Supporting Information

Iron-Catalyzed Asymmetric Hydrosilylation of Ketones

Ziqing Zuo, Lei Zhang, Xuebing Leng and Zheng Huang*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China

huangzh@sioc.ac.cn

Table of Contents

1.	General Information	S3
2.	Procedure for Preparation of Fe Complexes	S5
3.	Procedure for Hydrosilylation of Ketones	S11
4.	Crystallographic Data of Complexes 3a and 3d	S22
5.	References	S24
6.	NMR Spectra	S25
7.	HPLC and GC chromatographs	.S29

1. General information

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. All manipulations were carried out using standard Schlenk, high-vacuum and glovebox techniques. Tetrahydrofuran (THF) and toluene were distilled from sodium benzophenone ketyl prior to use. The following compounds were prepared according to literature procedures^[1]: iPr-(S)-iPr-IPO((S)-2a), iPr-(S)-tBu-IPO ((S)-2b), iPr-(S)-Bn-IPO ((S)-2c), $[iPr-(S)-iPr-IPO]CoCl_2$ ((S)-3e).

NMR spectra were recorded on Agilent 400 MHz or Varian Mercury 400 MHz. ¹H NMR chemical shifts were referenced to residual protio solvent peaks or tetramethylsilane signal (0 ppm), and ¹³C NMR chemical shifts were referenced to the solvent resonance. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, quint = quintuplet, sext = sextuplet, m = multiplet or unresolved, coupling constant (s) in Hz, integration). Data for ${}^{13}C$ NMR are reported in terms of chemical shift (δ , ppm). Enantiomeric excesses were determined by high-performance liquid chromatograpy (HPLC) with a Dionex or Agilent chromatography [Phenomenex Lux 5u Cellulose-1 (0.46 x 25 cm), Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), Daicel Chiralpak AD-H (0.46 x 25 cm), Daicel Chiralpak OD-H (0.46 x 25 cm), CHIRALPAK IC (0.46 x 25 cm), Lux 5u Amylose-2 (0.46 x 25 cm)] in comparison with authentic racemic materials. Optical rotations were measured on a Rudolph Research Analytical Autopol I Polarimeter. Elemental analyses and high resolution mass spectrometer (HR-MS) were carried out by the Analytical Laboratory of Shanghai Institute of Organic Chemistry (CAS).

X-ray Data Collection and Structure Determinations. Single crystals of complex (S)-3a suitable for single crystal X-ray diffraction were grown from the diffusion of diethyl ether into a DMF solution of (S)-3a, while single crystals of (S)-3d suitable for single crystal X-ray diffraction were grown by slow evaporation of a THF solution of (S)-3d. The single crystals of (S)-3a and (S)-3d were mounted

under nitrogen atmosphere on a glass fiber, and data collection was performed on a Bruker APEX DUE diffractometer. The SMART program package was used to determine the unit cell parameters. The absorption correction was applied using SADABS. Using Olex2,^[1] the structures were solved with the ShelXS^[2] structure solution program using Direct Methods and refined with the XL^[2] refinement package using Least Squares minimisation. Crystallographic data for (*S*)-**3a** and (*S*)-**3d** are listed in Table S4.1 and Table S4.2 (Supporting Information), respectively.

Crystal Data for (*S*)-**3a** (*M*=1287.52 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 15.777(4) Å, *b* = 10.030(3) Å, *c* = 17.685(5) Å, *β* = 100.090(4)°, *V* = 2755.3(12) Å³, *Z* = 2, *T* = 133.15 K, μ (MoK α) = 3.475 mm⁻¹, *Dcalc* = 1.552 g/cm³, 26394 reflections measured (2.338° ≤ 2 Θ ≤ 60.648°), 15709 unique (*R*_{int} = 0.1132, R_{sigma} = 0.2432) which were used in all calculations. The final *R*₁ was 0.0715 (I > 2 σ (I)) and *wR*₂ was 0.1556 (all data).

Crystal Data for (*S*)-**3d** (*M*=883.53 g/mol): tetragonal, space group P4 (no. 75), a = 33.2315(4) Å, c = 18.2906(3) Å, V = 20198.9(6) Å³, Z = 16, T = 130 K, $\mu(CuK\alpha) = 4.490 \text{ mm}^{-1}$, $Dcalc = 1.162 \text{ g/cm}^3$, 112205 reflections measured (2.658° $\leq 2\Theta \leq 139.506^\circ$), 34361 unique ($R_{int} = 0.1082$, $R_{sigma} = 0.1085$) which were used in all calculations. The final R_1 was 0.0714 (I > 2 σ (I)) and wR_2 was 0.2029 (all data).

2. Procedure for Preparation of Fe complexes

(E)-6-(1-((2,6-dibenzhydryl-4-methylphenyl)imino)ethyl)picolinonitrile (1). To a solution of 6-acetylpicolinonitrile (2.06 g, 14.1 mmol) in toluene (35 mL) was added 2,6-dibenzhydryl-4-methylaniline (6.82 g, 15.5 mmol) and *p*-toluenesulfonic acid monohydrate (135 mg, 0.71 mmol). The reaction was set to reflux and the water was removed using a Dean-Stark apparatus. After 48 h, the reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with EtOAc/petroleum ether 30: 1 (v/v) to afford the title compound as a yellow solid (6.83 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 7.8 Hz, 1H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.30 – 7.13 (m, 12H), 7.04 – 6.95 (m, 8H), 6.67 (s, 2H), 5.18 (s, 2H), 2.17 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 157.3, 145.3, 143.4, 142.2, 137.1, 132.5, 132.1, 131.9, 129.7, 129.4, 129.3, 128.7, 128.4, 128.1, 126.4, 126.1, 124.5, 117.3, 52.2, 21.4, 16.6. HRMS-ESI (*m/z*): Calcd for C₄₁H₃₄N₃ [M+H]⁺, 568.2747; found: 568.2750.

