# Lewis-Acid Induced Disaggregation of Dimeric Arylantimony Oxides 

Ralf Kather, Tomáš Svoboda, Maren Wehrhahn, Elena Rychagova, Enno Lork, Libor Dostál, Sergey Ketkov and Jens Beckmann

## Supplementary Material

## Content

- Experimental section including the synthesis and characterization.
- Computational details including the results of MO, AIM, EDA calculations.


## Experimental Section

General Procedures. All experiments were carried out under argon atmosphere using standard Schlenk techniques. Tris(pentafluorophenyl)borane, ${ }^{\text {S1 }}$ triphenylarsine oxide, ${ }^{\text {S2 }}$ triphenylstibine oxide ${ }^{1}$ and 1,1'-(2-(oxostibanyl)-1,3-phenylene)bis(N,Ndimethylmethanamine) ${ }^{15}$ were prepared according to literature. Dry solvents were collected from a SPS800 mBraun solvent system. ${ }^{1} \mathrm{H}-,{ }^{11} \mathrm{~B}-,{ }^{13} \mathrm{C}-$ and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra were recorded in $\mathrm{CDCl}_{3}$ at r.t. using a Bruker Avance- 360 spectrometer and are referenced to tetramethylsilane $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$, boron trifluoride diethyl etherate $\left({ }^{11} \mathrm{~B}\right)$ and trichlorofluoromethane $\left({ }^{19} \mathrm{~F}\right)$. Chemical shifts are reported in parts per million (ppm) and coupling constants $(J)$ are given in Herz $(\mathrm{Hz})$. For ESI-MS dichlormethane / acetonitrile solutions $\left(\mathrm{c}=1 \cdot 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ were injected directly into the spectrometer at a flow rate of $3 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$. Nitrogen was used both as a drying gas and for nebulization with flow rates of approximately $5 \mathrm{~L} \mathrm{~min}^{-1}$ and a pressure of 5 spi , respectively. Pressure in the mass analyzer region was usually about $1 \cdot 10^{-5} \mathrm{mbar}$. IR spectra were recorded on a Perkin Elmer Spectrum 1000 FT-IR spectrometer as KBr discs and are reported in $\mathrm{cm}^{-1}$. The melting point was determined using a Gallenkamp Melting Point Apparatus. Elemental analyses (C, H, N) were carried out by IWR, TU Wien, Austria using a Elementar Vario Macro instrument. The carbon percentage of $\mathbf{1}$ is lower than expected, which has been attributed to incomplete combustion. This observation has been made previously for compounds containing $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{4}\right)_{4}\right]^{-}$ions. ${ }^{\mathrm{S3}}$

Synthesis of $\mathbf{P h}_{\mathbf{3}} \mathbf{A s O B}\left(\mathbf{C}_{\mathbf{6}} \mathbf{F}_{\mathbf{5}}\right)_{3}$. Tris(pentafluorophenyl)borane ( $300 \mathrm{mg}, 0.586 \mathrm{mmol}$ ) and triphenylarsine oxide ( $189 \mathrm{mg}, 0.581 \mathrm{mmol}$ ) stirred in 15 ml toluene at r.t. for 5 days. The solvent was removed under reduced pressure. The crude product was recrystallized from dichloromethane and $n$-hexane, affording $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ as colorless crystals ( 333 mg , $0.399 \mathrm{mmol}, 69$ \%, Mp. 191-193 ${ }^{\circ} \mathrm{C}$ ).
${ }^{1} \mathbf{H}$-NMR: $\delta=7.72-7.49(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR: $\delta=148.1\left(\mathrm{~d},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}\right)=243 \mathrm{~Hz}, \mathrm{CF}\right)$, $139.6\left(\mathrm{~d},{ }^{1} J\left({ }^{(19} \mathrm{F}-{ }^{13} \mathrm{C}\right)=248 \mathrm{~Hz}, \mathrm{CF}\right), 137.3\left(\mathrm{~d},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}\right)=237 \mathrm{~Hz}, \mathrm{CF}\right), 134.2(\mathrm{~s}, p-\mathrm{CH})$, $132.1(\mathrm{~s}, o-\mathrm{CH}$ or $m-\mathrm{CH}), 130.3(\mathrm{~s}, o-\mathrm{CH}$ or $m-\mathrm{CH}), 126.9(\mathrm{~s}, i-\mathrm{C}) .{ }^{11} \mathbf{B}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}-\mathbf{N M R}: \delta=-1.2$ (s). ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$-NMR: $\delta=-133.6\left(\mathrm{~m}, 2 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-160.6\left(\operatorname{tr},{ }^{3} J\left({ }^{19} \mathrm{~F}-{ }^{19} \mathrm{~F}\right)=20 \mathrm{~Hz}, 1 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-$ 166.0 (m, 2F, m-C ${ }_{6} \mathrm{~F}_{5}$ ). IR (KBr): 3061 (w), 1645 (m), 1516 (m), 1465 (s), 1372 (w), 1314 (w), 1279 (m), 1096 (s), 972 (s), 930 (s), 791 (w), 769 (w), 738 (m), 673 (m), 614 (w), 574 (w), $467(\mathrm{~m})$. ESI MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN} 1: 10\right.$, negative mode $): m / z=868.8\left(\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{AsBF}_{15} \mathrm{OCl}\right)$ for $[\mathrm{M}+\mathrm{Cl}]$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{AsBF}_{15} \mathrm{O}: \mathrm{C}, 51.83 ; \mathrm{H}, 1.81$. Found: C, $51.11 ; \mathrm{H}, 1.89$.

