Supporting Information

Triple helix conformation-specific blinking of Cy3 in DNA

Kiyohiko Kawai^{1,2}, and Atsushi Maruyama³

¹The Institute of Scientific and Industrial Research (SANKEN), Osaka University,

Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

²PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi,

Saitama 332-0012, Japan.

³Department of Biomolecular Engineering, Graduate School of Bioscience and

Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku,

Yokohama 226-8501, Japan.

Experimental procedures

DNA Synthesis. Cy3, diaminopurine, and 8-aminoadenine modified DNA were purchased from Gene Design Inc., which were synthesized according to the procedures established by our group.^{1,2}

Fluorescence Correlation Spectroscopy (**FCS**). The FCS measurements were carried out using the MF20 (Olympus)^{1,3} in an aqueous solution contained 4 nM Cy3 modified-DNA, 100 mM NaCl, 10 mM MgCl₂, 7.5% or 15% PEG-20,000 in 10 mM Na phosphate buffer (pH 7.0). 8 nM of complementary strand was added in the case of single strand, and double helix. He-Ne laser (543 nm, 100 μ W) was used as the excitation source. All experiments were performed with 10 s of data acquisition time per measurement, and repeated 4-8 times per sample.

Melting temperature measurements. The thermal denaturation profile was recorded on a Roche realtime PCR (LightCycler[®] 96). The fluorescence of the DNA sample (at a strand concentration of 4 nM in 100 mM NaCl, 10 mM MgCl₂, 7.5% or 15% PEG-20,000, 10 mM sodium phosphate, (pH 7.0), with 8 nM of complementary strand in the case of double helix (same conditions as used in FCS) was monitored at 572 nm (excitation at 533 nm) from 37 to 87 °C with a heating rate of 1 °C/min. The T_m value was determined as the maximum in a plot of $\Delta I_{572}/\Delta T$ versus temperature, and repeated 3 times per sample.

Melting temperature (T_m) measurement

Figure S1. The fluorescence melting-temperature (T_m) was measured at 573 nm (excitation at 533 nm) corresponding to the fluorescence of Cy3.

References

- (a) K. Kawai, E. Matsutani, A. Maruyama and T. Majima, *J. Am. Chem. Soc.*, 2011, 133, 15568;
 (b) K. Kawai, T. Majima and A. Maruyama, *ChemBioChem*, 2013, 14, 1430;
 - (c) K. Kawai, T. Koshimo, A. Maruyama and T. Majima, Chem. Commun., 2014, 50, 10478.
- 2 K. Kawai, I. Saito and H. Sugiyama, *Tetrahedron Lett.*, 1998, **39**, 5221.
- 3 S. W. Choi, A. Kano and A. Maruyama, *Nucleic Acids Res.*, 2008, **36**, 342.