Preparation of dibenzhydryl-(S)- tBu -IPO ((S)-2d). To an oven-dried 100 mL two-necked flask fitted with a reflux condenser was charged with (E)-6-(1-((2,6-dibenzhydryl-4-methylphenyl)imino)ethyl)picolinonitrile (1) (1.0 g, 1.76 mmol) and zinc triflate (32 mg, 0.09 mmol). The system was purged with argon and anhyd toluene (15 mL) was added. The solution was stirred during 5 min and a

solution of L-tert-Leucinol (310 mg, 2.64 mmol) in anhydrous toluene (20 mL) was added. The reaction was set to reflux for 48 h. The system was allowed to cool, and the reaction was diluted with 20 mL of EtOAc, then washed with saturated aq. NaHCO₃ (3×15 mL) and brine (20 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The residue so obtained was purified by flash column chromatography with EtOAc/petroleum ether (1:20 → 1:15) to give the title compound as a yellow solid ((*S*)-**2a**) (525 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 7.6 Hz, 1H), 8.09 (d, *J* = 7.9 Hz, 1H), 7.75 (t, *J* = 7.8 Hz, 1H), 7.26 – 7.12 (m, 12H), 7.03 (d, *J* = 6.9 Hz, 8H), 6.70 (s, 2H), 5.27 (s, 2H), 4.47 (t, *J* = 9.5 Hz, 1H), 4.34 (t, *J* = 8.4 Hz, 1H), 4.18 – 4.11 (m, 1H), 2.18 (s, 3H), 1.42 (s, 3H), 1.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 162.8, 155.9, 145.9, 145.8, 143.5, 143.4, 142.7, 142.5, 136.5, 132.2, 132.0, 131.6, 129.8, 129.7, 129.4, 128.6, 128.3, 128.2, 127.9, 126.1, 125.9, 125.2, 123.0, 76.2, 69.4, 52.0, 51.9, 34.0, 25.9, 21.3, 17.0. Anal. Calcd. (C₄₇H₄₅N₃O): C, 84.52; H, 6.79; N, 6.29. Found: C, 84.60; H, 6.99; N, 6.15. Optical Rotation: [α]_D²⁷ = - 40.87 (c = 0.51, CH₂Cl₂).

Preparation of [(*S***)-***i***Pr-IPO]FeBr₂ ((***S***)-3a). To a yellow solution of (***S***)-2a (392 mg, 1.0 mmol) in approximately 30 mL of THF, 216 mg (1.0 mmol) of FeBr₂ were added. The resulting mixture was stirred at room temperature for 10 hours. The solvent was removed under vacuum and the resulting solid was washed with diethyl ether, collected by filtration and dried under vacuum to yield 580 mg (95%) of a dark blue solid identified as (***S***)-3a. ¹H NMR (400 MHz, CDCl₃) \delta 70.14, 60.37, 48.88, 18.28, 14.17, 14.04, 9.59, 5.31, 3.77, 3.75, 3.73, 3.38, 1.86, 1.64, 1.25, 0.33, 0.07, -1.51, -6.01, -6.90, -8.10, -11.76, -27.20. Anal. Calcd. (C₂₅H₃₃Br₂FeN₃O): C, 49.45; H, 5.48; N, 6.92. Found: C, 49.72; H, 5.63; N, 6.57.**

Selected Bond Length for Complex (5)-3a

Selected Bond Length	Distance(Å)
Fe1–N2	2.111(11)
Fe1–N3	2.240(10)
Fe1–N1	2.252(9)
Fe1–Br2	2.429(2)
Fe1–Br1	2.544(2)

Selected Bond Angles for Complex (S)-3a

Selected Bond Angles	(deg)
N(2)-Fe(1)-N(3)	74.0(4)
N(2)-Fe(1)-N(1)	73.2(4)
N(3)-Fe(1)-N(1)	146.2(4)
N(2)-Fe(1)-Br(2)	156.4(3)
N(3)-Fe(1)-Br(2)	99.3(3)
N(1)-Fe(1)-Br(2)	107.5(3)
N(2)-Fe(1)-Br(1)	90.8(3)
N(3)-Fe(1)-Br(1)	92.6(3)
N(1)-Fe(1)-Br(1)	95.6(3)
Br(2)-Fe(1)-Br(1)	112.32(9)

Preparation of [(*S*)-*t***Bu-IPO]FeBr₂** ((*S*)-3b). This compound was prepared in a similar manner to (*S*)-3a with 150 mg (0.37 mmol) of (*S*)-2b and 80 mg of FeBr₂ (0.37 mmol) and approximately 15 mL of THF. This procedure yielded 206 mg (90%) of a dark blue identified as (*S*)-3b. ¹H NMR (400 MHz, CDCl₃) δ 73.12, 62.04, 36.57, 20.60, 15.40, 14.80, 8.21, 5.31, 3.91, 1.93, 1.33, 1.25, 0.06, -6.15, -10.32, -11.41, -12.17, -19.32. Anal. Calcd. (C₂₆H₃₅Br₂FeN₃O): C, 50.27; H, 5.68; N, 6.67. Found: C, 50.35; H, 5.76; N, 6.70.

Preparation of [(S)-Bn-IPO]FeBr₂ ((S)-3c). This compound was prepared in a similar manner to (S)-**3a** with 250 mg (0.57 mmol) of (S)-**2c** and 123 mg of FeBr₂(0.57 mmol) and approximately 20 mL of THF. This procedure yielded 339 mg (91 %) of a dark blue solid identified as (S)-**3c**. ¹H NMR (400 MHz, CDCl₃) δ 69.92, 59.50, 55.90, 16.91, 15.40, 10.34, 10.15, 5.20, 4.89, 3.07, 1.56, 1.25, 1.15, 0.87, 0.07, -1.20, -6.47, -7.72, -27.32. Anal. Calcd. (C₂₉H₃₃Br₂FeN₃O): C, 53.16; H, 5.08; N, 6.41. Found: C, 52.87; H, 5.20; N, 6.38.