Synthesis of $\mathbf{P h}_{\mathbf{3}} \mathbf{S b O B}\left(\mathbf{C}_{\mathbf{6}} \mathbf{F}_{\mathbf{5}}\right)_{\mathbf{3}} \mathbf{( 1 )}$. Tris(pentafluorophenyl)borane ( $300 \mathrm{mg}, 0.586 \mathrm{mmol}$ ) and triphenylstibine oxide ( $216 \mathrm{mg}, 0.293 \mathrm{mmol}$ ) stirred in 15 ml toluene at r.t. for 5 days. The solvent was removed under reduced pressure. The crude product was recrystallized twice from dichloromethane and $n$-hexane, affording $\mathrm{Ph}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{1})$ as colourless crystals ( $339 \mathrm{mg}, 0.385 \mathrm{mmol}, 66 \%$, Mp. $175-177^{\circ} \mathrm{C}$ ).
${ }^{1} \mathbf{H}$-NMR: $\delta=7.79-7.47(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR: $\delta=147.9\left(\mathrm{~d},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}\right)=246 \mathrm{~Hz}, \mathrm{CF}\right)$, $139.3\left(\mathrm{~d},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}\right)=248 \mathrm{~Hz}, \mathrm{CF}\right), 137.2\left(\mathrm{~d},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}\right)=236 \mathrm{~Hz}, \mathrm{CF}\right), 134.5(\mathrm{~s}, o-\mathrm{CH}$ or $\mathrm{m}-$ $\mathrm{CH}), 134.2(\mathrm{~s}, p-\mathrm{CH}), 131.0(\mathrm{~s}, o-\mathrm{CH}$ or $m-\mathrm{CH}), 126.8(\mathrm{~s}, i-\mathrm{C}) .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}-\mathrm{NMR}: \delta=-0.9(\mathrm{~s})$. ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$-NMR: $\delta=-134.3\left(\mathrm{~m}, 2 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-161.0\left(\operatorname{tr},{ }^{3} J\left({ }^{19} \mathrm{~F}-{ }^{-19} \mathrm{~F}\right)=20 \mathrm{~Hz}, 1 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-165.8$ (m, 2F, m-C $\mathrm{C}_{6} \mathrm{~F}_{5}$ ). IR (KBr): 3062 (w), 1643 (m), 1514 (s), 1465 (s), 1337 (w), 1275 (m), 1090 (s), 974 (s), 913 (s), 826 (w), 766 (w), 733 (s), 685 (s), 446 (m). ESI MS ( $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}$ 1:10, negative mode): $m / z=916.7\left(\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{SbBF}_{15} \mathrm{OCl}\right)$ for $[\mathrm{M}+\mathrm{Cl}]^{-}$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{OSb}: \mathrm{C}, 49.08 ; \mathrm{H}, 1.72$. Found: C, 46.76; H, 1.98 (see comment above).

