### **Electronic Supplementary Information**

# On Zn(II) 2,2'-Bis-dipyrrin Circular Helicates

Stéphane A. Baudron,\* Hervé Ruffin and Mir Wais Hosseini\*

Laboratoire de Tectonique Moléculaire, UMR UdS-CNRS 7140, icFRC

Institut Le Bel, Université de Strasbourg

4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg cedex, France

Fax: (+) 33 3 68 85 13 25

E-mail: hosseini@unistra.fr; sbaudron@unistra.fr



Scheme ESI1 Synthetic route for the formation of [2+2] helicate 4, tri- [3+3] and tetranuclear [4+4] complexes 5 and 6

### Synthesis

Ni(II) complex **1a** was synthesized following the protocol described for the Cu(II) analogue.<sup>1</sup> Complex **1b** was prepared according to a reported procedure.<sup>2</sup> <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded at 25 °C on a Bruker AV300 (300 MHz), AV400 (400 MHz) or AV500 (500 MHz) with the deuterated solvent as the internal reference. NMR chemical shifts and *J* values are given in parts per million (ppm) and in Hertz, respectively. Mass spectrometry was performed by the Service commun d'analyse (University of Strasbourg).

Complex **1a**: To a CHCl<sub>3</sub> (750 mL) solution of the corresponding dipyrromethane (3 g, 11.1 mmol), a benzene (750 mL) solution of DDQ (2.60 g, 11.4 mmol) was added dropwise. After stirring at room temperature for 2 hours, a THF (100 mL) solution of Ni(BF<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub> (1.6 g, mmol) was added. The mixture was left to stir for 3 days. After evaporation to dryness, purification by column chromatography (SiO<sub>2</sub>, CHCl<sub>3</sub> to CHCl<sub>3</sub>/AcOEt 1/1) afforded complex **1a** as a red-green dichroic solid (1.23 g, 36 %).  $\delta_{\rm H}$  (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 2.55 (s, 6H), 6.81 (d, *J* = 4.6 Hz, 4H), 7.27-7.29 (m, 4H), 7.35-7.37 (m, 4H), 7.44 (br s, 4H), 9.23 (br s, 4H).  $\delta_{\rm C}$  (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 15.1, 124.7, 130.6, 131.4, 133.3, 138.5, 140.9, 143.4, 143.6, 167.5.  $\lambda_{\rm max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 256 (42500), 380 (25500), 475 (45500). Single crystals were obtained by *n*-pentane vapor diffusion into a solution of the complex in CHCl<sub>3</sub>.



Fig. ESI1 <sup>1</sup>H NMR spectrum of complex 1a in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. ESI2 <sup>13</sup>C NMR spectrum of complex 1a in  $CD_2Cl_2$ .

Complex **2a**: A toluene (100 mL) solution of DDQ (0.339 g, 1.5 mmol) was added to a toluene (300 mL) solution of complex **1a** (0.800 g, 1.3 mmol) and the mixture was heated at reflux overnight. TLC (SiO<sub>2</sub>, CHCl<sub>3</sub>) revealed the presence of unreacted complex and DDQ (160 mg, 0.7 mmol) was added. After reflux for an additional day, the mixture was evaporated to dryness and the residue was purified by column chromatography (SiO<sub>2</sub>, CHCl<sub>3</sub>) affording **2a** as a brown solid (0.552 g, 69%).  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 2.55 (s, 6H), 5.96 (m, 2H), 6.41 (dd, *J* = 1.4 and 4.1 Hz, 2H), 6.60 (d, *J* = 4.4 Hz, 2H), 6.75 (d, *J* = 4.4 Hz, 2H), 6.78 (d, *J* = 4.1 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 4H), 7.48 (d, *J* = 8.0 Hz, 4H).  $\delta_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 15.5, 115.3, 117.1, 125.1, 129.9, 131.5, 133.4, 134.6, 135.8, 138.8, 140.5, 143.2, 153.6, 160.6.  $\lambda_{\rm max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 257 (33000), 373 (19000), 419 (37500), 565 (11000), 760 (5000), 838 (10000). HRMS (ESI), *m/z*: [M]<sup>+</sup> calcd. for C<sub>34</sub>H<sub>24</sub>N<sub>4</sub>NiS<sub>2</sub>: 586.0790; found: 586.0738. Single crystals were obtained by Et<sub>2</sub>O vapor diffusion into a solution of the complex in CH<sub>2</sub>Cl<sub>2</sub>.



