, 34.2, 21.8, 21.0, 13.6 ; IR (v, $\left.\mathrm{cm}^{-1}\right) 3299,2961$, 2929, 1744, 1663, 1534, 1496, 1374, 1231, 1095, 1018 ; HRMS (EI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClNO}_{3}$: 309.1132 found : 309.1129

Acetic acid 1-tert-butylcarbamoyl-3-(4-methoxy-phenyl)-allyl ester (1n)

Compound 1n was prepared according to general procedure Abis. Purification by flash chromatohraphy with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}(20 / 80$ to $60 / 40)$ gave the desired product ($358 \mathrm{mg}, 39 \%$) as a yellow solid. CCM $\operatorname{Rf}\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.18 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.32$ (d, J=7.6Hz, 2H), $6.84(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, \mathrm{J}=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (brs, 1H), 5.58 (d, J=7.2Hz, 1H), 3.79 (s, 3H), 2.18 (s, 3H), 1.36 (s, 9H) ; ${ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})$ $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 170.0(\mathrm{Cq}), 168.0(\mathrm{Cq}), 160.4(\mathrm{Cq}), 135.2(\mathrm{CH}), 128.7(2 \mathrm{CH}), 121.0(\mathrm{CH})$, $114.6(2 \mathrm{CH}), 75.6(\mathrm{CH}), 55.9(\mathrm{CH}, \mathrm{OMe}), 52.1(\mathrm{Cq}, \mathrm{tBu}), 29.3\left(3 \mathrm{CH}_{3}, \mathrm{tBu}\right), 21.7(\mathrm{Me})$; IR (v, cm ${ }^{-}$ $\left.{ }^{1}\right) 3306,2965,1738,1665,1606,1509,1454,1364,1218,1173,1028$; HRMS (EI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}: 305.1627$ found : 305.1621

2-(3-Cyclohexylcarbamoyl-1-phenyl-allyl)-malonic acid dimethyl ester (2a)

Compound 2a was prepared according to the general procedure B. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from $20 / 80$ to $80 / 20$) as eluant gave the desired product ($190 \mathrm{mg}, 77 \%$) as an yellow solid. CCM Rf $\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.20 ; \mathbf{M p} 151-152^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-$ NMR ($\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 6.93(1 \mathrm{H}$, dd, $\mathrm{J}=14.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ (d, J=11.2Hz, 1H), $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}$,

2H), $1.35(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 168.0(\mathrm{Cq}), 167.5(\mathrm{Cq})$, $164.1(\mathrm{Cq}), 142.1(\mathrm{CH}), 138.5(\mathrm{Cq}), 128.9(2 \mathrm{CH}), 128.2(2 \mathrm{CH}), 127.6(\mathrm{CH}), 125.9(\mathrm{CH}), 56.9$ $(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{3}\right), 48.3(\mathrm{CH}), 48.0(\mathrm{CH}), 33.1\left(2 \mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.8\left(2 \mathrm{CH}_{2}\right)$; IR $(\mathrm{v}$, cm^{-1}) 3274, 2930, 2853, 1737, 1667, 1626, 1541, 1452, 1434, 1255, 1152 ; HRMS (EI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5}: 373.1889$ found : 373.1887

(E)-dimethyl 2-(1-(tert-butylamino)-1-oxo-4-phenylbut-3-en-2-yl)malonate (2c)

Compound $\mathbf{2 c}$ was prepared according to the general procedure B. by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $60 / 40$ to $50 / 50$) as eluant gave the desired product ($110 \mathrm{mg}, 87 \%$) as an yellow oil. ${ }^{1} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}$ $=15.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=10.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6\right.$ $\mathrm{MHz}) 167.9,167.4,164.3,141.7,138.5,128.8,128.2,127.5,126.6,56.8,52.8,52.5,51.4,47.8$, 28.7 ; IR $\left(v, \mathrm{~cm}^{-1}\right) 3291,2962,2931,1738,1668,1632,1541,1454,1436,1362,1261,1224,1154$;

HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5}: 347.1733$ found : 347.1733

Compound 2d was prepared according to the general procedure B. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $40 / 60$ to $20 / 80$) as eluant gave the desired product ($83 \mathrm{mg}, 69 \%$) as an yellow solid. Mp $86-87^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\mathbf{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.31-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{dd}, J=15.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, $J=10.8$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$, $100.6 \mathrm{MHz}) 167.8,167.4,165.0$, 143.2, 138.3, 136.6, 133.3, 129.2, 128.8, 128.8, 128.1, 127.6,
 1149, 1091, 1015 ; HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{5}$: 415.1187 found : 415.1187

