Hydrazide macrocycles as effective transmembrane channels for ammonium

Pengyang Xin, Liang Zhang, Pei Su, Jun-Li Hou* and Zhan-Ting Li*

Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, 220 Handan Road, Shanghai 200433, China.

*To whom correspondence should be addressed: houjl@fudan.edu.cn; ztli@fudan.edu.cn

Contents:

1. General	S2
2. Synthetic procedures and characterization data for 1-3	S2
3. Procedures for proton transport experiments	S11
4. Procedures for patch clamp experiments	S13
5. References	S17

1. General:

Egg yolk L-α-phosphatidylcholine was obtained from Sigma-Aldrich as chloroform solution (100 mg/mL). 1,2-diphytanoyl-*sn*-glycero-3-phosphocholine (diPhyPC) was obtained from Avanti Polar Lipids as chloroform solution (10 mg/mL). ¹H and ¹³C NMR spectra were recorded at 400 MHz with Mercury plus 400 spectrometer at 298 K. Chemical shifts were referenced to solvent residue. Mass spectra were recorded with Bruker MicroTOF II spectrometer by using positive or negative mode. The peptides were synthesized according to the classical liquid phase synthesis method by employing EDCI as condensation reagent.

2. Synthetic procedures and characterization data for 1-3:

Compound 5. To a solution of compound 4¹ (0.68 g, 3.00 mmol) in CH₃CN (100 mL) was added the chloride (5.33 g, 9.0 mmol), K₂CO₃ (2.49 g, 18 mmol), and KI (0.25 g, 1.5 mmol). The mixture was stirred at 60 °C for 12 h and then concentrated under reduced pressure. The residue was dissolved in ethyl acetate (200 mL). The organic solution was then washed with water (100 mL) and brine (100 mL), and dried over anhydrous Na₂SO₄. After removing of the solvent under reduced pressure, the resulting crude product was purified by column chromatography on silica gel to yield **5** as a white solid (3.87 g, 95%). ¹H NMR (CDCl₃): δ 8.69 (s, 1 H), 8.43 (d, *J* = 8 Hz, 2 H), 7.24-6.99 (m, 30 H), 6.86 (s, 1 H), 6.60 (d, *J* = 8 Hz, 1 H), 6.37 (s, 1 H), 6.31(d, *J* = 8 Hz, 2 H), 4.8 (m, 2 H), 4.66-4.58 (m, 4 H), 4.36 (m, 4 H), 3.95 (s, 6 H), 3.21 (d, *J* = 4 Hz, 1 H), 3.18 (d, *J* = 4 Hz, 1 H), 3.10-2.92 (m, 10 H), 1.34 (s, 18 H). ¹³C NMR (CDCl₃): δ 171.0, 169.9, 168.0, 164.6, 162.0, 137.6, 136.8, 136.4, 135.9, 129.5, 129.3, 129.0, 128.4, 128.3, 126.9, 126.7, 126.6, 111.5, 99.2, 82.2, 67.6, 54.1, 53.7, 52.2, 38.4, 38.0, 37.5, 27.8. HR-MS (ESI-TOF): Calcd. For C₇₆H₈₄N₆O₁₆Na [M+Na]⁺: 1359.5842. Found: 1359.5836.

Fig. S1 ¹H NMR spectrum (400 MHz) of compound 5 in CDCl₃ at 25 °C.

Fig. S2 ¹³C NMR spectrum (100 MHz) of compound 5 in CDCl₃ at 25 °C.

Fig. S3 HR-MS of compound 5.