Synthesis of 2,6-( $\left.\mathbf{C H}_{\mathbf{2}} \mathbf{N M e}_{\mathbf{2}}\right)_{\mathbf{2}} \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{3}} \mathbf{S b O B}\left(\mathrm{C}_{\mathbf{6}} \mathbf{F}_{5}\right)_{\mathbf{3}} \mathbf{( 2 )}$. Tris(pentafluorophenyl)borane (174 $\mathrm{mg}, 0.340 \mathrm{mmol}$ ) and the dimeric organoantimony(III) oxide ( $111 \mathrm{mg}, 0.170 \mathrm{mmol}$ ) stirred in 15 ml toluene at r.t. for 5 days. The solvent was removed under reduced pressure. The crude product was recrystallized twice from dichloromethane and $n$-hexane, affording 2,6$\left(\mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{2})$ as colourless crystals ( $170 \mathrm{mg}, 0.202 \mathrm{mmol}, 60 \%$, Mp. $\left.156-158^{\circ} \mathrm{C}\right)$.
${ }^{1}$ H-NMR: $\delta=7.33-7.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 4.02-3.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58-2.19\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$-NMR: $\delta=154.8(\mathrm{~s}, i-\mathrm{C}), 148.1\left(\mathrm{~d},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}\right)=237 \mathrm{~Hz}, \mathrm{CF}\right), 145.5(\mathrm{~s}, \mathrm{CH}), 136.6$ $\left(\mathrm{d},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{13} \mathrm{C}\right)=247 \mathrm{~Hz}, \mathrm{CF}\right), 129.9(\mathrm{~s}, \mathrm{CH}), 126.0(\mathrm{~s}, \mathrm{CH}), 64.0\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right), 44.1(\mathrm{~s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) \cdot{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}$-NMR: $\delta=-1.4(\mathrm{~s}) .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$-NMR: $\delta=-134.5\left(\mathrm{~m}, 2 \mathrm{~F}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-163.0(\mathrm{~m}$, $1 \mathrm{~F}, p-\mathrm{C}_{6} \mathrm{~F}_{5}$ ), -167.1 (m, 2F, $m-\mathrm{C}_{6} \mathrm{~F}_{5}$ ). IR (KBr): 3675 (w), 2924 (m), 1642 (m), 1514 (s), 1462 (s), 1358 (m), 1218 (w), 1176 (w), 1083 (s), 1031 (m), 961 (s), $835(\mathrm{~m}), 769(\mathrm{~m}), 745(\mathrm{w})$, 735 (w), 684 (m), 670 (m), 631 (w), 601 (w), 573 (w), 511 (w), 454 (m). ESI MS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN} 1: 10\right.$, positive mode): $m / z=329.1\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{SbO}\right)$ for $[\mathrm{RSbO}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{BF}_{15} \mathrm{~N}_{2} \mathrm{OSb}: \mathrm{C}, 42.84 ; \mathrm{H}, 2.28$; N, 3.33. Found: C, 43.22; H, 2.31; N, 3.01.

Crystallography. Intensity data of $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathbf{1}$ and $\mathbf{2}$ were collected on Siemens P 4 diffractometer at 173 K with graphite-monochromated Mo-K $\alpha(0.7107 \AA$ ) radiation. All structures were solved by direct methods and refined based on $\mathrm{F}^{2}$ by use of the SHELX program package as implemented in WinGX. ${ }^{54}$ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were included in geometrically calculated positions using a riding model. Defuse electron density related to highly disordered solvent molecules was accounted using the SQUEZZE routine. ${ }^{\text {S5 }}$ Crystal and refinement data are collected in Table S1. Figures were created using

DIAMOND. ${ }^{\text {S6 }}$ Crystallographic data (excluding structure factors) for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre.

Copies of this information may be obtained free of charge from The Director, CCDC, 12
Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail:
deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).


Figure S1. Molecular structure of $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ showing $30 \%$ probability ellipsoids and the crystallographic numbering scheme. Selected bond parameters [ $\left.\AA,{ }^{\circ}\right]$ : B1-O1 1.521(3), As1-O1 1.698(2), B1-O1-As1 134.0(2).