Preparation of [dibenzhydryl-(S)-*t***Bu-IPO]FeBr**₂ ((*S*)-3d). This compound was prepared in a similar manner to (*S*)-3a with 250 mg (0.37 mmol) of (*S*)-2d and 80 mg of FeBr₂(0.37 mmol) and approximately 20 mL of THF. This procedure yielded 278 mg (84 %) of a dark blue solid identified as (*S*)-3c. ¹H NMR (400 MHz, CDCl₃) δ 69.68, 65.02, 28.14, 25.46, 21.73, 19.01, 16.97, 16.72, 12.11, 11.02, 9.78, 8.80, 8.70, 8.49, 8.40, 5.62, 4.52, 3.59, 3.07, 2.88, 2.50, 2.10, 1.23, 1.02, -1.69, -8.06, -11.80, -16.46. Anal. Calcd. (C₂₉H₃₃Br₂FeN₃O): C, 63.89; H, 5.13; N, 4.76. Found: C, 63.41; H, 5.20; N, 4.54.

Selected Bond Length for Complex (S)-3d

Selected Bond Length	Distance(Å)
Fe1–N3	2.205(9)
Fe1–N2	2.067(9)
Fe1–N1	2.294(9)
Fe1–Br2	2.471(2)
Fe1–Br1	2.407(2)

Selected Bond Angles for Complex (5)-3d

Selected Bond Angles	(deg)
N(2)-Fe(1)-N(3)	75.4(4)

N(2)-Fe(1)-N(1)	73.6(4)
N(3)-Fe(1)-N(1)	146.6(3)
N(2)-Fe(1)-Br(2)	97.4(3)
N(3)-Fe(1)-Br(2)	97.1(3)
N(1)-Fe(1)-Br(2)	98.7(2)
N(2)-Fe(1)-Br(1)	143.9(3)
N(3)-Fe(1)-Br(1)	99.9(2)
N(1)-Fe(1)-Br(1)	98.0(2)
Br(2)-Fe(1)-Br(1)	118.68(8)

3. Procedure for Hydrosilylation of Ketones

Representative procedure for hydrosilylation with iron complex. (R)-1-(4-isobutylphenyl)ethanol (6a). In a Nitrogen filled glovebox, to a solution of (S)-3d (0.005mmol, 4.4 mg) in 2 mL of THF, a solution (1.0 M in THF) of NaBHEt₃ (10 µL, 0.01 mmol) was slowly added at 25 °C. After stirring for 1 min, Ph₂SiH₂ (92 mg, 0.5 mmol, 1 equiv), 1-(4-isobutylphenyl)ethanone 5a (88.0 mg, 0.5 mmol) were sequentially added. The reaction mixture stirred for 3 h at 25 °C and then was quenched by exposing the solution to air. Then MeOH (1.5 mL) and 10 % NaOH (2 mL) were added with vigorously stirring for 10 h. The resulting solution was extracted with EtOAc and washed with brine (15 mL), dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the residue was purified by flash column chromatography with EtOAc/petroleum ether (1:20) to give the title compound 6a (86 mg, 97 %) as colorless oil. 93% ee [Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), CH₃CN/H₂O = 70/30, v = 0.7 mL·min⁻¹, λ = 230 nm, t (minor) = 20.605 min, t (major) = 22.408 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 4.86 (q, *J* = 6.4 Hz, 1H), 2.47 (d, *J* = 7.2 Hz, 2H), 2.04 (br s, 1H), 1.93 - 1.78 (m, 1H), 1.49 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 140.9, 129.2, 125.2, 70.2, 45.1, 30.2, 25.0, 22.3. Rotation: $\left[\alpha\right]_{D}^{28} = +31.56$ (c = 0.33, CH₂Cl₂). These spectroscopic data correspond to reported data^[4].

(R)-1-(4-isopropylphenyl)ethanol (6b). Colorless oil (65 mg, 79%). 77% ee

[Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 98/2, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 12.68 min, t (major) = 13.19 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.32– 7.30 (m, 2H), 7.25 – 7.20 (m, 2H), 4.87 (q, *J* = 6.4 Hz, 1H), 2.99 – 2.84 (m, 1H), 1.98 (br s, 1H), 1.50 (d, *J* = 6.5 Hz, 3H), 1.27 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 143.2, 126.5, 125.4, 70.2, 33.8, 24.9, 24.0. Optical Rotation: [α]_D²⁸ = +28.55 (c = 0.50, CH₂Cl₂). These spectroscopic data correspond to reported data^[5].

(*R*)-1-(4-cyclohexylphenyl)ethanol (6c). White solid (98 mg, 96%). 86% ee [Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 90/10, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 6.96 min, t (major) = 7.25 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.87 (q, *J* = 6.4 Hz, 1H), 2.52 - 2.47 (m, 1H), 1.88 - 1.85 (m, 4H), 1.76 (d, *J* = 12.2 Hz, 1H), 1.66 (br s, 1H), 1.50 (d, *J* = 6.4 Hz, 3H), 1.44 - 1.35 (m, 4H), 1.31 - 1.22 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 143.2, 126.9, 125.4, 70.3, 44.2, 34.5, 26.9, 26.2, 24.9. Optical Rotation: [α]_D²⁸ = +26.68 (c = 0.45, CH₂Cl₂). These spectroscopic data correspond to reported data^[6].