Compound 2 e was prepared according to the general procedure B. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $20 / 80$ to $0 / 100$) as eluant gave the desired product ($95 \mathrm{mg}, 78 \%$) as an yellow oil. ${ }^{1} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19$ (m, 3H), 7.17 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.79-$ $5.76(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (dd, $J=10.9,8.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.89 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (s, 3H), 3.73 (s, 3H), 3.45 (s, 3H); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{\delta}, \mathbf{p p m}$) $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 167.8,167.4,164.8,159.0,142.8,138.3,130.0,129.3,128.8,128.1,127.5$, $125.3,114.0,56.7,55.2,52.8,52.5,47.9,43.1$; IR $\left(v, \mathrm{~cm}^{-1}\right) 3282,2954,1737,1670,1632,1552$,

1514, 1437, 1301, 1248, 1175, 1029 ; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{6}: 411.1682$ found : 411.1691

Compound 2 f was prepared according to the general procedure B . Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{AcOEt}$ (from $50 / 50$ to $30 / 70$) as eluant gave the desired product ($171 \mathrm{mg}, 72 \%$) as an yellow solid. Mp $134-135^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.31-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{dd}, J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.67$ $(\mathrm{m}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=10.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}$, $J=10.9,1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 167.8,167.4,165.0,149.0,147.7,142.6$, $138.4,131.2,128.8,128.1,127.6,125.4,120.5,111.8,111.3,56.8,55.9,55.8,52.8,52.5,47.9$, 40.8, 35.1; IR ($\mathrm{v}, \mathrm{cm}^{-1}$) 3285, 2957, 1737, 1670, 1628, 1544, 1517, 1454, 1433, 1321, 1259, 1234, 1196, 1147, 1029 ; HRMS (EI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{7}: 455.1944$ found : 455.1953

2-[3-(4-Chloro-benzylcarbamoyl)-1-(4-methoxy-phenyl)-allyl]-malonic acid dimethyl ester (2g)

Compound 2 g was prepared according to the general procedure B. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from 20/80 to $100 / 0$) as eluant gave the desired product ($90 \mathrm{mg}, 75 \%$) as an yellow solid. CCM $\mathrm{Rf}\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.22$; Mp $116-118^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-$ NMR ($\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.27(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=15.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{dd}, \mathrm{J}=11.2,6.0 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}), 4,37(\mathrm{dd}, \mathrm{J}=14.2,6.0 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H})$, (dd, $4.19(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR ($\left.\mathbf{\delta}, \mathbf{p p m}\right)\left(\mathrm{CDCl}_{3}, 100.6\right.$ $\mathrm{MHz}) 168.0(\mathrm{Cq}), 167.5(\mathrm{Cq}), 165.1(\mathrm{Cq}), 159.0(\mathrm{Cq}), 143.5(\mathrm{CH}), 136.6(\mathrm{Cq}), 133.5(\mathrm{Cq}), 130.22$ $(\mathrm{Cq}), 129.3(4 \mathrm{CH}), 128.8(2 \mathrm{CH}), 124.8(\mathrm{CH}), 114.3(2 \mathrm{CH}), 57.0(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 52.8$ $\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 52.6\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 47.2(\mathrm{CH}), 43.0\left(\mathrm{CH}_{2}\right)$; IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3275,3066,2952,2838,1735$, 1666, 1631, 1511, 1434, 1248, 1178, 1091, 1031; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{6}$: 445.1292 found : 445.1289
(E)-dimethyl 2-(4-((4-chlorobenzyl)amino)-1-(2-nitrophenyl)-4-oxobut-2-en-1-yl)malonate (2h)

Compound 2h was prepared according to the general procedure B. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $50 / 50$ to $0 / 100$) as eluant gave the desired product $(80 \mathrm{mg}, 67 \%)$ as a beige solid. Mp $57-58^{\circ} \mathrm{C}{ }^{\boldsymbol{1}} \mathbf{H} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.78(\mathrm{~d}, J=$
$7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (dd, $J=14.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07-6.01$ (m, 2H), 4.90 (dd, J $=10.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=14.9,5.8 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}), 3.98$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 167.2$, $166.8,164.7,150.0,140.8,136.4,133.3,133.3,133.0,129.2,129.2,128.8,128.3,126.6,124.7$, 56.5, 53.0, 52.9, 43.0, 41.4 ; IR ($\mathrm{v} \mathrm{cm}^{-1}$) 3282, 2953, 1740, 1670, 1636, 1524, 1493, 1437, 1356, 1294, 1252, 1165, 1095, 1014 ; HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{7}$: 460.1037 found : 460.1035
(E)-dimethyl 2-(4-((4-chlorobenzyl)amino)-1-(2-nitrophenyl)-4-oxobut-2-en-1-yl)malonate (2i)

