Supporting Information

An outstanding catalyst for the oxygen-mediated oxidation of arylcarbinols, arylmethylene and arylacetylene compounds

Garazi Urgoitia, Raul SanMartin,* Maria Teresa Herrero and Esther Dominguez*

Department of Organic Chemistry, University of Basque Country, 48080 Bilbao, Spain

raul.sanmartin@ehu.es

1. General remarks.	1
2. Summary of assays for the oxidation of 1-phenylethanol	2
3. Synthesis of methyl 3,5-bis((1H-1,2,4-triazol-1-yl)methyl)benzoate (2)	2
4. Aerobic oxidation of alcohols in the presence of NiBr ₂ and 1. General procedure	3
5. Aerobic oxidation of alcohols in the presence of NiBr ₂ and 2. General procedure	5
6. Aerobic oxidation of benzylic C-H bond in the presence of NiBr ₂ and 1. General procedure	6
7. Aerobic oxidation of benzylic C-H bond in the presence of NiBr ₂ and 2. General procedure	7
8. Aerobic cleavage of C-C triple bond in the presence of NiBr ₂ and 1. General procedure.	7
9. Aerobic cleavage of C-C triple bond in the presence of NiBr ₂ and 2. General procedure.	8
10. Large-scale aerobic oxidation of 1-phenylethanol	9
11. Large-scale oxidative cleavage of phenylacetylene	9
12. ¹ H NMR and ¹³ C NMR spectra	10
13. Kinetic Plot	42
14. Summary of poisoning experiments	42
15. References and additional data	43

1. General remarks.

Commercially available reagents were used throughout without purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on a Bruker AC-300 instrument (300 MHz for ¹H and 75.4 MHz for ¹³C) at 20 °C. Chemical shifts (δ) are given in ppm downfield from Me₄Si and are referenced as internal standard to the residual solvent (unless indicated) CDCl₃ (δ =7.26 for ¹H and δ =77.00 for ¹³C). Coupling constants, *J*, are reported in hertz (Hz). Melting points were determined in a capillary tube and are

uncorrected. TLC was carried out on SiO₂ (silica gel 60 F254, Merck), and the spots were located with UV light. Flash chromatography was carried out on SiO₂ (silica gel 60, Merck, 230–400 mesh ASTM). IR spectra were recorded on a Perkin–Elmer 1600 FT and JASCO FTIR-4100 infrared spectrophotometer as thin films, and only noteworthy absorptions are reported in cm⁻¹. Drying of organic extracts during work-up of reactions was performed over anhydrous Na₂SO₄. Evaporation of solvents was accomplished with a Büchi rotatory evaporator. MS and HR-MS were measured using a Waters GCT mass spectrometer. High Res.

2. Table 1. Summary of assays for the oxidation of 1-phenylethanol

$$\bigcirc \stackrel{\text{OH}}{\longrightarrow} \stackrel{\text{NiBr}_2}{\xrightarrow{} O_2} \stackrel{\text{O}}{\longrightarrow} \stackrel{\text{O}}{\longrightarrow}$$

Reaction conditions ^{<i>a</i>}	$1(\%)^{b}$	$2(\%)^{b}$
DMSO:H ₂ O (1:1)	-	-
NaOAc, DMSO: $H_2O(1:1)$	-	-
NaOAc, H ₂ O	-	-
NaOAc, ETG	65	80
NaOAc, PEG-400	80	97
K ₂ CO ₃ , PEG-400	73	87
NaOAc, TBAB, PEG-400	35	40
NaOAc, PivOH, PEG-400	58	60
NaOAc, PEG-400: H ₂ O (1:1)	60	65
NiBr ₂ , NaOAc, PEG-400	20	20
Ligand (1 or 2), NaOAc, PEG-400	-	-
NaOAc, PEG-400	94	97
NaOAc, PEG-400	90	98
NaOAc, PEG-400	80	97
	Reaction conditionsaDMSO:H2O (1:1)NaOAc, DMSO: H2O (1:1)NaOAc, H2ONaOAc, ETGNaOAc, PEG-400K2CO3, PEG-400NaOAc, TBAB, PEG-400NaOAc, PivOH, PEG-400NaOAc, PEG-400: H2O (1:1)NiBr2, NaOAc, PEG-400Ligand (1 or 2), NaOAc, PEG-400NaOAc, PEG-400	Reaction conditions $1(\%)^b$ DMSO:H2O (1:1)-NaOAc, DMSO: H2O (1:1)-NaOAc, H2O-NaOAc, ETG65NaOAc, PEG-40080K2CO3, PEG-40073NaOAc, TBAB, PEG-40035NaOAc, PEG-400: H2O (1:1)60NiBr2, NaOAc, PEG-40020Ligand (1 or 2), NaOAc, PEG-40094NaOAc, PEG-40090NaOAc, PEG-40080