(*R*)-1-([1,1'-biphenyl]-4-yl)ethanol (6d). White solid (94 mg, 95%). 86% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 13.72 min, t (major) = 14.89 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.60 –7.58 (m, 4H), 7.46 –7.42 (m, 4H), 7.37 –7.33 (m, 1H), 4.96 (q, J = 6.4, 1H), 1.88 (br s, 1H), 1.55 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 140.8, 140.4, 128.8, 127.3, 127.1, 125.8, 70.2, 25.2. Optical Rotation: [α]_D²⁸ = +29.81 (c = 0.37, CH₂Cl₂). These spectroscopic data correspond to reported data^[7].

(*R*)-1-phenylethanol (6e). Colorless oil (60 mg, 98%). 83% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 10.21 min, t (major) = 11.11 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 5H), 4.86 (q, *J* = 6.4 Hz, 1H), 2.14 (br s, 1H), 1.48 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 128.4, 127.4, 125.3, 70.37, 25.1. Optical Rotation: [α]_D²⁸ = +30.15 (c = 0.36, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(o-tolyl)ethanol (6f). Colorless oil (55 mg, 81%). 76% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 9.98 min, t (major) = 10.57 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.6 Hz, 1H), 7.27 – 7.14 (m, 3H), 5.13 (q, *J* = 6.3 Hz, 1H), 2.36 (s, 3H), 1.99 (s, 1H), 1.48 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 134.2, 130.3, 127.1, 126.3, 124.4, 66.7, 23.9, 18.9. Optical Rotation: [α]_D²⁹ = +44.06 (c = 0.54, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(4-methoxyphenyl)ethanol (6g). Colorless oil (63 mg, 83%). 91% ee [Daicel Chiralpak OD-H (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 15.51 min, t (major) = 17.25 min]. ¹H NMR (400 MHz, CDCl₃) δ

7.32 – 7.27 (m, 2H), 6.91 – 6.85 (m, 2H), 4.84 (q, J = 6.4 Hz, 1H), 3.80 (s, 3H), 1.87 (br s, 1H), 1.47 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 138.0, 126.6, 113.8, 70.0, 55.3, 25.0. Optical Rotation: $[\alpha]_D^{29} = +33.80$ (c = 0.60, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(3-methoxyphenyl)ethanol (6h). Colorless oil (75 mg, 98%). 64% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 90/10, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 9.75 min, t (major) = 10.21 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 1H), 6.97 – 6.91 (m, 2H), 6.81 (ddd, *J* = 8.2, 2.5, 1.0 Hz, 1H), 4.86 (q, *J* = 6.4 Hz, 1H), 3.81 (s, 3H), 2.04 (br s, 1H), 1.48 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 147.6, 129.5, 117.7, 112.9, 110.9, 70.3, 55.2, 25.1. Optical Rotation: [α]_D²⁹ = +20.79 (c = 0.49, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(2-methoxyphenyl)ethanol (6i). Colorless oil (54 mg, 71%). 19% ee [Daicel Chiralpak OD-H (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 13.55 min, t (major) = 14.57 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 7.2 Hz, 1H), 7.24 (t, *J* = 7.8 Hz, 1H), 6.95 (t, *J* = 7.4 Hz, 1H), 6.87 (d, *J* = 8.2 Hz, 1H), 5.08 (q, *J* = 6.5 Hz, 1H), 3.85 (s, 3H), 2.73 (br s, 1H), 1.49 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, cdcl₃) δ 156.5, 133.3, 128.3, 126.1, 120.7, 110.3, 66.5, 55.2, 22.8. Optical Rotation: [α]_D²⁸ = +2.22 (c = 0.62, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(4-chlorophenyl)ethanol (6j). Colorless oil (75 mg, 96%). 61% ee [Daicel Chiralpak OD-H (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 10.69 min, t (major) = 11.76 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 4H), 4.84 (q, *J* = 6.4 Hz, 1H), 2.06 (br s, 1H), 1.44 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 133.0, 128.6, 126.8, 69.7, 25.2. Optical Rotation: $[\alpha]_D^{29} = +21.94$ (c = 0.58, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(3-chlorophenyl)ethanol (6k). Colorless oil (75 mg, 96%). 63% ee [Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, $\lambda = 214$ nm, t (minor) = 10.08 min, t (major) = 10.81 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.36 (m, 1H), 7.29 – 7.26 (m, 1H), 7.26 – 7.21 (m, 2H), 4.86 (q, J = 6.5 Hz, 1H), 2.08 (br s, 1H), 1.47 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 134.3, 129.8, 127.5, 125.6, 123.5, 69.8, 25.2. Optical Rotation: $[\alpha]_D^{29} = +17.65$ (c = 0.58, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(2-chlorophenyl)ethanol (6l). Colorless oil (74 mg, 95%). 75% ee [Lux 5u Amylose-2 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 98.5/1.5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 13.91 min, t (major) = 14.83 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 1H), 7.32 – 7.24 (m, 2H), 7.21 – 7.15 (m, 1H), 5.28 (q, *J* = 6.4 Hz,