Compound 2i was prepared according to the general procedure B . Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{AcOEt}$ (from 50/50 to $30 / 70$) as eluant gave the desired product ($88 \mathrm{mg}, 74 \%$) as an yellow oil. ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.93(\mathrm{dd}, J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=10.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=14.7,5.6 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=14.7,5.6$ $\mathrm{Hz}, \mathrm{AB}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\boldsymbol{\delta}$, ppm) ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 167.2,166.8,164.5,159.1,150.1,140.5,133.4,132.9,129.9,129.3$, $129.2,128.2,126.8,124.7,114.1,56.6,55.3,53.0,52.8,43.3,41.3$; IR (v, $\left.\mathrm{cm}^{-1}\right) 3276,2955,1735$, 1669, 1632, 1525, 1512, 1435, 1353, 1295, 1246, 1174, 1111, 1030 ; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}: 456.1533$ found : 456.1545

2-[3-(4-Chloro-benzylcarbamoyl)-1-furan-2-yl-allyl]-malonic acid dimethyl ester (2j)

Compound $\mathbf{2 j}$ was prepared according to the general procedure B . Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from 20/80 to $100 / 0$) as eluant gave the desired product ($90 \mathrm{mg}, 37 \%$) as a yellow solid. CCM Rf $\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.55 ; \mathbf{M p} 123-124^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathrm{NMR}$ ($\boldsymbol{\delta}$, ppm) ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}$, $\mathrm{J}=15.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.87(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}$, $\mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 167.5(\mathrm{Cq}), 167.4(\mathrm{Cq}), 164.9(\mathrm{Cq}), 151.2(\mathrm{Cq}), 142.4(\mathrm{CH})$, $140.1(\mathrm{CH}), 136.6(\mathrm{Cq}), 133.41(\mathrm{Cq}), 129.3(2 \mathrm{CH}), 128.9(2 \mathrm{CH}), 126.2(\mathrm{CH}), 110.5(\mathrm{CH}), 107.42$ $(\mathrm{CH}), 55.0(\mathrm{CH}), 52.9\left(2 \mathrm{CH}_{3}\right), 43.0\left(\mathrm{CH}_{2}\right), 41.4(\mathrm{CH}) ;$ IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3275,2953,1737,1670,1633$, 1541, 1491, 1434, 1252, 1163, 1092, 1014 ; HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{6}: 405.0979$ found : 405.0987
(E)-dimethyl 2-(1-(cyclohexylamino)-4-(furan-3-yl)-1-oxobut-3-en-2-yl)malonate (2k)

Compound $\mathbf{2 k}$ was prepared according to the general procedure B. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $70 / 30$ to $20 / 80$) as eluant gave the desired product ($92 \mathrm{mg}, 74 \%$) as an yellow solid. Mp $141-142^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\mathbf{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.33(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=15.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.81(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.31$ $(\mathrm{m}, 2 \mathrm{H}), 1.19-1.07(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 167.5,167.4,163.9,151.4$, $142.3,138.9,126.9,110.4,107.2,55.0,52.8,52.8,48.3,41.4,33.1,25.5,24.8 ;$ IR $\left(\mathrm{v}^{2} \mathrm{~cm}^{-1}\right) 3280$, 2933, 2859, 1741, 1669, 1628, 1546, 1453, 1436, 1347, 1261, 1152, 1011 ; HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}: 363.1682$ found : 363.1687

2-[3-(4-Chloro-benzylcarbamoyl)-2-methyl-1-phenyl-allyl]-malonic acid dimethyl ester (21)