Table S1. Crystal data and structure refinement of $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathbf{1}$ and 2.

|  | $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | 1 | 2 |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{AsBF}_{15} \mathrm{O}$ | $\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{BF}_{15} \mathrm{OSb}$ | $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{BF}_{15} \mathrm{~N}_{2} \mathrm{OSb}$ |
| Formula weight, $\mathrm{g} \mathrm{mol}^{-1}$ | 834.21 | 881.04 | 841.03 |
| Crystal system | Monoclinic | Monoclinic | Triclinic |
| Crystal size, mm | $1.0 \times 0.6 \times 0.3$ | $1.0 \times 0.8 \times 0.6$ | $1.0 \times 0.8 \times 0.6$ |
| Space group | $\mathrm{P} 2_{1} / \mathrm{n}$ | $\mathrm{P} 2_{1} / \mathrm{n}$ | P-1 |
| $a, ~ \AA \AA$ | 13.134(2) | 12.248(2) | 9.814(2) |
| $b, \AA$ | 16.309(5) | 17.312(4) | 10.784(2) |
| $c, \AA$ | 14.601(2) | 15.058(4) | 16.680(2) |
| $\alpha$, ${ }^{\circ}$ | 90 | 90 | 84.080(10) |
| $\beta,{ }^{\circ}$ | 96.17(1) | 95.34(1) | 87.260(10) |
| $\gamma,{ }^{\circ}$ | 90 | 90 | 77.49(2) |
| $V, \AA^{3}$ | 3110(1) | 3179(1) | 1713.6(5) |
| Z | 4 | 4 | 2 |
| $\rho_{\text {calcd }}, \mathrm{Mg} \mathrm{m}^{-3}$ | 1.782 | 1.841 | 1.630 |
| $\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$ ) , $\mathrm{mm}^{-1}$ | 1.216 | 0.988 | 0.914 |
| $F(000)$ | 1648 | 1720 | 824 |
| $\theta$ range, deg | 2.54 to 27.50 | 2.05 to 27.52 | 2.05 to 27.52 |
| Index ranges | $-16 \leq h \leq 16$ | $-15 \leq h \leq 15$ | $-12 \leq \mathrm{h} \leq 12$ |
|  | $0 \leq \mathrm{k} \leq 21$ | $0 \leq \mathrm{k} \leq 22$ | $-13 \leq \mathrm{k} \leq 13$ |
|  | $0 \leq 1 \leq 18$ | $0 \leq 1 \leq 19$ | $0 \leq 1 \leq 21$ |
| No. of reflns collected | 7128 | 7293 | 7845 |
| Completeness to $\theta_{\text {max }}$ | 99.8\% | 99.8\% | 99.8\% |
| No. indep. Reflns | 7128 | 7293 | 7845 |
| No. obsd reflns with ( $I>2 \sigma(I)$ ) | 5090 | 6004 | 7237 |
| No. refined params | 487 | 487 | 455 |
| GooF ( $F^{2}$ ) | 1.012 | 1.037 | 1.064 |
| $R_{1}(F)(I>2 \sigma(I))$ | 0.0428 | 0.0363 | 0.0302 |
| $w R_{2}\left(F^{2}\right)$ (all data) | 0.1035 | 0.0956 | 0.0829 |
| Largest diff peak/hole, e $\AA^{-3}$ | $0.331 /-0.512$ | 0.588 / -0.541 | 0.460 / -0.760 |
| CCDC number | 1045570 | 1045571 | 1045572 |

Computational details. The geometries of the compounds studied were optimized at the M062X/DGDZVP level of theory employing the Gaussian09 code $^{\text {S7 }}$ with the ultrafine integration grid and using the X-ray structures as the starting point. The frequency calculations were performed to check whether the structure found corresponds to the energy minimum. The wavefunctions obtained were then used for the electron density topology analysis and the potential energy density / kinetic energy density ratio computations with the AIMALL package. ${ }^{58}$ The deformation densities were obtained with the Multiwfn program ${ }^{\text {S9 }}$ by subtracting the $\rho$ values of the individual sphericalized atoms from the total molecular electron density. We used the atomic $\rho$ values calculated at the M062X/DGDZVP level of theory. To estimate the B-O bond energies in the $\mathrm{Ph}_{3} \mathrm{EOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ complexes, the energies of the optimized $\mathrm{Ph}_{3} \mathrm{EO}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ were subtracted from the $\mathrm{Ph}_{3} \mathrm{EOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ energy. The counterpoise correction ${ }^{\text {S10 }}$ was calculated separately to take the basis set superposition error (BSSE) into consideration. For the energy decomposition analysis (EDA), the complexes were re-optimized with the ADF2013.01 code ${ }^{\text {S11 }}$ at the PW91/DZP level of DFT. Then the EDA procedure was performed for the $\mathrm{Ph}_{3} \mathrm{EO}(\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ or 2,6$\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SbO}$ and the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ fragments at the same level of theory using the Morokuma method. ${ }^{\text {S12 }}$ The resulting total interaction energy is equal to the bond snapping energy which corresponds to the reaction of formation of a complex from the individual fragments possessing the same structural parameters as those in the complex. ${ }^{\mathrm{S} 12}$