1H), 2.05 (br s, 1H), 1.47 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 131.6, 129.4, 128.4, 127.2, 126.4, 67.0, 23.5. Optical Rotation: $[\alpha]_D^{29} = +37.70$ (c = 0.47, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-mesitylethanol (6m). White solid (80 mg, 97%). 93% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 90/10, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 5.97 min, t (major) = 6.69 min]. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 2H), 5.36 (q, *J* = 6.7 Hz, 1H), 2.43 (s, 6H), 2.27 (s, 3H), 1.82 (br s, 1H), 1.53 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.6, 136.4, 135.6, 130.1, 67.4, 21.5, 20.7, 20.5. Optical Rotation: [α]_D²⁸ = +46.93 (c = 0.32, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(4-bromophenyl)ethanol (6n). Colorless oil (97 mg, 96%). 76% ee [Daicel Chiralpak AD-H (0.46 x 25 cm), scCO₂ /*i*-propanol = 90/10, v = 1.3 mL·min⁻¹, λ = 214 nm, t (minor) = 9.481 min, t (major) = 10.165 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 4.76 (q, *J* = 6.5 Hz, 1H), 2.84 (s, 1H), 1.40 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 131.4, 127.1, 120.9, 69.5, 25.1. Optical Rotation: $[\alpha]_D^{28} = +23.79$ (c = 0.55, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(4-iodophenyl)ethanol (60). White solid (120 mg, 97%). 88% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 80/20, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 5.98 min, t (major) = 6.40 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.11 – 7.06 (m, 2H), 4.80 (q, J = 6.4 Hz, 1H), 2.19 (br s, 1H), 1.44 (d, *J* = 6.4, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 137.4, 127.4, 92.7, 69.7, 25.2. Optical Rotation: [α]_D²⁸ = +24.96 (c = 0.54, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(R)-1-(4-(dimethylamino)phenyl)ethanol (6p). Colorless oil (82 mg, 98%). 87% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 80/20, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 8.56 min, t (major) = 10.79 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 6.77 – 6.70 (m, 2H), 4.80 (q, *J* = 6.4 Hz, 1H), 2.95 (s, 6H), 2.11 (br s, 1H), 1.48 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 133.8, 126.4, 112.6, 70.0, 40.7, 24.6. Optical Rotation: [α]_D²⁸ = +49.45 (c = 0.50, CH₂Cl₂). These spectroscopic data correspond to reported data^[10].

(*R*)-1-(benzo[d][1,3]dioxol-5-yl)ethanol (6q). Colorless oil (81 mg, 97%). 75% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 80/20, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 8.21 min, t (major) = 9.11 min]. ¹H NMR (400 MHz, CDCl₃) δ 6.86 (d, *J* = 1.4 Hz, 1H), 6.81 – 6.73 (m, 2H), 5.92 (s, 2H), 4.78 (q, *J* = 6.4 Hz, 1H), 2.15 (br s, 1H), 1.43 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 146.7, 139.9, 118.6, 108.0, 106.0, 100.9, 70.1, 25.1. Optical Rotation: [α]_D²⁸ = +26.55 (c = 0.43, CH₂Cl₂). These spectroscopic data correspond to reported data^[11].

(*R*)-1-(naphthalen-2-yl)ethanol (6r). White solid (85 mg, 98%). 92% ee [Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 90/10, v = 0.7 mL·min⁻¹, $\lambda = 214$ nm, t (minor) = 16.62 min, t (major) = 20.54 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.80 (m, 4H), 7.52 – 7.45 (m, 3H), 5.05 (q, *J* = 6.3 Hz, 1H), 2.13 (br s, 1H), 1.58 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 133.3, 132.9, 128.3, 127.9, 127.6, 126.1, 125.8, 123.8, 123.8, 77.0, 70.5, 25.1. Optical Rotation: [α]_D²⁹ = +33.71 (c = 0.53, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-1-(6-methoxynaphthalen-2-yl)ethanol (6s). White solid (100 mg, 99%). 75% ee [Daicel Chiralpak OD-H (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 23.77 min, t (major) = 33.76 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.71 (m, 3H), 7.47 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.17 – 7.13 (m, 2H), 5.03 (q, *J* = 6.5 Hz, 1H), 3.92 (s, 3H), 1.95 (br s, 1H), 1.57 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 140.9, 134.0, 129.4, 128.7, 127.1, 124.3, 123.7, 118.9, 105.6, 70.5, 55.3, 25.0. Optical Rotation: [α]_D²⁹ = +31.52 (c = 0.40, CH₂Cl₂). These spectroscopic data correspond to reported data^[10].

(*R*)-1-phenylpropan-1-ol (6t). Colorless oil (54 mg, 79%). 86% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ =

214 nm, t (minor) = 9.37 min, t (major) = 9.80 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.26 (m, 5H), 4.60 (t, *J* = 6.5 Hz, 1H), 2.04 (br s, 1H), 1.88 – 1.72 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 128.4, 127.4, 125.9, 76.0, 31.8, 10.1. Optical Rotation: $[\alpha]_D^{29} = +26.28$ (c = 0.56, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*R*)-2-methyl-1-phenylpropan-1-ol (6u). Colorless oil (57 mg, 76%). 71% ee [Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), CH₃CN/H₂O = 90/10, v = 0.4 mL·min⁻¹, λ = 214 nm, t (minor) = 14.701 min, t (major) = 15.532 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.25 (m, 5H), δ 4.34 (d, J = 6.9 Hz, 1H), 2.04 – 1.90 (m, 2H), 1.01 (d, *J* = 6.7 Hz, 3H), 0.80 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 128.1, 127.4, 126.5, 80.0, 35.2, 19.0, 18.3. Optical Rotation: [α]_D²⁸ = +21.67 (c = 0.42, CH₂Cl₂). These spectroscopic data correspond to reported data^[8].

(*S*)-1,2-diphenylethanol (6v). White solid (93 mg, 94%). 11% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 12.22 min, t (major) = 14.40 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.19 (m, 10H), 4.96 – 4.87 (m, 1H), 3.11 – 2.97 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 138.0, 129.5, 128.5, 128.4, 127.6, 126.6, 125.9, 102.4, 75.3, 46.1. Optical Rotation: $[\alpha]_D^{23}$ = +0.5932 (c = 0.48, CH₂Cl₂). These spectroscopic data correspond to reported data.^[8]

(*R*)-2,3-dihydro-1H-inden-1-ol (6w). White solid (43 mg, 64%). 76% ee [CHIRALPAK IC (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 11.09 min, t (major) = 11.83 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 6.2 Hz, 1H), 7.30 – 7.24 (m, 3H), 5.25 (t, *J* = 6.0 Hz, 1H), 3.13 – 3.01 (m, 1H), 2.89 – 2.78 (m, 1H), 2.57 – 2.44 (m, 1H), 1.96 – 1.88 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 143.3, 128.3, 126.6, 124.8, 124.2, 76.4, 35.9, 29.7. Optical Rotation: [α]_D²⁹ = -14.82 (c = 0.58, CH₂Cl₂). These spectroscopic data correspond to reported data^[12].