Compound 6. To a solution of compound **5** (1.34 g, 1.00 mmol) in EtOH/THF (20/30 mL) was added hydrazine hydrate (85%, 9.7 mL, 0.20 mol). The mixture was stirred at 50 °C for 24 h. The precipitation formed was collected by filtration, washed with water and then dried in vacuo to yield compound **6** as white solid (0.60 g, 45%). ¹H NMR (400 MHz, DMSO-d₆): δ 9.61 (s, 2 H), 8.51-8.48 (m, 4 H), 8.32 (d, *J* = 8 Hz, 2H), 8.16 (s, 1 H), 7.28-7.03 (m, 30 H), 6.26 (s, 1 H), 4.61-4.56(m, 6 H), 4.42-4.37 (m, 8 H), 3.04-2.96 (m, 8 H), 2.82-2.65 (m, 4 H), 1.30 (s, 18 H). ¹³C NMR (100 MHz, DMSO-d₆): δ 171.5, 171.3, 170.9, 167.5, 164.4, 158.7, 138.1, 138.0, 137.6, 129.8, 129.759, 129.6, 128.8, 128.6, 128.4, 127.1, 126.8, 126.7, 116.1, 81.2, 68.0, 54.8, 54.1, 38.3, 37.4, 28.1. HR-MS (ESI-TOF): Calcd. for C₇₄H₈₅N₁₀O₁₄ [M+H]⁺: 1337.6247. Found: 1337.6229.

Fig. S6 HR-MS of compound 6.

Compound 8. The solution of compound 7 (0.12 g, 0.50 mmol) in anhydrous dichloromethane (10 mL) was added dropwise to the mixture of compound 6 (0.67 g, 0.50 mmol) and DMAP (122mg, 1.0 mmol) in anhydrous dichloromethane (20 mL) at 0 °C. The mixture was stirred at that temperature for 2 h. The reaction mixture was then stirred under reflux for 24 h. The mixture was concentrated under reduced pressure. The residue was then dissolved in dichloromethane (50 mL). The organic solution was washed with dilute HCl (0.5 M, 50 mL), water (50 mL) and brine (50 mL), and dried over anhydrous Na₂SO₄. After removing of the solvent with a rotavapor, the resulting crude product was purified by column chromatography on silica gel to yield compound 8 as a white solid (0.47 g, 63%). ¹H NMR (400 MHz, DMSO-d₆): δ 10.45-10.39 (m, 10H), 8.51-8.33 (m, 20H), 7.74-7.70 (m, 6H), 7.22-7.07 (m, 96H), 6.33-6.29 (m, 3H), 4.68-4.34(m, 30H), 4.01 (s, 6H), 3.9 (s, 3H), 3.04-2.96 (m, 24H), 2.80-2.67 (m, 12H), 1.28 (s, 54H). ¹³C NMR (100 MHz, DMSO-d₆): δ 171.3, 170.8, 167.3, 165.4, 163.9, 159.6, 137.9, 137.5, 129.7, 129.5, 128.6, 128.5, 127.0, 126.7, 115.3, 81.2, 68.1, 63.5, 54.7, 54.1, 38.2, 38.0, 37.4, 28.0. HRMS: Calcd for C₂₄₉H₂₆₄N₃₀Na₂O₅₁ [M+Na]²⁺: 2268.9425. Found: 2268.9414.

Fig. S7 ¹H NMR spectrum (400 MHz) of compound 8 in DMSO-d₆ at 25 °C.

Fig. S8 ¹³C NMR spectrum (100 MHz) of compound 8 in DMSO-d₆ at 25 °C.

Fig. S9 HR-MS of compound 8.

Compound 10. This compound was synthesized as a white solid in 51% yield from the reaction of compounds **6** and **9** according to the procedure described for compound **8**. ¹H NMR (400 MHz, DMSO-d₆): δ 10.80 (s, 5H), 10.38 (s, 5H), 8.55-8.14 (m, 29H), 7.66-7.64 (m, 3H), 7.22-7.07 (m, 93H), 6.25 (br, 3H), 4.65-4.33(m, 30H), 3.02-2.94 (m, 24H), 2.75-2.67 (m, 12H), 1.27 (s, 54H). ¹³C NMR (100 MHz, DMSO-d₆): δ 171.3, 170.8, 167.2, 165.4, 164.1, 159.5, 137.8, 137.5, 133.3, 129.6, 129.4, 128.6, 128.4, 128.3, 126.9, 126.7, 115.3, 81.1, 67.9, 54.7, 54.0, 38.1, 38.0, 37.3, 27.9. HRMS: Calcd for C₂₄₆H₂₅₈N₃₀Na₂O₄₈ [M+Na]²⁺: 2223.9266. Found: 2223.9249.

Fig. S10 ¹H NMR spectrum (400 MHz) of compound 10 in DMSO-d₆ at 25 °C.

Fig. S11 ¹³C NMR spectrum (100 MHz) of compound 10 in DMSO-d₆ at 25 °C.

