Visible-Light-Controlled Homo- and Copolymerization of Styrenes by Bichromophoric Ir-Pd Catalyst

Kei Murata, ¹ Kazuma Saito, ¹ Shinnosuke Kikuchi,² Munetaka Akita*¹, Akiko Inagaki*²

¹Chemical Resources Laboratory, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta Midori-ku Yokohama 226-8503

²Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397

Contents	Figure	Page
General Procedures		S2
Preparation of 3-(2-naphthyl)-2-pyridyl benzene		S2
Preparation of [Ir(ppy ^{naph}) ₂ (bpm ^{Br})PdMe(MeCO)](BF ₄) ₂ (1)		S 3
Photochemical Reaction		S5
UV-vis absorption spectrum of 1 and 2	Figure S1	S5
Catalytic reactions of styrene under ON - OFF switching	Figure S2	S 6
condition		
$M_{\rm w}$ and $M_{\rm w}/M_{\rm n}$ plotted against conversion during photocatalytic	Figure S3	S 6
reactions of 4-fluorostyrene		
Copolymerization of Styrene and TFEVE by 1 under irradiation	Figure S4	S 7
Copolymerization of Styrene and TFEVE by 1 under OFF \rightarrow ON	Figure S5	S 7
irradiation		
¹ H, ¹³ C, NMR spectra of TFEVE / styrene copolymer	Figure S6	S 8
Comparison of ¹ H NMR spectra of copolymer with styrene and	Figure S7	S9
TFEVE homopolymers		
MALDI-TOF-MS spectra of TFEVE / styrene copolymer	Figure S8	S10
GPC chart of TFEVE / styrene copolymer	Figure S9	S11
DSC curves of the TFEVE / styrene copolymer	Figure S10	S12
H, ¹³ C, DOSY NMR spectra of TFEVE / styrene copolymer	Figure S11	S13
ESI-MS spectra of the reaction mixture of the catalytic	Figure S12	S13
copolymerization with TFEVE and styrene		
Consumption rate of TFEVE under dark or irradiated condition	Figure S13	S14
¹ H NMR spectra during photopolymerization of styrene by 1	Figure S14	S15

Experimental Details and Spectral Data General Procedures.

Standard Schlenk and vacuum line techniques under a nitrogen atmosphere were employed for the reactions. Dichloromethane (CaH₂) and Acetone (K₂CO₃) were treated with appropriate drying agents and distilled. MeOH and EtOH were dehydrated by Mg with I₂, and distilled. 5,5'-dibromo-2,2'-bipyrimidine (bpm^{Br}) and [Pd(cod)MeCl] were prepared according to the published procedures [ref]. Other chemicals were purchased and used as received. ¹H and ¹³C NMR spectra were recorded on JEOL-JMN-LA500, JEOL-JMS-ECS400, and Bruker AVANCE-400 spectrometers. ESI-MS spectra were recorded on a ThermoQuest Finnigan LCQ Duo mass spectrometer. UV-vis spectra were obtained by a JASCO V-670 spectrometer.

Preparation of 2-[3-(2-naphthyl)phenyl]pyridine (ppy^{naph}).

3-(2-Naphthyl)phenylboronic acid (1.20 g, 0.00484 mol), Na₂CO₃ (2.89 g, 0.0272 mol) and Pd(PPh₃)₄ (132 mg, 0.000114 mol) were dissolved with toluene (20 mL) , EtOH (20 mL) and H₂O (4 mL) in a 200 mL 2-necked flask. Then 2-bromopyridine (0.352 mL, 0.00369 mol) was added and refluxed for 12 h under N2. The reaction