(*R*)-phenyl(o-tolyl)methanol (6x). White solid (96 mg, 97%). 24% ee [Phenomenex Lux 5u Cellulose-3 (0.46 x 25 cm), CH₃CN/H₂O = 90/10, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 8.389 min, t (major) = 9.872 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.30 – 7.20 (m, 3H), 7.16 (d, *J* = 7.3 Hz, 1H), 6.00 (d, *J* = 3.4 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 141.4, 135.3, 130.5, 128.4, 127.5, 127.5, 127.1, 126.2, 126.1, 73.3, 19.4. Optical Rotation: $[\alpha]_D^{28} = -0.22$ (c = 0.66, CH₂Cl₂). These spectroscopic data correspond to reported data^[9].

(*R*)-4-phenylbutan-2-ol (6y). Colorless oil (60 mg, 80%). 1.1% ee [Phenomenex Lux 5u Cellulose-4 (0.46 x 25 cm), *n*-hexane/*i*-propanol = 95/5, v = 0.7 mL·min⁻¹, λ = 214 nm, t (minor) = 10.53 min, t (major) = 9.44 min]. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.24 – 7.17 (m, 3H), 3.88 – 3.79 (m, 1H), 2.82 – 2.63 (m, 2H), 1.83 –

1.74 (m, 2H), 1.52 (s, 1H), 1.24 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 128.4, 125.8, 67.5, 40.9, 32.2, 23.7. Optical Rotation: $[\alpha]_D^{29} = -1.5420$ (c = 0.45, CH₂Cl₂). These spectroscopic data correspond to reported data^[13].

(*R*)-1-cyclohexylethanol (6z). Colorless oil (58 mg, 90%). 9.5% ee [Gas chromatograpy, CP-Cyclodextrin (25 m x 0.25 mm x 0.25 um)], Oven: 80 °C (65 min), 20 °C /min to 220 °C (10 min), Injection: 300°C, He: 1.0 mL/min, split: 200:1, FID, H₂: 40.0 mL/min, air flow: 450.0 mL/min, t (minor) = 43.771 min, t (major) = 44.901 min]. ¹H NMR (400 MHz, CDCl₃) δ 3.56 – 3.49 (m, 1H), 1.89 – 1.61 (m, 5H), 1.56 (s, 1H), 1.30 – 1.15 (m, 4H), 1.13 (d, *J* = 6.3 Hz, 3H), 1.04 – 0.89 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 72.2, 45.1, 28.7, 28.4, 26.5, 26.2, 26.1, 20.4. Optical Rotation: [α]_D²⁹ = –1.1993 (c = 0.48, CH₂Cl₂). These spectroscopic data correspond to reported data^[9].

4. Crystallographic Data of Complex (S)-3a and (S)-3d

Table S4.1 Crystal data and structure refinement for (S)-3a

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	mo_dm14439_0mC53 H73 Br4 Fe2 N7 O31287.52133(2) K0.71073 ÅMonoclinicP 21 $a = 15.777(4)$ Å $b = 10.030(3)$ Å $b = 100.090(4)^{\circ}$. $c = 17.685(5)$ Å $g = 90^{\circ}$.			
Volume	2755.3(12) Å ³			
Z	2			
Density (calculated)	1.552 Mg/m ³			
Absorption coefficient	3.475 mm ⁻¹			
F(000)	1312			
Crystal size	0.120 x 0.080 x 0.010 mm ³			
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission	neta range for data collection 1.169 to 30.324° .dex ranges $-19 <=h <= 22, -12 <=k <= 14, -25 <=12$ eflections collected 26394 dependent reflections 15709 [R(int) = 0.1132]ompleteness to theta = 25.242° 100.0% bsorption correctionSemi-empirical from equivalents(ax, and min, transmission 0.746 and 0.418			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	15709 / 7 / 638			
Goodness-of-fit on F ²	0.973			
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	R1 = 0.0715, $wR2 = 0.114R1 = 0.1988$, $wR2 = 0.1550.019(14)n/a$	44 56		
Largest diff. peak and hole 1.451 and -1	.669 e.Å ⁻³			

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	cu_dm14700_0m C47 H45 Br2 Fe N3 O 883.53 130 K 1.54178 Å Tetragonal P 4 a = 33.2315(4) Å b = 33.2315(4) Å c = 18.2906(3) Å	a= 90°. b= 90°. g = 90°.	
Volume	20198.9(6) Å ³		
Ζ	16		
Density (calculated)	1.162 Mg/m ³		
Absorption coefficient	4.490 mm ⁻¹		
F(000)	7232		
Crystal size	0.25 x 0.22 x 0.16 mm ³		
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 67.679° Absorption correction Max. and min. transmission	1.329 to 69.753°. -39<=h<=39, -40<=k<=38, -21<=l<=2 112205 34361 [R(int) = 0.1082] 99.8 % Semi-empirical from equivalents 0.7532 and 0.3163		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	34361 / 752 / 1953		
Goodness-of-fit on F ²	1.081		
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	R1 = 0.0714, wR2 = 0.1873 R1 = 0.0978, wR2 = 0.2029 0.082(7) n/a		
T 1100 1 11 1 1 0 000 1 1	a a 1 8 2		