Compound 21 was prepared according to the general procedure B . Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from 20/80 to $100 / 0$) as eluant gave the desired product ($103 \mathrm{mg}, 57 \%$) as an yellow solid. CCM Rf $\left(50 / 50 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.11 ; \mathbf{M p} 68^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathrm{NMR}(\boldsymbol{\delta}$, ppm) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.29(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.42(\mathrm{~d}$, $\mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, \mathrm{AB}$ system, 1 H$), 4.11(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, \mathrm{AB}$ system, 1 H$), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 168.1(\mathrm{Cq}), 167.6(\mathrm{Cq})$, $166.1(\mathrm{Cq}), 153.0(\mathrm{Cq}), 137.8(\mathrm{Cq}), 136.9(\mathrm{Cq}), 133.3(\mathrm{Cq}), 129.3(2 \mathrm{CH}), 128.9(2 \mathrm{CH}), 128.7$ $(2 \mathrm{CH}), 128.1(2 \mathrm{CH}), 127.7(\mathrm{CH}), 118.7(\mathrm{CH}), 55.1(\mathrm{CH}), 54.4(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 52.7\left(\mathrm{CH}_{3}\right), 42.8$ $\left(\mathrm{CH}_{2}\right), 17.0\left(\mathrm{CH}_{3}\right) ;$ IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3293,2951,1736,1635,1524,1433,1091$; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{5}: 429.1343$ found : 429.1339

Compound 2m was prepared according to the general procedure B. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{AcOEt}$ (from $60 / 40$ to $50 / 50$) as eluant gave the desired product $(53 \mathrm{mg}, 43 \%)$ as a white solid. Mp $146-147^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.30(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=15.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.79 (br s, 1H), 4.48 (dd, $J=15.2,5.8 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=15.2,5.8 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}), 3.74$ (s, $3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 1 \mathrm{H})$, 0.87 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 168.3,168.2,165.0,143.8$, 136.6, 133.3, 129.2, 128.8, 125.8, 56.0, 52.6, 52.4, 42.9, 42.1, 34.1, 20.2, 13.7 ; IR (v, cm ${ }^{-1}$) 3286, 2956, 2932, 1737, 1668, 1623, 1531, 1492, 1434, 1301, 1255, 1173, 1150, 1092, 1016 ; HRMS (EI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNO}_{5}: 381.1343$ found : 381.1349

Compound 3d was prepared according to the general procedure C. Purification by flash chromatography with a gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ (from $20 / 80$ to $30 / 70$) as eluant gave the desired product $(39 \mathrm{mg}, 33 \%)$ as an yellow oil. ${ }^{1} \mathbf{H}-\mathrm{NMR}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 175.9,167.1,167.0,142.6,136.1,132.8,130.1,128.7,128.1$, 128.1, 125.9, 69.1, 55.1, 52.9, 52.8, 44.0, 30.4, 29.9 ; IR (v, cm ${ }^{-1}$) 2953, 1754, 1733, 1678, 1492, 1434, 1395, 1328, 1265, 1203, 1142, 1092, 1016 ; HRMS (EI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{5}$: 415.1187 found : 415.1184

2-[1-(4-Methoxy-benzyl)-5-oxo-2-phenyl-pyrrolidin-2-yl]-malonic acid dimethyl ester (3e)

Compound 3e was prepared according to the general procedure C. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from 20/80 to $100 / 0$) as eluant gave the desired product ($63 \mathrm{mg}, 38 \%$) as an yellow oil. CCM Rf ($80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}$) $=0.42 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 7.20(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~s}$, $1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 3 \mathrm{H}), 6.53(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~m}, ~ A B$ system, 1 H$), 2.68$ $(\mathrm{m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, \mathrm{AB}$ system, 1 H$) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 175.9(\mathrm{Cq}), 167.3$ $(\mathrm{Cq}), 167.2(\mathrm{Cq}), 158.6(\mathrm{Cq}), 142.9(\mathrm{Cq}), 130.1(2 \mathrm{CH}), 128.7(2 \mathrm{CH}), 128.1(\mathrm{CH}), 126.1(2 \mathrm{CH})$, $113.5(2 \mathrm{CH}), 69.2(\mathrm{Cq}), 55.3\left(\mathrm{CH}_{3}\right), 55.1(\mathrm{CH}), 52.9\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 44.0\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right)$, $30.1\left(\mathrm{CH}_{2}\right)$; IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3293,2951,2836,1731,1662,1509,1398,1240,1113,1028$; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{6}: 411.1682$ found : 411.1684

2-[1-(4-Chloro-benzyl)-2-(4-methoxy-phenyl)-5-oxo-pyrrolidin-2-yl]-malonic acid dimethyl ester (3g)