Fig. ESI3 <sup>1</sup>H NMR spectrum of complex 2a in CDCl<sub>3</sub>.



Fig. ESI4 <sup>13</sup>C NMR spectrum of complex 2a in CDCl<sub>3</sub>.

Bis-dipyrrin **3a**: To a CHCl<sub>3</sub> (75 mL) solution of complex **2a** (0.515 g, 0.88 mmol), a 12 M solution of HCl (5 mL) was added and the mixture was stirred at room temperature for 5 hours. Upon addition of a saturated Na<sub>2</sub>CO<sub>3</sub> solution, the organic layer turned from green to dark blue. The organic phase was recovered and washed with H<sub>2</sub>O (2x100 mL). The organics were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated to dryness to afford ligand **3a**(CHCl<sub>3</sub>) as a dark blue solid (0.510 g, 89%).  $\delta_{\rm H}$  (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 2.57 (s, 6H), 6.43 (dd, *J* = 1.8 and 4.8 Hz 2H), 6.61 (dd, *J* = 1.1 and 4.1 Hz 2H), 6.83 (d, *J* = 4.1 Hz, 2H), 7.32 (s, 1H, CHCl<sub>3</sub>), 7.34-7.36 (m 4H), 7.47-7.49 (m, 4H), 7.61 (br s, 2H).  $\delta_{\rm C}$  (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 15.1, 115.6, 120.2, 125.0, 126.1, 131.5, 132.1, 133.6, 137.9, 138.6, 140.3, 140.6, 145.8, 153.4.  $\lambda_{\rm max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 262 (24000), 347 (11500), 411 (29000), 560 (32000), 594 (37000), 730 (2600). HRMS (ESI), *m/z*: [M+H]<sup>+</sup> calcd. for C<sub>32</sub>H<sub>27</sub>N<sub>4</sub>S<sub>2</sub>: 531.1672; found: 555.1678. Single crystals were obtained by slow evaporation of a CHCl<sub>3</sub> solution of the bis-dipyrrin.



Fig. ESI5 <sup>1</sup>H NMR spectrum of bis-dipyrrin 3a in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. ESI6 <sup>13</sup>C NMR spectrum of bis-dipyrrin 3a in CD<sub>2</sub>Cl<sub>2</sub>.

Helicate **4a**: A MeOH (20 mL) solution of Zn(OAc)<sub>2</sub> (H<sub>2</sub>O)<sub>2</sub> (85 mg, 0.38 mmol) was added to a CHCl<sub>3</sub> (70 mL) solution of ligand **3a**(CHCl<sub>3</sub>) (200 mg, 0.31 mmol). The mixture was stirred overnight at room temperature. After evaporation under vacuum, the residue was washed with MeOH (3x30 mL) to afford helicate **4a** (168 mg, 92%).  $\delta_{\rm H}$  (300 MHz, CDCl<sub>3</sub>) . 2.58 (s, 12H), 6.28 (dd, J = 1.0 and 4.2 Hz, 4H), 6.36 (d, J = 4.2 Hz, 4H), 6.42 (d, J = 4.2 Hz, 4H), 6.60 (d, J = 1.0 and 4.2 Hz, 4H), 6.98 (m, 8H), 7.09 (dd, J = 1.4 and 8.0 Hz, 4H), 7.25 (dd, J = 1.4 and 8.0 Hz, 4H, overlap with solvent), 7.39 (dd, J = 1.4 and 8.0 Hz, 4H).  $\lambda_{\rm max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 260 (48000), 300 (20000), 381 (51000), 426 (110000), 468 (24000), 582 (41000), 639 (50000). HRMS (ESI), m/z: [M]<sup>+</sup> calcd. for C<sub>64</sub>H<sub>48</sub>N<sub>8</sub>S<sub>4</sub>Zn<sub>2</sub>: 1184.1462; found: 1184.1469. Single crystals were obtained by slow evaporation of a CHCl<sub>3</sub> solution of the helicate.