mixture was extracted with CH_2Cl_2 (3 times), washed with brine (3 times), and the collected organic layer was dried over MgSO₄. After removal of the solvent, the crude product was purified by silica-gel column chromatography (CH_2Cl_2 / hexane = 1 / 1) to yield the target compound as a pale yellow oil (0.570 g, 0.00203 mol, 41.9%). ¹H NMR (400 MHz, r.t., $CDCl_3$, δ / ppm) : $\delta 8.79$ (d, 1 H, J = 4.8 Hz, H5), 8.43 (s, 1 H, H7), 8.17 (s, 1 H, H13), 8.02 (d, 1 H, J = 7.6 Hz, H11), 7.97 – 7.79 (m, 6 H, H2, H9, naphthyl), 7.77 (dd, 1 H, J = 7.2 Hz, 7.2 Hz, H3), 7.61 (dd, 1 H, J = 7.6 Hz, 7.6 Hz, H10), 7.55 – 7.51 (m, 2 H, naphthyl), 7.26 (dd, 1 H, J = 7.2 Hz, 4.8 Hz, H4). ¹³C NMR (133 MHz, r.t., CDCl₃, δ / ppm) : δ 157.4 (s, C1), 149.8 (d, J_{CH} = 180.3 Hz, C5), 141.7 (s, C8), 140.1 (s, C6), 138.4 (s, C12), 136.9 (d, *J*_{CH} = 161.5 Hz, C3), 133.8 (s, naphthyl), 132.8 (s, naphthyl), 129.4 (d, $J_{CH} = 160.6$ Hz, C10), 128.5 (d, $J_{CH} = 158.9$ Hz, *naphthyl*), 128.3 (d, $J_{CH} = 157.0$ Hz, *naphthyl*), 128.1 (d, $J_{CH} = 159.7$ Hz, *naphthyl*), 127.7 (d, *J*_{CH} = 165.1 Hz, C9), 126.4 (d, *J*_{CH} = 158.7 Hz, *naphthyl*), 126.1 (d, *J*_{CH} = 157.5 Hz, C7), 126.1 $(d, J_{CH} = 157.5 \text{ Hz}, C13 \text{ or } naphthyl)$, 126.0 $(d, J_{CH} = 157.5 \text{ Hz}, C11 \text{ or } C13 \text{ or } naphthyl)$, 126.0 (d, $J_{CH} = 157.5$ Hz, C11 or *naphthyl*), 125.7 (d, $J_{CH} = 158.3$ Hz, *naphthyl*), 122.3 (d, $J_{CH} = 158.4$ Hz, C4), 120.8 (d, $J_{CH} = 153.9$ Hz, C2). EI-MS : m/z = 281 [M]⁺. HR-MS (EI) : m/z = 281.1210(calcd for $[C_{21}H_{15}N]^+$: 281.1204).

Preparation of [Ir(ppy^{naph})₂(bpm^{Br})PdMe(Me₂CO)](BF₄)₂ (1).

 $[Ir(ppy^{naph})(bpm^{Br})](BF_4)$ was prepared in a similar fashion to the published procedure for the synthesis of $[Ir(C^N)_2(N^N)]^+$.^[1]

IrCl₃·3H₂O (0.357 g, 1.01 mmol) and 3-(2-naphthyl)-2-pyridyl benzene (0.570 g, 2.03 mmol) were dissolved in 2-ethoxyethanol (15 mL) and H₂O (5 mL), and refluxed under N₂ for 24 h. The precipitate was filtered, washed with H₂O and EtOH, and then dried up to afford [Ir(ppy^{naph})₂Cl]₂ as a

yellow solid (0.732 g, 0.464 mmol, 91.9%). ¹H NMR (400 MHz, r.t., CDCl₃, δ / ppm) : δ 9.39 (d, J = 5.2 Hz, 4 H, H5), 8.08 (d, J = 8.0 Hz, 4 H, H8), 7.89 – 7.78 (m, 24 H, H7, H11, H17, *naphthyl*), 7.62 (dd, J = 8.4 Hz, 2.0 Hz, 4 H, *naphthyl*), 7.45 – 7.38 (m, 8 H, *naphthyl*), 7.99 (d, J = 8.0 Hz, 4 H, H13), 7.90 (dd, J = 6.0 Hz, 5.2 Hz, 4 H, H6), 6.16 (d, J = 8.0 Hz, 4 H, H14).