Table S2. Selected calculated and experimental bond lengths ( $\AA$ ) and bond angles (degrees).

| Molecule | M062X/DGDZVP |  |  |  | Experiment |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | E-O |  |  | E-C | B-O | E-O-B | E-O | E-C |  |
| $\mathrm{Ph}_{3} \mathrm{PO} /$ | 1.496 | $1.816 /$ | $-/$ | $-/$ | $1.487 /$ | $1.800 /$ | $-/$ | $-/$ |  |
| $\mathrm{Ph}_{3} \mathrm{POB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | $/ 1.535$ | 1.798 | 1.556 | 149.5 | 1.497 | 1.787 | 1.538 | 178.7 |  |
| $\mathrm{Ph}_{3} \mathrm{AsO} /$ | $1.645 /$ | $1.929 /$ | $-/$ | $-/$ | $1.645 /$ | $1.898 /$ | $-/$ | $-/$ |  |
| $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | 1.710 | 1.910 | 1.518 | 130.9 | 1.701 | 1.910 | 1.536 | 134.8 |  |
| $\mathrm{Ph}_{3} \mathrm{SbO} /$ | $1.845 /$ | $2.126 /$ | $-/$ | $-/$ | $-/$ | $-/$ | $-/$ | $-/$ |  |
| $\mathrm{Ph}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | 1.899 | 2.104 | 1.504 | 131.6 | 1.877 | 2.095 | 1.508 | 132.0 |  |
| $\left(\mathrm{Ph}_{3} \mathrm{SbO}\right)_{2}$ | $2.029^{\mathrm{a}}$ | 2.145 | - | - | $2.005^{\mathrm{a}}$ | 2.141 | - | - |  |
| $\mathrm{ArSbO} /_{\mathrm{ArSbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}}$ | $1.866 /$ | 1.931 | $2.172 /$ | $-/$ | $-/$ | $-/$ | $-/$ | $-/$ |  |
| $(\mathrm{ArSbO})_{2}$ | $2.038^{\mathrm{a}}$ | 2.180 | - | - | $2.009^{\mathrm{a}}$ | 2.171 | - | $-/$ |  |

${ }^{\text {a }}$ - averaged interatomic distances. $\mathrm{Ar}=2,6-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Table S3. The electron density $\rho$ (a.u.) and the potential energy density / kinetic energy density ratio $|\mathrm{V}| / \mathrm{G}$ in the E-O and E-C bonding critical points.

| Molecule | $\rho$ |  |  | \|V|/G |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | E-O | E-C ${ }^{\text {a }}$ | B-O | E-O | E-C ${ }^{\text {a }}$ |
| $\begin{aligned} & \mathrm{Ph}_{3} \mathrm{PO} / \\ & \mathrm{Ph}_{3} \mathrm{EOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \end{aligned}$ | $\begin{aligned} & 0.223 \\ & 0.196 \end{aligned}$ | $\begin{aligned} & 0.166 / \\ & 0.175 \end{aligned}$ | $\begin{gathered} -1 \\ 0.108 \end{gathered}$ | $\begin{array}{r} 1.374 \\ / 1.369 \end{array}$ | $\begin{aligned} & 2.292 / / \\ & 2.366 \end{aligned}$ |
| $\begin{aligned} & \mathrm{Ph}_{3} \mathrm{AsO} / \\ & \mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \end{aligned}$ | $\begin{aligned} & 0.211 / \\ & 0.176 \end{aligned}$ | $\begin{aligned} & 0.144 / \\ & 0.150 \end{aligned}$ | $\begin{gathered} -1 \\ 0.129 \end{gathered}$ | $\begin{aligned} & 1.562 / / \\ & 1.494 \end{aligned}$ | $\begin{aligned} & 1.920 / \\ & 2.037 \end{aligned}$ |
| $\begin{aligned} & \mathrm{Ph}_{3} \mathrm{SbO} / \\ & \mathrm{Ph}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \end{aligned}$ | $\begin{aligned} & 0.156 / \\ & 0.134 \end{aligned}$ | $\begin{aligned} & 0.111 / \\ & 0.117 \end{aligned}$ | $\begin{gathered} -/ \\ 0.135 \end{gathered}$ | $\begin{aligned} & 1.314 \\ & / 1.260 \end{aligned}$ | $\begin{aligned} & 1.673 / \\ & 1.741 \end{aligned}$ |
| $\left(\mathrm{Ph}_{3} \mathrm{SbO}\right)_{2}$ | $\begin{aligned} & 0.117 ; \\ & 0.085 \end{aligned}$ | 0.106 |  | $\begin{aligned} & 1.309 \\ & 1.292 \end{aligned}$ | 1.780 |
| $\begin{aligned} & \mathrm{ArSbO} / \\ & \mathrm{ArSbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \end{aligned}$ | $\begin{aligned} & 0.147 / \\ & 0.122 \end{aligned}$ | $\begin{aligned} & 0.101 / \\ & 0.111 \end{aligned}$ | $\begin{gathered} -/ \\ 0.147 \end{gathered}$ | $\begin{aligned} & 1.285 / \\ & 1.234 \end{aligned}$ | $\begin{aligned} & 1.595 / \\ & 1.645 \end{aligned}$ |
| $(\mathrm{ArSbO})_{2}$ | 0.100 | 0.086 |  | 1.251 | 1.627 |