Fig. ESI7 <sup>1</sup>H NMR spectrum of helicate 4a in CDCl<sub>3</sub>.



Fig. ESI8 ESI mass spectrum of helicate 4a.

Tri- and tetra-nuclear complexes **5a** and **6a**: Addition of a MeOH (30 mL) solution of Zn(OAc)<sub>2</sub> (H<sub>2</sub>O)<sub>2</sub> (21 mg, 0.09 mmol) to a CH<sub>2</sub>Cl<sub>2</sub> (6 mL) solution of ligand **3a**(CHCl<sub>3</sub>) (60 mg, 0.09 mmol) resulted in the immediate formation of a precipitate. The mixture was stirred for 30 min at room temperature and the solid was recovered by centrifugation. It was suspended in AcOEt (150 mL). Filtration of the suspension allowed the isolation of helicate **4a** as a solid (35 mg, 64%). The filtrate was concentrated and purified by column chromatography (SiO<sub>2</sub>, Cyclohexane/AcOEt 1/1) to afford complex **5a** (13 mg, 24%) and **6a** as traces. Analytical data for **5a**:  $\delta_{\rm H}$  (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 2.70 (s, 18H), 6.28 (d, *J* = 4.4 Hz, 6H), 6.37 (d, *J* = 4.4 Hz, 6H), 6.45 (dd, *J* = 1.2 and 4.2 Hz, 6H), 6.70 (dd, *J* = 1.2 and 4.2 Hz, 6H), 7.03 (dd, *J* = 1.2 and 7.8 Hz, 6H), 7.24 (dd, *J* = 1.4 and 7.8 Hz, 6H), 7.32 (dd, *J* = 1.2 and 8.0 Hz, 6H), 7.39 (dd, *J* = 1.5 and 8.0 Hz, 6H), 7.61 (t, *J* = 1.2 Hz, 6H). HRMS (ESI), *m/z*: [M+Na]<sup>+</sup> calcd. for C<sub>96</sub>H<sub>72</sub>N<sub>12</sub>NaS<sub>6</sub>Zn<sub>3</sub>: 1799.2094; found: 1799.2126. Single crystals were obtained by slow diffusion of *n*-pentane vapour in an AcOEt solution of the complex.







Fig. ESI10 ESI mass spectrum of trinuclear complex 5a.

Complex **2b**: A toluene (300 mL) solution of DDQ (0.820 g, 3.6 mmol) was added to a toluene (300 mL) solution of complex **1b** (2.0 g, 3.3 mmol). Upon heating at reflux temperature for 48 hours, the mixture turned from red to brown. After evaporation of the solvent under vacuum, the residue was purified by column chromatography (SiO<sub>2</sub>, CHCl<sub>3</sub>) affording **2b** as a brown solid (0.717 g, 36%).  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>) 3.96 (s, 6H), 5.92 (d, J = 1.0 Hz, 2 H), 6.42 (dd, J = 1.2 and 4.4 Hz, 2H), 6.60 (d, J = 4.4 Hz, 2H), 6.66 (d, J = 4.4 Hz, 2H), 6.71 (dd, J = 1.0 and 4.5 Hz, 2H), 7.60-7.62 (m, 4H), 8.11-8.13 (m, 4H).  $\delta_{\rm C}$  (125 MHz, CDCl<sub>3</sub>) 55.4, 115.7, 117.5, 128.9, 129.9, 130.7, 130.9, 134.6, 135.5, 138.6, 141.3, 142.1, 153.9, 161.5, 166.7.  $\lambda_{\rm max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 308 (18000), 353 (21000), 417 (35000), 432 (32500), 570 (12000), 770 (5200), 848 (9600). HRMS (ESI), *m/z*: [M]<sup>+</sup> calcd. for C<sub>34</sub>H<sub>24</sub>N<sub>4</sub>NiO<sub>4</sub>: 610.1146; found: 610.1139. Single crystals were obtained by *n*-pentane vapor diffusion into a solution of the complex in CHCl<sub>3</sub>.



Fig. ESI11 <sup>1</sup>H NMR spectrum of complex 2b in CDCl<sub>3</sub>.