Compound $\mathbf{3 g}$ was prepared according to the general procedure C . Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from $20 / 80$ to $100 / 0$) as eluant gave the desired product ($64 \mathrm{mg}, 64 \%$) as an yellow oil. CCM Rf ($80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}$) $=0.17 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 7.08(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}$, AB system, 1 H), $4.03(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, \mathrm{AB}$ system, 1 H$), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.30$
$(\mathrm{m}, \mathrm{AB}$ system, 1 H$), 2.65(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~m}, \mathrm{AB}$ system, 1 H$) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{- N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$, $100.6 \mathrm{MHz}) 175.8(\mathrm{Cq}), 167.2(\mathrm{Cq}), 167.1(\mathrm{Cq}), 159.2(\mathrm{Cq}), 136.4(\mathrm{Cq}), 134.4(\mathrm{Cq}), 132.7(\mathrm{Cq})$, $130.1(2 \mathrm{CH}), 128.1(2 \mathrm{CH}), 127.3(2 \mathrm{CH}), 113.9(2 \mathrm{CH}), 68.8(\mathrm{Cq}), 55.4\left(\mathrm{CH}_{3}\right), 55.1(\mathrm{CH}), 52.9$ $\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 43.9\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right)$; IR $\left(v, \mathrm{~cm}^{-1}\right) 2952,2838,1754,1733,1671$, 1513, 1450, 1433, 1249, 1188, 1088, 1015; HRMS (EI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{6}: 445.1292$ found : 445.1292

2-[1-(4-Chloro-benzyl)-2-furan-2-yl-5-oxo-pyrrolidin-2-yl]-malonic acid dimethyl ester (3j)

Compound $\mathbf{3 j}$ was prepared according to the general procedure C. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from $20 / 80$ to $100 / 0$) as eluant gave the desired product $(48 \mathrm{mg}, 53 \%)$ as an yellow oil. CCM $\mathrm{Rf}\left(80 / 20 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.32 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.32$ $(\mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, \mathrm{AB}$ system, 1 H$), 4.30(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, \mathrm{AB}$ system, 1 H$), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.56$ $(\mathrm{s}, 3 \mathrm{H}), 3.21$.(m, 2H), $2.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 175.6(\mathrm{Cq}), 166.5$ $(\mathrm{Cq}), 166.4(\mathrm{Cq}), 153.2(\mathrm{Cq}), 142.5(\mathrm{CH}), 135.9(\mathrm{Cq}), 132.8(\mathrm{Cq}), 129.5(2 \mathrm{CH}), 128.3(2 \mathrm{CH}), 110.6$ $(\mathrm{CH}), 108.0(\mathrm{CH}), 65.1(\mathrm{Cq}), 54.1(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 43.5\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 26.1$ $\left(\mathrm{CH}_{2}\right)$; IR (v, $\left.\mathrm{cm}^{-1}\right) 3725,3627,3307,2952,1734,1669,1434,1399,1328,1149,1089,1015$;
HRMS (EI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{6}: 405.0979$ found : 405.0982

2,4-Bis-methoxycarbonyl-pentanedioic acid dimethyl ester (4)

A mixture of dimethylmalonate $(5.5 \mathrm{~mL}, 2.4 \mathrm{eq})$, diiodomethane (1 eq) and potassium carbonate (2.4 equiv) in 50 mL of DMF was stirred at room temperature during 24 h , then at $100^{\circ} \mathrm{C}$ during 4 h .150 mL of diethyl ether was added. The crude was filtrated, washed with diethylether. The filtrate was washed with $2 * 50 \mathrm{~mL}$ of water and 50 mL of brine, and dried with MgSO . The crude was purified by silica gel column chromatography with a gradient of AcOEt in EP (10:90 to 30:70), to afford 2.66 g of uncolored oil (48% yield). CCM Rf (30/70 AcOEt/EP) $=0.39 ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 3.74(\mathrm{~s}, 12 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}$, ppm) $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 139.0(4 \mathrm{Cq}), 52.9\left(4 \mathrm{CH}_{3}\right), 49.0(2 \mathrm{CH}), 27.4\left(\mathrm{CH}_{2}\right) ;$ IR $\left(v, \mathrm{~cm}^{-1}\right) 2956$, 1728, 1434, 1198, 1149, 1033; HRMS (EI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{8}: 276.0845$ found : 276.0847