^a General reaction conditions: 1.0 eq. of 1-phenylethanol, 1 mL of solvent per mmol of substrate, molecular oxygen (1.0 atm.), 0.1 eq. of base and 0.1 eq. of additive (when appropriate), 0.01 mol% of NiBr₂, 0.01 mol% of triazole derivative **1** or **2**, 120°C, 24h. ^b Isolated product. ^c Ligandless reaction. ^d No metal was added. ^e 0.001 mol% of NiBr₂, 0.001 mol% of **1** or **2**. ^f 10⁻⁴ mol% of NiBr₂, 10⁻⁴ mol% of **1** or **2**. ^g 10⁻⁵ mol% of NiBr₂, 10⁻⁵ mol% of **1** or **2**, 48h.

3. Synthesis of methyl 3,5-bis((1H-1,2,4-triazol-1-yl)methyl)benzoate (2). A mixture of methyl 3,5bis(bromomethyl)benzoate (600 mg, 1.86 mmol), 1*H*-1,2,4-triazole **1** (283 mg, 4.09 mmol) and Cs₂CO₃ (2.37 gr, 7.27 mmol) was refluxed in dry acetonitrile (45 mL) under Ar for 3 h. After cooling, the resultant mixture was filtered and water (30 mL) was added. The aqueous layer was extracted with EtOAc (3 x 40 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo* to give a residue which was purified by gradient flash chromatography (Hexane:EtOAc 7:3 → EtOAc → EtOAc:MeOH 9.5:0.5). Methyl 3,5-bis((1*H*-1,2,4-triazol-1-yl)methyl)benzoate **2** was obtained as a yellowish solid (510 mg, 92%). Mp: 105-107 °C (from EtOAc). ¹H-NMR (CDCl₃) δ_{H} : 3.89 (3H, s, CH₃), 5.50 (4H, s, CH₂), 7.35 (1H, s, H-4), 7.92 (2H, s, H-2, H-6), 8.00 (2H, s, H-3'), 8.59 (2H, s, H-5'). ¹³C-NMR (CDCl₃) δ_{C} : 52.4 (CH₂), 52.6 (CH₃), 129.1 (C-3, C-5), 131.6 (C-1), 131.8 (C-2, C-6), 136.3 (C-5'), 143.3 (C-4), 152.6 (C-3'), 165.7 (CO). IR (film) ν_{max} : 1716, 1508, 1428, 1314, 1213, 1142, 1020. HRMS: Calculated for C₁₄H₁₄N₆O₂ 299.1256, found 299.1248. **4.** Aerobic oxidation of alcohols in the presence of NiBr₂ and 1. General procedure. A round bottom flask equipped with a magnetic stirrer bar was charged with the alcohol (1 mmol), NaOAc (8.0 mg, 0.1 mmol), NiBr₂ (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 1 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol) and PEG 400 (1 mL) at room temperature. The system was purged with molecular oxygen, an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones and acids were prepared:

Acetophenone.^[1] (96 mg, 80%). ¹H-NMR (CDCl₃) δ_{H} : 2.61 (s, 3H, CH₃), 7.42-7.63 (m, 3H, H_{arom}), 7.96 (t, *J*= 8, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 26.5 (CH₃), 128.2 (C_{arom-H}), 128.5 (C_{arom-H}), 133.0 (C_{arom}), 137.1 (C_{q-arom}), 198.1 (CO); LRMS (m/z): 120.1 (M⁺).

Benzoylcyanide.^[2] (125 mg, 96%). ¹H-NMR (CDCl₃) δ_{H} : 7.47 (m, 2H, H_{arom}), 7.59 (m, 1H, H_{arom}), 8.13 (m, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 112.7 (CN), 129.5 (C_{arom-H}), 130.5 (C_{arom-H}), 133.4 (C_{arom-H}), 136.9 (C_{q-arom}), 167.9 (CO); LRMS (m/z): 131.1 (M⁺).