Fig. ESI12 <sup>13</sup>C NMR spectrum of complex 2b in CDCl<sub>3</sub>.

Bis-dipyrrin **3b**: To a CHCl<sub>3</sub> (50 mL) solution of complex **2b** (0.700 g, 1. 1 mmol), a 12 M solution of HCl (8 mL) was added and the mixture was stirred at room temperature for 5 hours. Upon addition of a saturated Na<sub>2</sub>CO<sub>3</sub> solution, the organic layer turned from green to dark blue. The organic phase was recovered and washed with H<sub>2</sub>O (2x100 mL). The organics were dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated to dryness to afford ligand **3b** as a dark blue solid (0.556 g, 89%).  $\delta_{\rm H}$  (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 3.96 (s, 6H), 6.42-6.44 (m, 2H), 6.53 (d, *J* = 4.1 Hz, 2H), 6.74 (d, *J* = 4.1 Hz, 2H), 7.06 (d, *J* = 4.1 Hz, 2H), 7.61-7.63 (m, 6H), 8.13-8.15 (m, 4H).  $\delta_{\rm C}$  (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 52.3, 116.2, 120.7, 126.3, 129.0, 130.8, 131.1, 131.9, 138.7, 138.8, 139.4, 141.8, 145.7, 153.6, 166.6.  $\lambda_{\rm max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 330 (22500), 412 (23500), 560 (34000), 590 (39000). HRMS (ESI), *m/z*: [M+H]<sup>+</sup> calcd. for C<sub>34</sub>H<sub>27</sub>N<sub>4</sub>O<sub>4</sub>: 555.2027; found: 555.2050. Single crystals were obtained by slow evaporation of a CHCl<sub>3</sub> solution of the bis-dipyrrin.



Fig. ESI13 <sup>1</sup>H NMR spectrum of bis-dipyrrin 3b in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. ESI14 <sup>13</sup>C NMR spectrum of bis-dipyrrin **3b** in CD<sub>2</sub>Cl<sub>2</sub>.

Helicate **4b**: A MeOH (10 mL) solution of Zn(OAc)<sub>2</sub> (H<sub>2</sub>O)<sub>2</sub> (25 mg, 0.11 mmol) was added to a CHCl<sub>3</sub> (20 mL) solution of ligand **3b** (60 mg, 0.11 mmol). The mixture was stirred overnight at room temperature. After evaporation under vacuum, the residue was washed with MeOH (5x15 mL) to afford helicate **4b** (66 mg, 98%).  $\delta_{\rm H}$  (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 3.97 (s, 12H), 6.30 (dd, J = 1.4 and 4.1 Hz, 4H), 6.38 (d, J = 4.1 Hz, 4H), 6.47 (d, J = 4.1 Hz, 4H), 6.53 (dd, J = 1.1 and 4.1 Hz, 4H), 6.93 (t, J = 1.1 Hz, 4H), 7.13 (dd, J = 1.4 and 8.0 Hz, 4H), 7.56 (dd, J= 1.4 and 8.0 Hz, 4H), 7.90 (dd, J = 1.5 and 8.0 Hz, 4H), 8.08 (dd, J = 1.5 and 8.0 Hz, 4H).  $\lambda_{max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 283 (35000), 338 (40000), 428 (87000), 468 (19000), 583 (36000), 635 (47000). HRMS (ESI), m/z: [M+H]<sup>+</sup> calcd. for C<sub>68</sub>H<sub>49</sub>N<sub>8</sub>O<sub>8</sub>Zn<sub>2</sub>: 1233.2251; found: 1233.2176. Single crystals were obtained by slow diffusion of a MeOH solution of Zn(OAc)<sub>2</sub> (H<sub>2</sub>O)<sub>2</sub> into a CHCl<sub>3</sub> solution of the ligand **3b**.



Fig. ESI15 <sup>1</sup>H NMR spectrum of helicate 4a in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. ESI16 ESI mass spectrum of the helicate 4b.