Compound 5c was prepared according to the general procedure D. Purification by flash chromatography with a gradient $\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}$ (from $50 / 50$ to $70 / 30$) as eluant gave the desired product $(140 \mathrm{mg}, 78 \%)$ as a yellow oil. CCM $\operatorname{Rf}\left(70 / 2=30 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right)=0.36 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) 7.21(\mathrm{~m}, 5 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 3.70 (br s, 6H), 3.51 $(\mathrm{m}, 1 \mathrm{H}), 3.15(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, \mathrm{AB}$ system, 1 H$), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}$, AB system, 1 H$), 2.41$ $\left(\mathrm{dd}, \mathrm{J}^{1}=14.8,6.4 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}\right), 1.94\left(\mathrm{dd}, \mathrm{J}^{1}=16.0,4.8 \mathrm{~Hz}, \mathrm{AB}, 1 \mathrm{H}\right), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\boldsymbol{\delta}$, ppm) $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 171.8(\mathrm{Cq}), 171.2(\mathrm{Cq}), 170.9(\mathrm{Cq}), 170.5(\mathrm{Cq}), 169.6(\mathrm{Cq}), 136.4(\mathrm{Cq})$, $128.2(4 \mathrm{CH}), 127.7(\mathrm{CH}), 63.4(\mathrm{Cq}), 61.2(\mathrm{Cq}), 55.1(\mathrm{CH}), 53.1\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right)$, $52.4\left(\mathrm{CH}_{3}\right), 50.8(\mathrm{Cq}), 46.1(\mathrm{CH}), 41.6\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 28.5\left(3 \mathrm{CH}_{3}\right)$; IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3395,2954$, 1727, 1666, 1530, 1433, 1208, 1077; HRMS (EI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{9}: 491.2155$ found : 491.2161

3-(4-Chloro-benzyl)-6-(4-methoxy-phenyl)-1,4-dioxo-tetrahydro-cyclopenta[e][1,2]oxazepine-7,7,8a-tricarboxylic acid trimethyl ester (5g)

Compound 5g was prepared according to the general procedure D. Purification by flash chromatography with a gradient $\mathrm{AcOEt} / \mathrm{PE}$ (from 10/90 to $50 / 50$) as eluant gave the desired product $(159 \mathrm{mg}, 67 \%)$ as white crystals. CCM $\mathrm{Rf}(50 / 50 \mathrm{AcOEt} / \mathrm{EP})=0.37 ; \mathbf{M p} 134-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-$ NMR ($\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.27(\mathrm{~s}, 4 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.01(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, ~ A B ~ s y s t e m, ~ 1 H), ~ 4.92(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, ~ A B$ system, 1 H$), 3.82(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (s, 3H), 3.73 (s, 3H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}$, AB system, 1H), 3.17 (d, J=14.8 Hz, AB system, 1H), 3.14 (s, 3H), 3.09 (dd, J=12.0, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (dd, J=18.4, 6.4 Hz , AB system, $1 \mathrm{H}), 2.54$ (dd, J=18.4, 6.4 Hz , AB system, 1 H) ; ${ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 171.6$ $(\mathrm{Cq}), 170.0(2 \mathrm{Cq}), 169.9(\mathrm{Cq}), 169.4(\mathrm{Cq}), 159.3(\mathrm{Cq}), 135.1(\mathrm{Cq}), 133.3(\mathrm{Cq}), 130.0(2 \mathrm{CH}), 129.9$ $(2 \mathrm{CH}), 128.5(2 \mathrm{CH}), 127.4(\mathrm{Cq}), 114.0(2 \mathrm{CH}), 63.0(\mathrm{Cq}), 58.5(\mathrm{Cq}), 55.3\left(\mathrm{CH}_{3}\right), 53.6\left(\mathrm{CH}_{3}\right), 53.5$ $\left(\mathrm{CH}_{3}\right), 53.3(\mathrm{CH}), 52.6\left(\mathrm{CH}_{3}\right), 43.2\left(\mathrm{CH}_{2}\right), 42.3(\mathrm{CH}), 40.8\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right)$; IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3002$, 2953, 2840, 1726, 1677, 1610, 1514, 1433, 1089; HRMS (EI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClNO}_{10}$: 589.1715 found : 589.1721

4-(tert-Butylcarbamoyl-methyl)-5-(4-methoxy-phenyl)-cyclopentane-1,1,3,3-tetracarboxylic acid tetramethyl ester (5n)