${ }^{\text {a }}$ - averaged values. $\mathrm{Ar}=2,6-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Table S4. Mulliken (M062X/DGDZVP) and AIM charges of selected atoms.

| Molecule | Mulliken |  |  | AIM |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  | E | O | B | E | O | B |
| $\mathrm{Ph}_{3} \mathrm{PO} /$ |  |  |  |  |  |  |
| $\mathrm{Ph}_{3} \mathrm{EOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | $+1.05 /$ | $-0.69 /$ | $-/$ | $+3.09 /$ | $-1.51 /$ | $-/$ |
| $\mathrm{Ph}_{3} \mathrm{AsO} /$ | +1.15 | -0.70 | +0.57 | +2.68 | -1.54 | +2.07 |
| $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | $+0.80 /$ | $-0.70 /$ | $-/$ | $+2.12 /$ | $-1.20 /$ | $-/$ |
| $\mathrm{Ph}_{3} \mathrm{SbO} /$ | -0.64 | +0.58 | +2.06 | -1.33 | +2.01 |  |
| $\mathrm{Ph}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | $+1.04 /$ | $-0.79 /$ | $-/$ | $+2.36 /$ | $-1.23 /$ | $-/$ |
| $\left(\mathrm{Ph}_{3} \mathrm{SbO}\right)_{2}$ | +1.23 | -0.78 | +0.56 | +2.39 | -1.38 | +2.02 |
| $\mathrm{ArSbO} /_{\mathrm{ArSbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}}$ | +1.27 | $-1.00^{\mathrm{a}}$ | - | +2.58 | $-1.38^{\mathrm{a}}$ | - |
| $(\mathrm{ArSbO})_{2}$ | +0.82 | $-0.88 /$ | - | $+1.64 /$ | $-1.29 /$ | $-/$ |

${ }^{\text {a }}$ - averaged values. $\mathrm{Ar}=2,6-\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Table S5. Energy decomposition analysis according to the Morokuma scheme ${ }^{10}$ at the PW91/DZP level of theory ( $\mathrm{kcal} \mathrm{mol}^{-1}$ ).

|  | $\mathrm{Ph}_{3} \mathrm{POB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | $\mathrm{Ph}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ | $\mathrm{ArSbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ |
| :--- | ---: | ---: | ---: | ---: |
| Pauli repulsion <br> $\Delta \mathrm{E}_{\text {Pauli }}$ | 166.9 | 184.6 | 185.7 | 219.4 |
| Electrostatic <br> interactions $\Delta \mathrm{E}_{\text {elstat }}$ | -103.2 | -121.7 | -124.5 | -147.0 |
| Steric interactions <br> $\Delta \mathrm{E}_{\text {stric }}$ | 63.7 | 62.9 | 61.2 | 72.4 |
| Orbital interactions <br> $\Delta \mathrm{E}_{\text {orb }}$ | -111.5 | -133.3 | -140.6 | -163.6 |
| Total interaction <br> energy $\Delta \mathrm{E}_{\text {int }}$ | -47.8 | -70.4 | -79.5 | -91.2 |