Table S4.2 Crystal data and structure refinement for (S)-3d

Largest diff. peak and hole 1.258 and -1.201 e.Å⁻³

5. References

- [1] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. *Appl. Cryst.* **2009**, *42*, 339.
- [2] Sheldrick, G.M. Acta Cryst. 2008, A64, 112.
- [3] Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.
- [4] Wu, X.; Vinci, D.; Ikariya, T.; Xiao, J. Chem. Commun. 2005, 4447.
- [5] Omote, M.; Tanaka, N.; Tarui, A.; Sato, K.; Kumadaki, I.; Ando, A. *Tetrahedron Lett.* **2007**, *48*, 2989.
- [6] Salvi, N. A.; Chattopadhyay, S. Tetrahedron 2001, 57, 2833.
- [7] Łowicki, D.; Bezłada, A.; Mlynarski, J. Adv. Synth. Catal. 2014, 356, 591.
- [8] Li, Y.; Yu, S.; Wu, X.; Xiao, J.; Shen, W.; Dong, Z.; Gao, J. J. Am. Chem. Soc. 2014, 136, 4031.
- [9] Shaikh, N. S.; Enthaler, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 2497.
- [10] Inagaki, T.; Phong, L. T.; Furuta, A.; Ito, J.-i.; Nishiyama, H. Chem. Eur J.
 2010, 16, 3090.
- [11] Wang, M.-C.; Zhang, Q.-J.; Li, G.-W.; Liu, Z.-K. Tetrahedron: Asymmetry 2009, 20, 288.
- [12] Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Org. Lett. 2004, 6, 3321.
- [13] Inagaki, T.; Ito, A.; Ito, J.-i.; Nishiyama, H. Angew. Chem., Int. Ed. 2010, 49, 9384.

6. NMR Spectra

 13 C NMR (101 MHz, CDCl₃) spectrum of (S)-2d

¹H NMR (400 MHz, CDCl₃) spectrum of (*S*)-**3b**

7. HPLC chromatographs

S29

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.42	n.a.	233.914	52.859	49.77	n.a.	BM *
2	12.95	n.a.	220.638	53.343	50.23	n.a.	MB*
Total:			454.552	106.202	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.68	n.a.	87.152	18.862	11.39	n.a.	BM *
2	13.19	n.a.	614.674	146.671	88.61	n.a.	MB*
Total:			701.826	165.534	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	6.94	n.a.	639.611	69.457	49.67	n.a.	BM *
2	7.24	n.a.	603.613	70.366	50.33	n.a.	MB*
Total:			1243.224	139.823	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	6.96	n.a.	26.134	2.828	6.94	n.a.	BM *
2	7.25	n.a.	326.164	37.926	93.06	n.a.	MB*
Total:			352.298	40.754	100.00	0.000	

6c

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.72	n.a.	540.465	151.213	49.81	n.a.	BM
2	14.87	n.a.	495.562	152.392	50.19	n.a.	MB
Total:			1036.026	303.605	100.00	0.000	

1	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
1	1	13.72	n.a.	1132.571	326.344	93.19	n.a.	BM
	2	14.89	n.a.	79.021	23.867	6.81	n.a.	MB
	Total:			1211.592	350.211	100.00	0.000	

6d

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.25	n.a.	236.749	44.461	49.96	n.a.	BM
2	11.13	n.a.	217.963	44.540	50.04	n.a.	MB
Total:			454.711	89.001	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.21	n.a.	138.603	26.034	8.44	n.a.	BMB*
2	11.11	n.a.	1288.849	282.272	91.56	n.a.	BMB*
Total:			1427.452	308.306	100.00	0.000	

6e

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.70	n.a.	399.671	70.486	50.01	n.a.	BM
2	10.29	n.a.	372.287	70.453	49.99	n.a.	MB
Total:			771.957	140.939	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.98	n.a.	483.869	87.531	88.09	n.a.	BM *
2	10.57	n.a.	61.401	11.839	11.91	n.a.	MB*
Total:			545.269	99.369	100.00	0.000	

6f

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	15.59	n.a.	434.417	145.101	49.97	n.a.	BMb*
2	17.25	n.a.	393.028	145.251	50.03	n.a.	bMB*
Total:			827.444	290.351	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	15.51	n.a.	684.481	235.005	95.64	n.a.	BM *
2	17.25	n.a.	26.989	10.724	4.36	n.a.	MB*
Total:			711.470	245.729	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.78	n.a.	306.471	56.364	49.91	n.a.	BM *
2	10.25	n.a.	290.085	56.572	50.09	n.a.	MB*
Total:			596.556	112.937	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.75	n.a.	285.639	52.191	17.79	n.a.	BM *
2	10.21	n.a.	1223.142	241.109	82.21	n.a.	MB*
Total:			1508.781	293.301	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.54	n.a.	164.624	48.750	49.53	n.a.	BM *
2	14.55	n.a.	153.517	49.666	50.47	n.a.	MB*
Total:			318.141	98.416	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.55	n.a.	177.775	53.284	40.74	n.a.	BM *
2	14.57	n.a.	237.660	77.513	59.26	n.a.	MB*
Total:			415.435	130.797	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.68	n.a.	820.718	165.410	49.75	n.a.	BMB*
2	11.74	n.a.	748.355	167.047	50.25	n.a.	BMB*
Total:			1569.074	332.456	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.69	n.a.	107.562	21.660	19.28	n.a.	BM *
2	11.76	n.a.	404.168	90.707	80.72	n.a.	MB*
Total:			511.730	112.368	100.00	0.000	

ZZQ-5-99-2+- PC-3 955 214 0.7	107 100 4
600 mAU	WVI :214 nm
1 - 10.173	
500	
2 - 10.927	
400-	
300-	
200- (
100-	
]	
-100	min
0.0 2.0 4.0 6.0 8.0 10.0 12.0	14.2

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.17	n.a.	536.852	95.128	49.86	n.a.	BM
2	10.93	n.a.	483.009	95.651	50.14	n.a.	MB
Total:			1019.861	190.778	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10.08	n.a.	91.390	15.732	18.50	n.a.	BMB*
2	10.81	n.a.	356.270	69.289	81.50	n.a.	BMB*
Total:			447.659	85.022	100.00	0.000	