Tri- and tetra-nuclear complexes **5b** and **6b**: Addition of a MeOH (120 mL) solution of Zn(OAc)<sub>2</sub> (H<sub>2</sub>O)<sub>2</sub> (95 mg, 0.43 mmol) to a CH<sub>2</sub>Cl<sub>2</sub> (24 mL) solution of ligand **3b** (240 mg, 0.43 mmol) resulted in the immediate formation of a precipitate. The mixture was stirred for 40 min at room temperature and the solid was recovered by centrifugation and washed with MeOH (40 mL). It was suspended in AcOEt (500 mL). Filtration of the suspension allowed the isolation of helicate **4b** as a solid (211 mg, 61%). The filtrate and the MeOH solution were concentrated and purified by column chromatography (SiO<sub>2</sub>, Cyclohexane/AcOEt 1/1) to afford complex **5b** (39 mg, 15%) and **6b** (25 mg, 9%) Analytical data for **5b**:  $\delta_{\rm H}$  (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 4.11 (s, 18H), 6.21 (d, *J* = 4.3 Hz, 6H), 6.37 (d, *J* = 4.3 Hz, 6H), 6.46 (dd, *J* = 1.2 and 4.3 Hz, 6H), 6.62 (dd, *J* = 1.0 and 4.3 Hz, 6H), 7.19 (m, 6H), 7.56 (m, 6H), 7.65 (t, *J* = 1.2 Hz 6H), 8.11 (m, 12H).  $\lambda_{max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\epsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 275 (52000), 336 (46000), 353 (54000), 433 (17000), 463 (22000), 614 (245000), 656 (183000), 697 (135000). HRMS (ESI), *m/z*: [M+Na]<sup>+</sup> calcd. for C<sub>102</sub>H<sub>72</sub>N<sub>12</sub>NaO<sub>12</sub>Zn<sub>3</sub>: 1871.3159; found: 1871.3065. Single crystals were obtained by slow diffusion of *n*-pentane vapour in a CHCl<sub>3</sub> solution of **5b**.



Fig. ESI17 <sup>1</sup>H NMR spectrum of trinuclear complex 5b in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. ESI18 ESI mass spectrum of the trinuclear complex 5b.

Analytical data for **6b**:  $\delta_{\rm H}$  (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>) 4.06 (s, 12H), 4.17 (s, 12H), 5.46 (d, J = 4.2 Hz, 4H), 5.74 (d, J = 4.2 Hz, 4H), 6.24 (d, J = 4.2 Hz, 4H), 6.32 (dd, J = 1.1 and 4.2 Hz, 4H), 6.36 (dd, J = 1.1 and 4.2 Hz, 4H), 6.40 (dd, J = 1.1 and 4.2 Hz, 4H), 6.48 (dd, J = 1.1 and 4.2 Hz, 4H), 6.70 (dd, J = 1.4 and 8.0 Hz, 4H), 7.22 (dd, J = 1.4 and 7.8 Hz, 4H), 7.34 (m, 8H), 7.46 (dd, J = 1.2 and 7.8 Hz, 4H), 7.55 (m, 8H), 8.07 (dd, J = 1.4 and 7.7 Hz, 4H), 8.15 (dd, J = 1.6 and 7.7 Hz, 4H), 8.22 (dd, J = 1.4 and 8.0 Hz, 4H).  $\lambda_{\rm max}$ (CH<sub>2</sub>Cl<sub>2</sub>)/nm ( $\varepsilon$ /mol<sup>-1</sup> L cm<sup>-1</sup>): 279 (75000), 332 (63500), 360 (75000), 466 (64500), 483 (56000), 606 (261000), 649 (231000), 676 (209000). HRMS (ESI), m/z: [M+Na]<sup>+</sup> calcd. for C<sub>136</sub>H<sub>94</sub>N<sub>16</sub>NaO<sub>16</sub>Zn<sub>4</sub>: 2494.4230; found: 2494.3934. Single crystals were obtained by slow diffusion of Et<sub>2</sub>O vapour in a toluene solution of **6b** 



Fig. ESI19 <sup>1</sup>H NMR spectrum of tetranuclear complex 6b in CD<sub>2</sub>Cl<sub>2</sub>.



Fig. ESI20 ESI mass spectrum of tetranuclear complex 6b.



Fig. ESI21 DOSY NMR spectra in  $CD_2Cl_2$  of pure 4b (top), 5b (middle) and 6b (bottom) at 25°C.