Fig. S12 HR-MS of compound 10.

Compound 12. This compound was synthesized as a whit solid in 59% yield from the reaction of **6** and **11** according to the procedure described for **8**. ¹H NMR (400 MHz, DMSO) δ 10.93 (s, 5H), 10.44 (s, 5H), 8.68-8.14 (m, 41H), 7.20-7.07 (m, 90H), 6.35 (br, 3H), 4.66-4.34(m, 30H), 2.99-2.94 (br, 24H), 2.74 (br, 12H), 1.26 (s, 54H). ¹³C NMR (100 MHz, DMSO) δ 171.3, 170.8, 167.3, 165.7, 164.2, 159.5, 137.9, 137.9, 137.5, 131.9, 131.7, 131.1, 129.6, 129.4, 128.6, 128.4, 126.9, 126.6, 115.5, 81.1, 68.0, 54.7, 54.0, 38.1, 37.9, 37.3, 27.9. HRMS: calcd for C₂₅₈H₂₆₄N₃₀Na₂O₄₈ [M+Na]²⁺ 2298.9501, found 2298.9488.

Fig. S13 ¹H NMR spectrum (400 MHz) of compound 12 in DMSO-d₆ at 25 °C.

Fig. S14 ¹³C NMR spectrum (100 MHz) of compound 12 in DMSO-d₆ at 25 °C.

Fig. S15 HR-MS of compound 12.

Compound 1. To a solution of compound **8** (90 mg, 0.020 mmol) in dichloromethane (10 mL) was added trifluoroacetic acid (1.0 mL). The mixture was stirred at room temperature for 24 h and then concentrated under reduced pressure. The crude product was washed with diethyl ether and then recrystallized from ethanol to yield compound **1** as a aple yellow solid (73 mg, 88%). ¹H NMR (400 MHz, DMSO-d₆): δ 12.81 (s, 6H), 10.46-10.41 (m, 10H), 8.54-8.33 (m, 20H), 7.73-7.67 (m, 6H), 7.22-7.07 (m, 96H), 6.31-6.27 (br, 3H), 4.65-4.31(m, 30H), 4.01 (s, 6H), 3.90 (s, 3H), 3.08-2.89 (m, 24H), 2.77-2.67 (m, 12H). ¹³C NMR (100 MHz, DMSO-d₆): δ 173.1, 171.3, 167.3, 165.4, 163.9, 159.6, 137.9, 129.6, 129.6, 129.5, 128.7, 128.5, 126.9, 126.7, 115.3, 68.0, 63.6, 54.3, 54.0, 38.2, 38.0, 37.2. HRMS: Calcd for C₂₂₅H₂₂₀N₃₁NaO₅₁ [M+Na+NH₄]²⁺: 2098.2770. Found: 2098.2769.

Fig. S16 ¹H NMR spectrum (400 MHz) of compound 1 in DMSO-d₆ at 25 °C.

Fig. S17 ¹³C NMR spectrum (100 MHz) of compound 1 in DMSO-d₆ at 25 °C.

Fig. S18 HR-MS of compound 1.

Compound 2. This compound was synthesized in 84% yield as a pale yellow solid from compound **10** according to the procedure described for compound **1**. ¹H NMR (400 MHz, DMSO-d₆): δ 12.80 (br, 6H), 10.80 (s, 5H), 10.38 (s, 5H), 8.56-8.14 (m, 29H), 7.66-7.65 (m, 3H), 7.21-7.05 (m, 93H), 6.25 (br, 3H), 4.65-4.33(m, 30H), 3.07-2.91 (m, 24H), 2.76-2.71 (m, 12H). ¹³C NMR (100 MHz, DMSO-d₆): δ 173.1, 171.3, 168.3, 167.2, 165.4, 159.5, 137.8, 137.8, 133.4, 129.5, 129.4, 128.6, 128.4, 128.3, 126.9, 126.6, 54.1, 53.9, 38.1, 38.0, 37.1. HRMS: calcd for C₂₂₂H₂₁0N₃₀Na₂O₄₈ [M+Na]²⁺: 2055.7388. Found: 2055.7381.

Fig. S19 ¹H NMR spectrum (400 MHz) of compound 2 in DMSO-d₆ at 25 °C.

