Supporting Information

New Insights into the Oxidative Dehydrogenation of Propane on

Borate-Modified Nanodiamond

Xiaoyan Sun, Yuxiao Ding, Bingsen Zhang, Rui Huang and Dang Sheng Su*

[†]Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China.

1. Materials

The ND used in this study (high purity grade) was supplied by Beijing Grish Hitech Co.China, it was purified from the black powder produced by explosive detonation using a nitric acid-sulfuric acid-fuming sulfuric acid mixture. The diamond powder thus obtained has a light brown color with particle sizes of ca. 3-10 nm, and with a phase purity of powder > 98%. In order to remove the unstable disordered carbon on the surface, ND was then thermally annealed in a furnace at 1000 °C for 4 h under helium flow (defined as AND). The modified catalysts were prepared by incipient-wetness impregnation method. AND was soaked in a controlled amount of $(NH_4)_2B_{10}O_{16}\cdot 8H_2O$ aqueous solution and stirred ultrasonic untill to a near-dryness state. The impregnated samples were then dried in air at 120 °C overnight.

2. Characterizations

High-resolution transmission electron microscopy (HRTEM) was performed using a FEI Cscorrected Titan 80-300 microscope and a FEI Tecnai G2 F20 microscope. Thermogravimetric (TG) was performed on NETZSCH STA 449 F3 under a flow of argon or air (50 ml min⁻¹) with a heating rate of 10 °C min⁻¹. Brunauer-Emmett-Teller (BET) and microporous surface area analysis were determined by N₂ physisorption at –196 °C on a Micrometrics ASAP 2020 instrument. The samples were outgassed at 150 °C for 12 h prior to the isotherm measurement. IR studies were conducted with a Thermo Nicolet iZ10 FTIR system using a diffuse reflectance infrared Fourier-transform (DRIFT) cell that has been extensively modified to allow in-situ treatments up to 800 °C under flowing gases. The spectra were recorded in the 650–4000 cm⁻¹ wavenumber range with 128 scans at a resolution of 4 cm⁻¹. The X-ray photoelectron spectroscopy (XPS) measurements were performed on ESCALAB 250 instrument with Al K α X-rays (1489.6 eV).

3. Catalytic tests

Oxidative dehydrogenation of propane (ODH) was carried out in a quartz fixed-bed reactor under atmospheric pressure. The reaction products were analyzed by Agilent 7890A gas chromatograph equipped with a flame ionization detector (FID) for hydrocarbon and a thermal conductivity detector (TCD) for inorganic components. Blank experiments showed that reaction rates were negligible without carbon catalyst. In all tests, carbon mass balances were within $100\pm0.5\%$.

Figure S1 High-resolution TEM images of a) 5B-AND and b) 15B-AND.

Figure S2 Dynamic TPO curves from room temperature to 950 °C under air flow, 10 °C/min.

Figure S3 DRIFT spectra of unmodified and borate-modified ANDs, in which the spectrum of ammonium borate was given as reference.

Figure S4 The propene selectivity versus propane conversion obtained by variation of space velocities. Reaction conditions: 450 °C, catalyst weight: 150-180 mg, $3\%C_3H_8$, $3\%O_2$, He balance, total flow rate 10-70 ml/min.

Figure S5 Comparison of dynamic TPO curves of selected samples before and after ODH reaction from room temperature to 950 °C under air flow, 10 °C/min.

Sample	BET	surface	area	Pore	volume	Pore	width
	(m ² /g)			(cm ³ /g)		(nm)	
AND	324			1.43		17.7	
2B-AND	323			1.26		15.6	
5B-AND	324			1.30		16.0	
10B-AND	320			1.17		14.7	
15B-AND	295			1.10		15.5	
20B-AND	211			0.95		14.2	

Table S1 Porous texture of ANDs after ODH reaction.

Figure S6 O1s core level spectra of the selected ANDs after catalysis.