Fig. ESI22 DOSY NMR spectra in  $CD_2Cl_2$  of a mixture of 4b, 5b and 6b (top) and zoom showing the three different diffusion coefficients observed for the three compounds (bottom).

#### **X-Ray diffraction**

Single-crystal data (Tables ESI1 and ESI2) were collected on a Bruker SMART CCD diffractometer with Mo–K $\alpha$  radiation at 173 or 190 K. The structures were solved using SHELXS-97 and refined by full matrix least-squares on  $F^2$  using SHELXL-97 with anisotropic thermal parameters for all non-hydrogen atoms.<sup>3</sup> The hydrogen atoms were introduced at calculated positions and not refined (riding model). In the structure of **5a**, the carbon atom of two methyl groups of peripheral thioether moieties are disordered over two positions. Furthermore, the *n*-pentane solvent molecule is also disordered. This has been taken into account using the PART command. The hydrogen atoms on this molecule have not been introduced but are taken into account in the compound formula. For **3b**, one carbonyl group shows disorder over two positional disorder. For both *P*-**6b** and *M*-**6b**, toluene molecules present in the crystal are heavily disordered. The SQUEEZE command has been employed to account for the corresponding electron density.<sup>4</sup>

CCDC 1040034-1040046 contain the supplementary crystallographic data for compounds **1a-5a** and **1b-6b**. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/data request/cif.



Fig. ESI 23. Crystal structures of compounds 1a-3a. CH hydrogen atoms and solvent molecules are not presented for clarity.

|                                | α-1a                                                            | β-1a                                                            | 2a                                                              | 3a(CHCl <sub>3</sub> )   | 4a                       | (5a) <sub>2</sub> (AcOEt) <sub>2</sub> ( <i>n</i> -pentane) |
|--------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------------------------------|
| Formula                        | C <sub>32</sub> H <sub>26</sub> N <sub>4</sub> NiS <sub>2</sub> | C <sub>32</sub> H <sub>26</sub> N <sub>4</sub> NiS <sub>2</sub> | C <sub>32</sub> H <sub>24</sub> N <sub>4</sub> NiS <sub>2</sub> | $C_{33}H_{27}Cl_3N_4S_2$ | $C_{64}H_{42}N_8S_4Zn_2$ | $C_{205}H_{172}N_{24}O_4S_{12}Zn_6$                         |
| FW                             | 589.40                                                          | 589.40                                                          | 587.38                                                          | 650.06                   | 1188.19                  | 3812.61                                                     |
| Crystal system                 | Orthorhombic                                                    | Triclinic                                                       | Triclinic                                                       | Triclinic                | Monoclinic               | Triclinic                                                   |
| Space group                    | Pbca                                                            | P-1                                                             | P-1                                                             | P-1                      | $P2_1/n$                 | <i>P</i> -1                                                 |
| a/Å                            | 18.0049(9)                                                      | 9.7891(2)                                                       | 9.9075(2)                                                       | 8.9232(2)                | 15.1355(4)               | 13.3649(5)                                                  |
| <i>b</i> / Å                   | 9.0457(4)                                                       | 11.7331(2)                                                      | 12.331(3)                                                       | 12.3869(3)               | 14.9332(4)               | 18.2896(6)                                                  |
| <i>c</i> / Å                   | 32.7494(15)                                                     | 12.5712(3)                                                      | 12.4360(3)                                                      | 14.6782(4)               | 24.9048(5)               | 18.8109(7)                                                  |
| α/°                            |                                                                 | 104.4860(10)                                                    | 64.1490(10)                                                     | 75.7490(10)              |                          | 96.448(2)                                                   |
| $\beta/\circ$                  |                                                                 | 99.6890(10)                                                     | 69.8930(10)                                                     | 75.0970(10)              | 106.3990(10)             | 99.538(2)                                                   |
| $\gamma/\circ$                 |                                                                 | 102.5310(10)                                                    | 79.4820(10)                                                     | 86.5210(10)              |                          | 64.693(2)                                                   |
| V/Å <sup>3</sup>               | 5333.8(4)                                                       | 1326.30(5)                                                      | 1283.19(5)                                                      | 1519.57(7)               | 5400.0(2)                | 4482.1(3)                                                   |
| Ζ                              | 8                                                               | 2                                                               | 2                                                               | 2                        | 4                        | 1                                                           |
| T/K                            | 173(2)                                                          | 173(2)                                                          | 173(2)                                                          | 173(2)                   | 173(2)                   | 173(2)                                                      |
| $\mu/\text{ mm}^{-1}$          | 0.914                                                           | 0.919                                                           | 0.950                                                           | 0.470                    | 1.094                    | 0.995                                                       |
| Refls. coll.                   | 32789                                                           | 26383                                                           | 26379                                                           | 30752                    | 62112                    | 81271                                                       |
| Ind. refls.                    | 7802 (0.0615)                                                   | 7063 (0.0310)                                                   | 6911 (0.0364)                                                   | 8155 (0.0385)            | 15675                    | 24097 (0.0764)                                              |
| (Rint)                         |                                                                 |                                                                 |                                                                 |                          | (0.0710)                 |                                                             |
| $R_1 (I \ge 2\sigma(I))^a$     | 0.0417                                                          | 0.0366                                                          | 0.0344                                                          | 0.0517                   | 0.0517                   | 0.0631                                                      |
| $wR_2 (I \ge 2\sigma(I))^a$    | 0.1042                                                          | 0.0895                                                          | 0.0762                                                          | 0.1213                   | 0.1310                   | 0.1602                                                      |
| $R_1$ (all data) <sup>a</sup>  | 0.0739                                                          | 0.0455                                                          | 0.0490                                                          | 0.0875                   | 0.1008                   | 0.1384                                                      |
| $wR_2$ (all data) <sup>a</sup> | 0.1267                                                          | 0.0947                                                          | 0.0828                                                          | 0.1394                   | 0.1580                   | 0.2003                                                      |
| GOF                            | 1.089                                                           | 1.072                                                           | 1.028                                                           | 1.034                    | 1.064                    | 1.018                                                       |