Fig. S20 ¹³C NMR spectrum (100 MHz) of compound 2 in DMSO-d₆ at 25 °C.

Fig. S21 HR-MS of compound 2.

Compound 3. This compound was synthesized in 91% yield as a pale yellow solid from compound **12** according to the procedure described for compound **1**. ¹H NMR (400 MHz, DMSO-d₆): δ 12.78 (br, 6H), 10.91 (s, 5H), 10.44 (s, 5H), 8.68-8.15 (m, 41H), 7.21-7.07 (m, 90H), 6.35 (br, 3H), 4.66-4.36(m, 30H), 3.03-2.92 (m, 24H), 2.74 (br, 12H). ¹³C NMR (100 MHz, DMSO-d₆): δ 173.1, 171.2, 167.3, 165.7, 164.3, 159.6, 159.5, 137.9, 137.8, 131.7, 131.1, 129.6, 129.5, 129.4, 128.6, 128.4, 126.8, 126.6, 115.4, 81.1, 68.1, 54.2, 54.0, 53.9, 38.0, 37.1. HRMS: calcd for C₂₃₄H₂₁₈N₃₀O₄₈ [M+H]²⁺ 2108.7804, found 2108.7778.

Fig. S22 ¹H NMR spectrum (400 MHz) of compound 3 in DMSO-d₆ at 25 °C.

Fig. S23 ¹³C NMR spectrum (100 MHz) of compound 3 in DMSO-d₆ at 25 °C.

Fig. S24 HR-MS of compound 3.

3. Procedures for proton transport experiments:²

Preparation of HPTS containing large unilamellar vesicles (LUVs): EYPC (15 mg, 20 μ mol) in CHCl₃ (0.15 mL) was diluted with CHCl₃ (5.0 mL). The solution was evaporated under reduced pressure, and the resulting thin film was dried under high vacuum for 3 h. The lipid film was hydrated with HEPES buffer solution (1.5 mL, HEPES (10 mM), KCl (100 mM), pH = 7.2) containing HPTS (0.1 mM) at 40 °C for 2 h to give a milky suspension. The resulting suspension was subjected to ten freeze-thaw cycles by using liquid nitrogen to freeze and warm water bath to thaw. The suspension was dialyzed with membrane tube (MWCO = 14000) against the same HEPES buffer solution (200 mL, without HPTS) for six times to remove unentrapped HPTS and to produce vesicle suspension ([lipid] = 13.3 mM).

Fluorescent experiments: HEPES buffer solution (2.0 mL, HEPES (10 mM), KCl (100 mM), pH = 6.0) and the prepared vesicle suspension (13.3 mM, 100 μ L) were placed in a fluorimetric cuvette. To the cuvette, the solution of compounds **1-3** in DMSO (5 μ L) was added to reach a required channel concentration (molar ratio relative to lipid, represented by *x*) with gentle stirring. Fluorescent intensity (I_t) was continuously monitored at 510 nm (excitation at 460 nm) in 10 min. Then, Triton aqueous solution (50%, 10 μ L) was added with gentle stirring. The intensity was monitored until the fluorescent intensity (I_{∞}) did not change. The collected data were

then normalized into the fractional change in fluorescence given by $(I_t-I_0)/(I_{\infty}-I_0)$, where I_0 is the initial intensity.

Fig. S25 Changes in the normalized fluorescent intensity of HPTS ($\lambda_{ex} = 460$ nm, $\lambda_{em} = 510$ nm) in vesicles with the concentration of compound 1 (molar ratio relative to lipid, represented by *x*). By fitting the plot with the Hill equation, the effective concentration needed for 50% activity (EC₅₀) for 1 was determined to be $0.0035(\pm 0.0001)$ % and the *n* value was determined to be 1.2 ± 0.1 .

Fig. S26 Changes in the normalized fluorescent intensity of HPTS ($\lambda_{ex} = 460$ nm, $\lambda_{emission} = 510$ nm) in vesicles with the concentration of compound 2 (molar ratio relative to lipid, represented by *x*). By fitting the plot with the Hill equation, the effective concentration needed for 50% activity (EC₅₀) for 2 was determined to be

 $0.0035(\pm 0.0003)$ % and the *n* value was determined to be 1.3 ± 0.1 .