Compound 5 n was prepared according to the general procedure D. Purification by flash chromatography with with a gradient $\mathrm{AcOEt} / \mathrm{PE}$ (from 10/90 to 30/70) as eluant gave the desired product ($99 \mathrm{mg}, 58 \%$) as an uncolored oil. CCM Rf $(50 / 50 \mathrm{AcOEt} / \mathrm{EP})=0.33 ;{ }^{1} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.21(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=13.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, \mathrm{AB}$ system, 1H), 2.96 (d, J=14.8 Hz, AB system, 1H), 2.41 (dd, J=14.8, $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.95 (dd, J=15.2, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 171.9(\mathrm{Cq}), 171.3(\mathrm{Cq}), 171.0$ $(\mathrm{Cq}), 170.7(\mathrm{Cq}), 169.7(\mathrm{Cq}), 159.0(\mathrm{Cq}), 130.34(2 \mathrm{CH}), 128.2(\mathrm{Cq}), 113.6(2 \mathrm{CH}), 63.3(\mathrm{Cq}), 61.2$ $(\mathrm{Cq}), 55.2\left(\mathrm{CH}_{3}\right), 54.3(\mathrm{CH}), 53.1\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{3}\right), 50.9(\mathrm{Cq}), 46.1(\mathrm{CH})$, $41.5\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 28.6\left(3 \mathrm{CH}_{3}\right)$; IR (v, cm $\left.{ }^{-1}\right) 3637,3396,2954,2839,1727,1661,1611$, 1513, 1433, 1208, 1178, 1078 ; HRMS (EI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{10}: 521.2261$ found : 521.2265

2-(1-Phenyl-ethylidene)-malononitrile (6)

A mixture of acetophenone ($5.6 \mathrm{~mL}, 1 \mathrm{eq}$), malononitrile (1 eq) and ammonium acetate (1.88 eq) in toluene $(1 \mathrm{M})$ was stirred during 6 h at reflux. The crude was diluted in $\mathrm{Et}_{2} \mathrm{O}$ and extracted with water and dryied with MgSO 4 . The crude was purified by silica gel column chromatography with $\mathrm{Et}_{2} \mathrm{O}$ in EP (20:80), to afford 2.19 g of pale yellow solid (27% yield). CCM Rf $\left(20 / 80 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right.$) $=$ 0.26 ; Mp $98-99^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.54(\mathrm{~m}, 5 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-$ NMR ($\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 175.6(\mathrm{Cq}), 135.9(\mathrm{Cq}), 132.3(\mathrm{CH}), 129.2$ (2CH), 127.4 (2CH), $112.9(\mathrm{Cq}), 112.8(\mathrm{Cq}), 84.7(\mathrm{Cq}), 24.3\left(\mathrm{CH}_{3}\right)$; IR (v, cm $\left.{ }^{-1}\right)$ 3067, 2226, 1583, 1564, 1491, 1440, 1376, 1306, 1190, 1051 ; HRMS (EI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2}$: 168.0687 found : 168.0695

N-tert-Butyl-2-(2,2-dicyano-3,5-diphenyl-cyclopent-3-enyl)-acetamide (7c)

A mixture of Passerini adduct $\mathbf{1 c}(200 \mathrm{mg}, 1 \mathrm{eq})$, malonitrile derivative 6 (1 eq), cesium carbonate (1.2 eq) and tetrakis(triphenylphosphine)palladium (0.05 eq) in 1.3 mL of toluene was stirred at $50^{\circ} \mathrm{C}$ during 30 min . Then the crude was heated under micro-wave at $120^{\circ} \mathrm{C}$ during 30 min . The crude was purified by silica gel column chromatography with a gradient of $\mathrm{Et}_{2} \mathrm{O}$ in EP (20:80 to 30:70), to afford 84 mg of yellow solid (30% yield). CCM : $\mathrm{Rf}\left(50 / 50 \mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}\right.$) $=0.35$; Mp 77 $78^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}-\mathrm{NMR}(\boldsymbol{\delta}, \mathbf{p p m}):\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.57(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 6 \mathrm{H}), 7.16$ (d, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{qd}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\mathbf{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right): 166.4(\mathrm{Cq}), 138.0(\mathrm{Cq})$, $136.7(\mathrm{Cq}), 135.5(\mathrm{CH}), 129.8(\mathrm{Cq}), 128.5(\mathrm{CH}), 128.2(2 \mathrm{CH}), 128.0(2 \mathrm{CH}), 127.1(\mathrm{CH}), 126.9$ $(2 \mathrm{CH}), 125.3(2 \mathrm{CH}), 113.4(\mathrm{Cq}), 112.4(\mathrm{Cq}), 54.8(\mathrm{CH}), 54.2(\mathrm{CH}), 50.8(\mathrm{Cq}), 44.0(\mathrm{Cq}), 36.7$ $\left(\mathrm{CH}_{2}\right), 27.6\left(3 \mathrm{CH}_{3}\right) ;$ IR $\left(v, \mathrm{~cm}^{-1}\right) 3374,2965,1732,1650,1532,1494,1454,1363,1263,1219$,