Table ESI1 Crystallographic data for compounds 1a-5a

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum wF_{o}^{4}]^{1/2}$ 

|                                              | 1b                                                              | 2b                                                              | 3b                   | 4b                       | 5b(CHCl <sub>3</sub> ) <sub>3</sub>                                                              | <i>P</i> -6b                                                                     | <i>M</i> -6b                                                                     |
|----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Formula                                      | C <sub>34</sub> H <sub>26</sub> N <sub>4</sub> NiO <sub>4</sub> | C <sub>34</sub> H <sub>24</sub> N <sub>4</sub> NiO <sub>4</sub> | $C_{34}H_{26}N_4O_4$ | $C_{68}H_{48}N_8O_8Zn_2$ | C <sub>105</sub> H <sub>75</sub> Cl <sub>9</sub> N <sub>12</sub> O <sub>12</sub> Zn <sub>3</sub> | C <sub>136</sub> H <sub>96</sub> N <sub>16</sub> O <sub>16</sub> Zn <sub>4</sub> | C <sub>136</sub> H <sub>96</sub> N <sub>16</sub> O <sub>16</sub> Zn <sub>4</sub> |
| FW                                           | 613.30                                                          | 611.28                                                          | 554.59               | 1235.88                  | 2211.93                                                                                          | 2471.77                                                                          | 2471.77                                                                          |
| Crystal system                               | Triclinic                                                       | Monoclinic                                                      | Monoclinic           | Monoclinic               | Monoclinic                                                                                       | Orthorhombic                                                                     | Orthorhombic                                                                     |
| Space group                                  | <i>P</i> -1                                                     | <i>C</i> 2/c                                                    | <i>P</i> 2/c         | <i>C</i> 2/c             | <i>C</i> 2/c                                                                                     | <i>I</i> 222                                                                     | <i>I</i> 222                                                                     |
| a / Å                                        | 9.2124(3)                                                       | 34.4732(8)                                                      | 20.8248(7)           | 23.8065(15)              | 18.1355(4)                                                                                       | 15.3648(9)                                                                       | 15.3370(6)                                                                       |
| <i>b</i> / Å                                 | 11.1476(3)                                                      | 9.8680(2)                                                       | 7.2192(2)            | 16.6644(11)              | 21.5289(5)                                                                                       | 19.7305(11)                                                                      | 19.7279(14)                                                                      |
| <i>c</i> / Å                                 | 14.7168(5)                                                      | 7.9143(2)                                                       | 19.4469(7)           | 42.744(3)                | 25.5659(6)                                                                                       | 23.6393(13)                                                                      | 23.6518(12)                                                                      |
| α / °                                        | 86.1660(10)                                                     |                                                                 |                      |                          |                                                                                                  |                                                                                  |                                                                                  |
| $\beta$ / °                                  | 76.5000(10)                                                     | 100.7240(10)                                                    | 105.8250(10)         | 100.563(2)               | 100.0080(10)                                                                                     |                                                                                  |                                                                                  |
| $\gamma/\circ$                               | 70.6820(10)                                                     |                                                                 |                      |                          |                                                                                                  |                                                                                  |                                                                                  |
| $V/Å^3$                                      | 1386.77(8)                                                      | 2645.28(11)                                                     | 2812.81(16)          | 16670.1(18)              | 9830.0(4)                                                                                        | 7166.4(7)                                                                        | 7156.2(7)                                                                        |