Figure S2. Profiles of the deformation electron density (0.01-0.1 a.u., step 0.01 a.u.; blackpositive, blue-negative) for (a) $\mathrm{Ph}_{3} \mathrm{PO}$ (b) $\mathrm{Ph}_{3} \mathrm{POB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (c) $\mathrm{Ph}_{3} \mathrm{AsO}$ (d) $\mathrm{Ph}_{3} \mathrm{AsOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, (e) $\mathrm{Ph}_{3} \mathrm{SbO}$, (f) $\mathrm{Ph}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(1)$, (g) $\left(\mathrm{Ph}_{3} \mathrm{SbO}\right)_{2}$ and (h) 2,6-
$\left(\mathrm{Me}_{2} \mathrm{NCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{SbOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{2})$ in the OEC plane $(\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$ for the oxides and EOB plane for the boron complexes.


Figure S3. The electron density (a.u.) (left) and the $\left|\mathrm{V}\left(\mathbf{r}_{\mathrm{c}}\right)\right| / \mathrm{G}\left(\mathbf{r}_{\mathrm{c}}\right)$ ratio at the E-O bonding critical points of $\mathrm{Ph}_{3} \mathrm{EO}$ and $\mathrm{Ph}_{3} \mathrm{EOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.


Figure S4. Mulliken (left) and AIM (right) charges of P , As and Sb in monomeric $\mathrm{Ph}_{3} \mathrm{EO}$ and $\mathrm{Ph}_{3} \mathrm{EOB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$.


## Ph3PO $\square$

Ph3AsO
Ph3SbO
Figure S5. Contour maps in the EOC planes (0.02-0.1 a.u., step 0.02 a.u., red positive, green negative) and energies of selected MOs for monomeric $\mathrm{Ph}_{3} \mathrm{EO}(\mathrm{E}=\mathrm{P}, \mathrm{As}, \mathrm{Sb})$.

## References

[S1] (a) A. G. Massey, A. J. Park, J. Org. Chem. 1964, 2, 245. (b) M. Kuprat, M. Lehmann, A. Schulz, A. Villinger, Organometallics 2010, 29, 1421.
[S2] R. L. Shriner, C. N. Wolf, Org. Syn. 1950, 30.
[S3] A. Marco, R. Compañó, R. Rubio, I. Casals Microchim. Acta 2003, 142, 13.
[S4] (a) G. M. Sheldrick Acta Cryst. 2008, A64, 112. (b) L. J. Farrugia J. Appl. Crystalogr. 1999, 32, 837.
[S5] (a) A. Spek J. Appl. Cryst. 2003, 36, 7. (b) P. van der Sluis, A. L. Spek Acta Cryst. 1990, A46, 194.
[S6] K. Brandenburg, H. Putz, DIAMOND V3.1d, Crystal Impact GbR, 2006.
[S7] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
[S8] AIMAll (Version 13.05.06), T.A. Keith, TK Gristmill Software, Overland Park KS, USA, 2013, http://aim.tkgristmill.com.
[S9] (a) T. Lu, F. Chen J. Comp. Chem. 2012, 33, 580. (b) Lu, F. Chen J. Mol. Graph. Model. 2012, 38, 314.
[S10] F.B. Van Duijneveldt, J.G.C.M. van Duijneveldt-van de Rijdt, J.H. van Lenthe, Chem. Rev. 1994, 94, 1873.
[S11] (a) E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, P.R.T. Schipper, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev, ADF2013.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. (b) G. te Velde, F.M. Bickelhaupt, S.J.A. van Gisbergen, C. Fonseca Guerra, E.J. Baerends, J.G. Snijders and T. Ziegler, Chemistry with ADF, Journal of Computational Chemistry 2001, 22, 931.
[S12] (a) K. Morokuma, J. Chem. Phys. 1971, 55, 1236. (b) K. Morokuma and K. Kitaura, in Chemical Applications of Atomic and Molecular Electronic Potentials, edited by P. Politzer and D. G. Truhlar Plenum, New York, 1981, p. 215. (c) T. Ziegler, A. Rauk Theor. Chim. Acta, 1977, 46, 1. (d) T. Ziegler and A. Rauk Inorg. Chem. 1979, 18,
1755. (e) F.M. Bickelhaupt, E.J. Baerends, In: Rev. Comput. Chem.; K.B. Lipkowitz, D.B. Boyd, Eds.; Wiley, New York, 2000, Vol. 15, p.1-86.