A mixture of Passerini adduct 1d ($100 \mathrm{mg}, 1 \mathrm{eq}$), malonitrile derivative 6 (1 eq), cesium carbonate (1.2 eq) and tetrakis(triphenylphosphine)palladium (0.05 eq) in 1.3 mL of toluene was stirred at $50^{\circ} \mathrm{C}$ during 30 min . The crude was purified by silica gel column chromatography with a gradient of AcOEt in EP ($20: 80$ to $40: 60$), to afford 69 mg of green solid (62% yield). CCM Rf ($40 / 60$ $\mathrm{AcOEt} / \mathrm{EP})=0.59 ; \mathbf{M p} 153-155^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.65(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, 2H), 7.45 (m, 4H), $7.39(\mathrm{~m}, 4 \mathrm{H}), 7.29$ (d, J=8.4Hz, 2H), $7.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.90$ (br s, 1H), $4.40(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ (dd, J=9.2, 2.0 Hz, 1H), 3.49 (dt, J=9.2, $5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.80 (dq, J=15.2, $9.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 168.5(\mathrm{Cq}), 139.0(\mathrm{Cq}), 137.8$ $(\mathrm{Cq}), 136.5(\mathrm{CH}), 136.3(\mathrm{Cq}), 133.4(\mathrm{Cq}), 130.8(\mathrm{Cq}), 129.7(\mathrm{CH}), 129.4(2 \mathrm{CH}), 129.3(2 \mathrm{CH})$, $129.1(2 \mathrm{CH}), 128.9(2 \mathrm{CH}), 128.3(\mathrm{CH}), 128.0(2 \mathrm{CH}), 126.4(2 \mathrm{CH}), 114.6(\mathrm{Cq}), 113.3(\mathrm{Cq}), 55.7$ $(\mathrm{CH}), 55.2(\mathrm{CH}), 45.3(\mathrm{Cq}), 43.1\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right)$; IR (v, cm $\left.{ }^{-1}\right) 3292,3058,2925,1741,1650$, 1539, 1491, 1445, 1263, 1226, 1090, 1014 ; HRMS (EI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}$: 451.1451 found : 451.1459

7,7-Dicyano-4,6-diphenyl-hepta-2,6-dienoic acid tert-butylamide (8c)

A mixture of Passerini adduct $\mathbf{1 c}(100 \mathrm{mg}, 1 \mathrm{eq})$, malonitrile derivative 6 (1 eq), cesium carbonate (1.2 eq) and tetrakis(triphenylphosphine)palladium (0.05 eq) in 1.3 mL of toluene was stirred at $50^{\circ} \mathrm{C}$ during 30 min . The crude was purified by silica gel column chromatography with a gradient of $\mathrm{Et}_{2} \mathrm{O}$ in EP (20:80 to 50:50), to afford 82 mg of yellow solid (59% yield). CCM Rf (70/30 $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EP}$) $=0.32 \mathbf{M p} 75-77^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.54(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=6.8$ Hz, 2H), 7.29 (m, 5H), 6.99 (d, J=7.6 Hz, 2H), 6.84 (dd, J=15.2, 6.0 Hz, 1H), 5.54 (d, J=15.2 Hz, $1 \mathrm{H}), 5.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=14.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\boldsymbol{\delta}, \mathbf{p p m})$ $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 177.0(\mathrm{Cq}), 164.2(\mathrm{Cq}), 143.06(\mathrm{CH}), 138.6(\mathrm{Cq}), 134.3(\mathrm{Cq}), 132.2(\mathrm{CH})$, $129.3(2 \mathrm{CH}), 129.0(2 \mathrm{CH}), 127.9(2 \mathrm{CH}), 127.6(2 \mathrm{CH}), 125.9(\mathrm{CH}), 112.5(\mathrm{Cq}), 112.4(\mathrm{Cq}), 86.5$ $(\mathrm{Cq}), 51.5(\mathrm{Cq}), 46.8(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right), 28.7\left(3 \mathrm{CH}_{3}\right)$; IR $\left(\mathrm{v}, \mathrm{cm}^{-1}\right) 3290,2965,2925,2228,1667$, 1629, 1540, 1453, 1391, 1362, 1265, 1222, 1077 ; HRMS (EI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}: 383.1998$ found : 383.1992

ppm (t1)

ppm (t1)

(

ppm (t1)

ppm (t1)

(

ppm (t1)

(

$\mathrm{MeO}_{2} \mathrm{C} \mathrm{CO}_{2} \mathrm{Me}$

ppm (t1)

(

(

(

ppm (t1)
(

(