[Ir(ppy^{naph})₂Cl]₂ (0.409 g, 0.259 mmol) and 5,5'-dibromo-2,2'-bipyrimidine (0.196 g, 0.620 mmol) were dissolved in CH₂Cl₂ (20 mL) and MeOH (10 mL), and refluxed under N₂ for 5 h. The mixture was concentrated under vacuum and stirred with an excess amount of NH₄BF₄ at ambient temperature for 5 h. The precipitate was filtered and washed with EtOH, water, and Et₂O. The resulting solid was purified by column chromatography packed with neutral aluminum oxide (CH_2Cl_2 / hexane = 3 : 1). The eluted pale orange band was collected and dried up under vacuum. The obtained solid was dissolved in CH₂Cl₂ and a slow diffusion of hexane yielded $[Ir(ppy^{naph})_2(bpm^{Br})](BF_4)$ as a dark-red solid (0.238 g, 0.206 mmol, 79.5%). ¹H NMR (400 MHz, CD₃CN, r.t., δ / ppm) : δ 9.27 (d, J = 2.8 Hz, 2 H, H2), 8.61 (d, J = 2.4 Hz, 2 H, H4), 8.31 (d, J = 8.0 Hz, 2 H, H8), 8.27 (d, J = 1.6 Hz, 2 H, H11), 8.11 (s, 2 H, H17), 8.01 – 7.85 (m, 12 H, H5, H7, naphthyl), 7.79 (dd, J = 8.8 Hz, 2.0 Hz, 2 H, naphthyl), 7.52 - 7.46 (m, 4 H, naphthyl), 7.36 (dd, J = 8.0 Hz, 1.6 Hz, 1 H, H13), 7.18 (dd, J = 7.6 Hz, 6.0 Hz, 1 H, H6), 6.51 (d, J = 8.0 Hz, 1 H, H14). ¹³C NMR (100 MHz, CD₃CN, r.t., δ / ppm) : δ 162.8 (s, C1), 156.6 $(d, J_{CH} = 192.2 \text{ Hz}, C2), 156.0 \text{ (s, C9)}, 154.4 \text{ (d, } J_{CH} = 198.3 \text{ Hz}, C4), 145.9 \text{ (d, } J_{CH} = 183.1 \text{ Hz}, C4)$ C5), 142.1 (s, C15), 141.0 (s, C10), 135.1 (d, $J_{CH} = 159.9$ Hz, C7), 134.0 (s, C12), 131.9 (s, C16), 129.7 (s, naphthyl), 128.4 (s, naphthyl), 128.2 (d, $J_{CH} = 157.6$ Hz, C14), 125.2 (d, $J_{CH} = 157.6$ Hz, C14), 170.1 Hz, C13), 124.3 (d, $J_{CH} = 163.2$ Hz, naphthyl), 123.9 (d, $J_{CH} = 160.5$ Hz, naphthyl), 123.4 (d, $J_{CH} = 157.8$ Hz, naphthyl), 122.3 (d, $J_{CH} = 159.2$ Hz, naphthyl), 121.8 (d, $J_{CH} = 167.9$ Hz, naphthyl), 120.9 (d, J_{CH} = 151.7 Hz, naphthyl), 120.6 (d, J_{CH} = 169.1 Hz, C17), 120.4 (s, C3), 119.9 (d, J_{CH} = 161.6 Hz, C6), 119.4 (d, J_{CH} = 162.9 Hz, C11), 116.3 (d, J_{CH} = 165.5 Hz, C8). ESI-MS (CH₃CN) : $m/z = 1069 [M - BF_4]^+$. Anal. Found (calcd for C₅₀H₃₂BBr₂F₄IrN₆ + (2 H₂O)): C, 50.04 (50.39); H, 3.02 (3.04); N, 6.87 (7.05).

Palladation of $[Ir(ppy^{naph})(bpm^{Br})](BF_4)$ was implemented in a similar fashion to the published procedure for the synthesis of the Ru-Pd complex.^[2]