6k

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	14.17	n.a.	1032.777	295.991	49.82	n.a.	BM *
2	15.08	n.a.	970.136	298.177	50.18	n.a.	MB*
Total:			2002.912	594.167	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13.91	n.a.	804.581	222.817	87.62	n.a.	BMb*
2	14.83	n.a.	111.409	31.477	12.38	n.a.	bMB*
Total:			915.989	254.294	100.00	0.000	

6l

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	6.03	n.a.	1151.670	122.268	49.68	n.a.	BMB*
2	6.77	n.a.	1008.927	123.858	50.32	n.a.	MB*
Total:			2160.597	246.126	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.97	n.a.	1001.023	108.535	96.66	n.a.	BMB*
2	6.69	n.a.	33.715	3.749	3.34	n.a.	BMB*
Total:			1034.738	112.284	100.00	0.000	

S41

Signal: DAD1 A, Sig=230, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
9.451	BB	0.2050	16707.0605	1291.1135	49.4664
10.120	BV	0.2178	17067.5352	1234.6218	50.5336
		Sum	33774.5957		

Signal: DAD1 A, Sig=230, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
9.481	BB	0.1862	11376.4307	936.7764	88.1561
10.165	BV	0.1837	1528.4406	127.1735	11.8439
		Sum	12904.8712		

6n

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.97	n.a.	549.255	58.575	50.08	n.a.	BMb*
2	6.38	n.a.	503.524	58.392	49.92	n.a.	bMB*
Total:			1052.779	116.967	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	5.98	n.a.	1202.476	130.377	94.05	n.a.	BM *
2	6.40	n.a.	70.629	8.241	5.95	n.a.	MB*
Total:			1273.104	138.618	100.00	0.000	

60

6p

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.54	n.a.	420.760	70.014	49.81	n.a.	BMB*
2	10.79	n.a.	324.880	70.561	50.19	n.a.	BMB*
Total:			745.640	140.575	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.56	n.a.	92.356	15.245	6.42	n.a.	BMB*
2	10.79	n.a.	988.128	222.331	93.58	n.a.	BMB*
Total:			1080.483	237.576	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.22	n.a.	574.314	90.324	50.17	n.a.	BMB*
2	9.11	n.a.	505.875	89.711	49.83	n.a.	BMB*
Total:			1080.189	180.036	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	8.21	n.a.	504.288	78.948	87.52	n.a.	BMb*
2	9.11	n.a.	63.962	11.253	12.48	n.a.	bMB*
Total:			568.250	90.202	100.00	0.000	

6q

700 201310-DAD #25	10	ZZQ-5-11-2+- PC-3 9	91 214 0.7	U WV	V_VIS_2 L:214 nm
			1 - 17.220		
600-			1		
- 500-			1	2 - 21.43	3
			1	1	
400-				1	
300-					
200-				- 11 -	
100-				11	
			11	- 11	
• 			/ \		
					min
0.0 2.5	5.0 7.5	10.0 12.5	15.0 17.5	20.0 22.5	25.3
No Ret Time	Peak Name	Hoight	Area Bel Area	Amount	Tuno

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	17.22	n.a.	623.245	216.114	49.85	n.a.	BMB
2	21.43	n.a.	483.199	217.448	50.15	n.a.	BMB
Total:			1106.444	433.562	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	16.62	n.a.	87.347	27.891	4.27	n.a.	BMB*
2	20.54	n.a.	1409.858	624.893	95.73	n.a.	BMB*
Total:			1497.204	652.783	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	23.75	n.a.	341.045	201.277	49.92	n.a.	BMB
2	34.00	n.a.	231.802	201.916	50.08	n.a.	BMB
Total:			572.847	403.193	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	23.77	n.a.	111.086	65.063	12.26	n.a.	BMB
2	33.76	n.a.	502.464	465.758	87.74	n.a.	BMB
Total:			613.550	530.821	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.04	n.a.	1107.950	208.864	49.99	n.a.	BM *
2	9.49	n.a.	1154.667	208.927	50.01	n.a.	MB*
Total:			2262.616	417.791	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.37	n.a.	39.494	6.952	7.11	n.a.	BM
2	9.80	n.a.	509.244	90.877	92.89	n.a.	MB
Total:			548.738	97.829	100.00	0.000	

6t

6u

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	12.23	n.a.	275.223	63.764	49.99	n.a.	BMB
2	14.41	n.a.	227.511	63.777	50.01	n.a.	BMB
Total:			502.733	127.542	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12.22	n.a.	137.808	31.854	44.74	n.a.	BMB
2	14.40	n.a.	140.789	39.341	55.26	n.a.	BMB
Total:			278.597	71.195	100.00	0.000	

6	W

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	%		
1	11.01	n.a.	197.454	38.408	49.93	n.a.	BM *
2	11.75	n.a.	184.675	38.518	50.07	n.a.	MB*
Total:			382.129	76.927	100.00	0.000	

1	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
		min		mAU	mAU*min	%		
1	1	11.09	n.a.	43.509	9.537	12.22	n.a.	BMb*
	2	11.83	n.a.	286.027	68.539	87.78	n.a.	bMB*
1	Total:			329.537	78.076	100.00	0.000	

2.36783e4 2094.89319

Area Percent Report

Peak 1	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.389	BV	0.1594	1.48449e4	1438.25928	37.8181
2	9.872	VV	0.2040	2.44086e4	1836.74048	62.1819
Total	s :			3.92535e4	3274.99976	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.55	n.a.	1296.085	238.518	49.80	n.a.	BM *
2	10.64	n.a.	1193.930	240.432	50.20	n.a.	M *
Total:			2490.016	478.950	100.00	0.000	

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	9.44	n.a.	1545.676	283.797	49.42	n.a.	BM *
2	10.53	n.a.	1427.641	290.510	50.58	n.a.	BMB
Total:			2973.317	574.307	100.00	0.000	

6y