| Ζ                                            | 2                                                               | 4                                                               | 4                    | 12                       | 4                                                                                                | 2                                                                                | 2                                                                                |
| $T / \mathbf{K}$                             | 173(2)                                                          | 173(2)                                                          | 173(2)               | 173(2)                   | 173(2)                                                                                           | 190 (2)                                                                          | 190 (2)                                                                          |
| $\mu/\text{ mm}^{-1}$                        | 0.748                                                           | 0.784                                                           | 0.088                | 0.932                    | 1.040                                                                                            | 0.723                                                                            | 0.724                                                                            |
| Refls. coll.                                 | 26775                                                           | 28830                                                           | 41843                | 110709                   | 57850                                                                                            | 24227                                                                            | 50642                                                                            |
| Ind. refls.                                  | 7382 (0.0255)                                                   | 3688 (0.0270)                                                   | 7843 (0.0406)        | 22429 (0.0925)           | 14449 (0.0631)                                                                                   | 10413 (0.0404)                                                                   | 10481 (0.0627)                                                                   |
| (Rint)                                       | . ,                                                             | . ,                                                             | . ,                  |                          | , ,                                                                                              |                                                                                  | . ,                                                                              |
| $R_1$ (I>2 $\sigma$ (I)) <sup><i>a</i></sup> | 0.0419                                                          | 0.0310                                                          | 0.0544               | 0.0775                   | 0.0615                                                                                           | 0.0425                                                                           | 0.0480                                                                           |
| $wR_2$ (I>2 $\sigma$ (I)) <sup>a</sup>       | 0.1010                                                          | 0.0879                                                          | 0.1259               | 0.1884                   | 0.1619                                                                                           | 0.0899                                                                           | 0.0958                                                                           |
| $R_1$ (all data) <sup>a</sup>                | 0.0545                                                          | 0.0369                                                          | 0.1032               | 0.1386                   | 0.1187                                                                                           | 0.0566                                                                           | 0.0731                                                                           |
| $wR_2$ (all data) <sup>a</sup>               | 0.1189                                                          | 0.1003                                                          | 0.1538               | 0.2190                   | 0.2011                                                                                           | 0.0941                                                                           | 0.1021                                                                           |
| GOF                                          | 1.027                                                           | 1.141                                                           | 1.023                | 1.056                    | 1.039                                                                                            | 0.953                                                                            | 0.954                                                                            |

Table ESI2 Crystallographic data for compounds 1b-6b

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum wF_{o}^{4}]^{1/2}$ 

# References

- 1 L. Do, S. R. Halper and S. M. Cohen, *Chem. Commun.*, 2004, 2662.
- 2. M. Artigau, A. Bonnet, S. Ladeira, P. Hoffmann and A. Vigroux, *CrystEngComm.*, 2011, **13**, 7149.
- 3 G. M. Sheldrick, *Acta Cryst.*, 2008, A64, 112.
- 4 A. L. Spek, PLATON, The university of Utrecht, Utrecht, The Netherlands, 1999.