 $[Ir(ppy^{naph})_2(bpm^{Br})](BF_4)$ (188 mg, 0.163 mmol) and [PdMeCl(cod)] (47.4 mg, 0.179 mmol) was dissolved in CH₂Cl₂ (8 mL) and stirred at ambient temperature for 3 h. The solvent was removed under reduced pressure and the resulting solid was precipitated with CH₂Cl₂ - Et₂O, which yielded $[Ir(Ph^{naph}py)_2(bpm^{Br})PdMeCl](BF_4)_2$ as a brownish-red solid (201 mg, 0.153 mmol, 93.9%). ¹H NMR (400 MHz, r.t., CD₃NO₂, δ / ppm) : δ 9.29 (br, 2 H, H2), 8.78 (br, 2 H, H4), 8.35 (d, *J* = 8.0 Hz, 2 H, H8), 8.15 (d, *J* = 2.0 Hz, 2 H, H11), 8.11 (s, 2 H, H17), 8.05 - 7.86 (m, 10 H, H5, H7, *naphthyl*), 7.83 (dd, *J* = 8.8 Hz, 2.0 Hz, 2 H, *naphthyl*), 7.53 - 7.46 (m, 4 H, *naphthyl*), 7.42 (dd, *J* = 8.0 Hz, 2.0 Hz, 2 H, H13), 7.21 (dd, *J* = 7.6 Hz, 6.0 Hz, 2 H, H6), 6.49 (d, *J* = 8.0 Hz, 2 H, H14), 1.17 (s, 3 H, Pd-CH₃). ESI-MS (acetone) : *m/z* = 1225 [M - BF₄]⁺.

[Ir(Ph^{naph}py)₂(bpm^{Br})PdMeCl](BF₄)₂ (194 mg, 0.148 mmol) was dissolved in acetone (8 mL) and acetone (4 mL) solution of AgBF₄ (28.8 mg, 0.148 mmol) was added. The mixture was stirred at ambient temperature for 1 h. The resulting solution was filtered through Celite and the filtrate was concentrated under vacuum. Then a slow addition of Et₂O gave the target compound 1 as a brownish-red solid (202 mg, 0.142 mmol, 96.0%). ¹H NMR (400 MHz, CD₃CN, r.t., δ / ppm) : δ 9.28 (br, 2 H, H2), 8.30 (br, 2 H, H4), 8.29 (d, J = 8.0 Hz, 2 H, H8), 8.23 (d, J = 2.0 Hz, 2 H, H11), 8.13 (s, 2 H, H17), 8.00 (ddd, J = 8.0 Hz, 6.4 Hz, 1.2 Hz, 2 H, H7), 7.92 - 7.84 (m, 10 H, H5, naphthyl), 7.79 (dd, J = 8.8 Hz, 1.6 Hz, 2 H, naphthyl), 7.52 - 7.45 (m, 4 H, naphthyl), 7.33 (dd, J = 7.6 Hz, 2.0 Hz, 2 H, H13), 7.21 (dd, J = 6.4 Hz, 6.0 Hz, 2 H, H6), 6.38 (dd, J = 7.6, 2.8 Hz, 2 H, H14), 1.07 (br, 3 H, Pd-CH₃). ¹³C NMR (100 MHz, CD₃CN, r.t., δ / ppm) : δ 167.7 (s, C1), 161.6 (d, J_{CH} = 189.8 Hz, C2), 160.9 (s, C9), 159.4 (d, J_{CH} = 200.4 Hz, C4), 151.6 (d, J_{CH} = 183.8 Hz, C5), 146.9 (s, C15), 146.0 (s, C10), 140.2 (d, J_{CH} = 165.7 Hz, C7), 139.0 (s, C12), 137.0 (s, C16), 134.8 (s, naphthyl), 133.5 (s, naphthyl), 133.2 (d, $J_{CH} =$ 157.7 Hz, C14), 130.3 (d, *J*_{CH} = 158.7 Hz, C13), 129.4 (d, *J*_{CH} = 159.4 Hz, *naphthyl*), 129.0 (d, $J_{CH} = 158.3$ Hz, naphthyl), 128.5 (d, $J_{CH} = 160.2$ Hz, naphthyl), 127.4 (d, $J_{CH} = 153.7$ Hz, *naphthyl*), 126.9 (d, $J_{CH} = 164.8$ Hz, *naphthyl*), 126.1 (d, $J_{CH} = 156.5$ Hz, *naphthyl*), 125.9 (d, $J_{CH} = 156.8$ Hz, C17), 125.9 (s, C3), 125.1 (d, $J_{CH} = 169.1$ Hz, C6), 124.6 (d, $J_{CH} = 148.8$ Hz, C11), 121.6 (d, J_{CH} = 168.8 Hz, C8), -3.13 (br, Pd-CH₃), The proton and carbon signals of a coordinating solvent were each overlapped with the residual proton signals and the carbon signals of CD₃CN, respectively. Anal. Found (calcd for $C_{53}H_{38}B_2Br_2F_4IrN_7Pd + (2 H_2O)$): C, 44.31 (44.18); H, 3.27 (2.94); N, 6.67 (6.80).