Fig. S27 Changes in the normalized fluorescent intensity of HPTS ($\lambda_{ex} = 460$ nm, $\lambda_{emission} = 510$ nm) in vesicles with the concentration of compound **3** (molar ratio relative to lipid, represented by *x*). By fitting the plot with the Hill equation, the effective concentration needed for 50% activity (EC₅₀) for **3** was determined to be

 $0.0031(\pm 0.0004)$ % and the *n* value was determined to be 1.1 ± 0.2 .

4. Procedures for patch clamp experiments:³

The solution of diPhyPC in chloroform (10 mg/ml, 20 μ L) was evaporated with nitrogen gas to form a thin film and re-dissolved in n-decane (5 μ L). The lipid solution (0.5 μ L) was injected on to the aperture (diameter = 200 μ m) of the Delrin® cup (Warner Instruments, Hamden, CT) and then evaporated with nitrogen gas. In a typical experiment for measurement of the channel conductance for an ion, the chamber (*cis* side) and the Delrin cup (*trans* side) were filled with aqueous MCl solution (1.0 M, 1.0 mL, M = NH₄⁺, Cs⁺, Rb⁺, K⁺, Na⁺ or AcCh⁺). Ag-AgCl electrodes were applied directly to the two solutions and the *cis* one was grounded. Planar lipid bilayer was formed by painting the lipids solution (1.0 μ L) around the pretreated aperture and by judgment of capacitance (80-120 pF). The solution of the test channel **1-3** DMSO (1 mM, 0.5 μ L) was added to the *cis* chamber and the solution was stirred for 5 min. Membrane currents were measured using a Warner BC-535D bilayer clamp amplifier and were collected by PatchMaster (HEKA) with sample interval at 5 kHz and then filtered with a 8-pole Bessel filter at 1 kHz (HEKA). The data were analyzed by FitMaster (HEKA) with a digital filter at 100 Hz.

For the measurement of the transport selectivity of M^+ ($M = NH_4^+$, Cs^+ , Rb^+ , K^+ , Na^+ or ACh⁺) over K⁺, the *cis* chamber was charged with MCl (1.0 M) and the *trans* one was charged with KCl (1.0 M). For the measurement of the transport selectivity of Cl⁻ over K⁺, the *cis* and *trans* chambers were charged with KCl of 0.3 M and 1.0 M,

respectively.

Fig. S28 Schematic representation for the patch clamp experiments with planar lipid bilayer. The redox reactions on both Ag/AgCl electrodes were inserted to illustrate the nature of charge balance during M⁺ transmembrane transport.

Fig. S29 Current-voltage relationship of channel **1** by using unsymmetrical solution at both side of the bilayer. *trans* chamber: KCl (1.0 M), cis chamber: (a) NH₄Cl (1.0 M), (b) CsCl (1.0 M), (c) RbCl (1.0 M), (d) NaCl (1.0 M), (e) KCl (0.3 M).

Fig. S30 Current-voltage relationship of channel **2** by using unsymmetrical solution at both side of the bilayer. *trans* chamber: KCl (1.0 M), cis chamber: (a) NH₄Cl (1.0 M), (b) CsCl (1.0 M), (c) RbCl (1.0 M), (d) NaCl (1.0 M), (e) KCl (0.3 M).

Fig. S31 Current-voltage relationship of channel **3** by using unsymmetrical solution at both side of the bilayer. *trans* chamber: KCl (1.0 M), cis chamber: (a) NH₄Cl (1.0 M), (b) CsCl (1.0 M), (c) RbCl (1.0 M), (d) NaCl (1.0 M), (e) KCl (0.3 M).

5. References:

- 1 J.-L. Hou, X.-B. Shao, G.-J. Chen, Y.-X. Zhou, X.-K. Jiang, Z.-T. Li, J. Am. Chem. Soc. 2004, **126**, 12386.
- 2 X.-B. Hu, Z. Chen, G. Tang, J.-L. Hou, Z.-T. Li, J. Am. Chem. Soc. 2012, 134, 8384.
- 3 R. H. Ashley, *Ion Channels: A Practical Approach*, Oxford University Press, Oxford, 1995.