Photochemical Reaction.

A CD₃NO₂ solution (0.4 mL) of styrene (0.5 mol/l) with a catalytic amount of the catalyst **1** (2 mol%) was prepared in a 5 ϕ NMR glass tube under nitrogen atmosphere. For visible-light irradiation, the tube was put in a water bath (25 °C) and placed at a distance of 70 mm from a light source (150 W Xe lamp with a L42 cut-off filter ($\lambda_{irr.} > 420$ nm)). For the dark condition, the tube was foiled with an aluminum sheet and placed in a water bath (25 °C). Reactions were followed by ¹H NMR spectroscopy after appropriate time intervals.

For copolymerization of styrene and 2,2,2-trifluoroethyl vinyl ether, a CD_3NO_2 solution (0.4 mL) of both substrates (50 equiv/cat, each) with a catalytic amount of the Ir-Pd complex (1 mol%) was prepared, then irradiated or kept dark, under the same condition.

Figure S1. UV-vis absorption spectrum of **1** (solid line) and **2** (dashed line) in deaerated CH₃CN (r.t.)

Figure S2. UV-vis absorption spectrum of **1** (solid line) and **2** (dashed line) in deaerated CH₃CN (r.t.)

Figure S3. Molecular weight (M_w , circle) and molecular weight distribution (M_w/M_n , square) plotted against conversion during photocatalytic reactions of 4-fluorostyrene ($\lambda_{irr} > 420$ nm, cat. 2 mol%, CD₃NO₂, r.t.)

Figure S4. Copolymerization of Styrene and TFEVE by 1 under irradiation (ON)

Figure S5. Copolymerization of Styrene and TFEVE by 1 under OFF \rightarrow ON irradiation

a) ¹³C NMR spectra (100 MHz, CD₂ClCD₂Cl, 100°C)

Figure S6. ¹H, ¹³C, NMR spectra of TFEVE / styrene copolymer ($M_W = 5786$, $M_n = 4209$, $M_W/M_n = 1.37$)

Figure S7. Comparison of ¹H NMR spectra of copolymer with styrene and TFEVE homopolymers

(a)

Figure S8. MALDI-TOF-MS spectra of (a) polystyrene catalyzed by 1 (2 mol%, CD₃NO₂, irradiated at $\lambda > 420$ nm), (b) TFEVE / styrene copolymer catalyzed by 1 (1 mol%, CD₃NO₂, irradiated at $\lambda > 420$ nm). Matrix: dithranol

Figure S9. GPC chart of TFEVE / styrene copolymer ($M_W = 5786$, $M_n = 4209$, $M_W/M_n = 1.37$)

a) DSC curve of the TFEVE / styrene copolymer (Table 2, entry 1)

b) DSC curve of the TFEVE / styrene copolymer (Table 2, entry 2)

c) DSC curve of the TFEVE / styrene copolymer (Table 2, entry 3)

Figure S10. DSC curves of the TFEVE / styrene copolymer

Figure S11. ¹H, ¹³C, DOSY NMR spectra of TFEVE / styrene copolymer

- (a) ¹H NMR spectra of (a) 2,2,2-trifluoroethyl vinyl ether (V) and styrene (S),
- (b) copolymer of V and S, (c) DOSY NMR spectrum of the V-S copolymer.

Figure S12. ESI-MS spectra of the reaction mixture of the catalytic copolymerization with TFEVE and styrene

Figure S13. Consumption rate of TFEVE under dark (square) or irradiated (circle) condition (with 1 mol% of catalyst 1).

Figure S14. ¹H NMR spectra during the photocatalytic polymerization of styrene by **1** in different conditions (400 MHz, CD3NO2, r.t.) (a) visible-light irradiation (l > 420 nm, r.t.) (b) dark (r.t.), (c) dark (60 °C)

References

[1] Liu, S. -J.; Zhao, Q.; Fan, Q. -Li; Huang, W. Eur. J. Inorg. Chem. 2008, 2177–2185.

[2] Inagaki, A.; Edure, S.; Yatsuda, S.; Akita, M. Chem. Commun. 2005, 5468.