Benzophenone.^[2] (135 mg, 74%). ¹H-NMR (CDCl₃) δ_{H} : 7.42-7.52 (m, 4H, H_{arom}), 7.54-7.62 (m, 2H, H_{arom}), 7.79-7.82 (m, 4H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 128.2 (C_{arom}), 129.9 (C_{arom}), 132.3 (C_{arom}), 132.5 (C_{q-arom}), 196.6 (CO); LRMS (m/z): 182.1 (M⁺).

1-(*p***-Tolyl)ethanone.**^[1] (115 mg, 86%). ¹H-NMR (CDCl₃) δ_{H} : 2.39 (s, 3H, CH₃), 2.55 (s, 3H, CH₃), 7.24 (d, 2H, J = 8.2, H_{arom}), 7.84 (d, 2H, J = 8.2, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 21.6 (CH₃), 26.5 (CH₃), 128.5 (C_{arom-H}), 129.2 (C_{arom-H}), 134.7 (C_{q-arom}), 143.8 (C_{q-arom}), 197.8 (CO); LRMS (m/z): 134.1 (M⁺).

1-Phenyl-1-propanone.^[3] (115 mg, 86%). ¹H-NMR (CDCl₃) δ_{H} : 1.22 (t, 3H, J = 7.2, CH₃), 3.0 (q, 2H, J = 7.3, CH₂), 7.45 (t, 2H, J = 6.9, H_{arom}), 7.54 (t, 1H, J = 6.6, H_{arom}), 7.96 (d, 2H, J = 8.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 8.2 (CH₃), 31.8 (CH₂), 127.9 (C_{arom-H}), 128.6 (C_{arom-H}), 132.9 (C_{arom-H}), 133.9 (C_{q-arom}), 200.8 (CO); LRMS (m/z): 134.1 (M⁺).

1-(2-Methoxyphenyl)ethanone.^[4] (112 mg, 75%). ¹H-NMR (CDCl₃) δ_{H} : 2.60 (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 6.91-7.03 (m, 2H, H_{arom}), 7.44 (t, 1H, J = 9.2, H_{arom}), 7.71 (d, 1H, J = 7.7, CH_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 31.7 (CH₃), 55.4 (OCH₃), 111.5 (C_{arom-H}), 120.5 (C_{arom-H}), 126.3 (C_{q-arom}), 130.3 (C_{arom-H}), 133.6 (C_{arom-H}), 158.8 (C_{q-arom}), 199.8 (CO); LRMS (m/z): 150.1 (M⁺).

2,2-Dimethyl-1-phenylpropanone.^[5] (113 mg, 70%). ¹H-NMR (CDCl₃) δ_{H} : 1.35 (s, 9H, CH₃), 7.30 (dd, 2H, $J = 5.0, 2.3, H_{arom}$), 7.44 (dd, 1H, $J = 5.1, 1.5, H_{arom}$), 7.66-7.72 (m, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 28.0 (CH₃), 44.2 (C_q), 127.7 (C_{arom-H}), 127.8 (C_{arom-H}), 128.0 (C_{arom-H}), 130.8 (C_{arom-H}), 160.4 (C_{q-arom}), 209.3 (CO); LRMS (m/z): 162.1 (M⁺).

4-Chloroacetophenone.^[7] (126 mg, 82%). ¹H-NMR (CDCl₃) δ_{H} : 2.58 (s, 3H, CH₃), 7.43 (d, 2H, *J* = 8.8, H_{arom}), 7.89 (d, 2H, *J* = 8.8, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} (ppm): 26.5 (CH₃), 128.9 (C_{arom-H}), 129.7 (C_{arom-H}), 135.4 (C_{q-arom}), 139.6 (C_{q-arom}), 196.8 (CO); LRMS (m/z): 154.1 (M⁺).

2-Methylbenzophenone.^[6] (174 mg, 89%). ¹H-NMR (CDCl₃) δ_{H} : 2.34 (s, 3H, CH₃), 7.25-7.33 (m, 3H, H_{arom}), 7.38 (d, 1H, J = 7.5, H_{arom}), 7.45 (t, 2H, J = 7.5, H_{arom}), 7.58 (t, 1H, J = 8, H_{arom}), 7.81 (d, 2H, J = 8.3Hz, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 19.9 (CH₃); 125.2 (C_{arom-H}), 128.5 (C_{arom-H}), 130.1 (C_{arom-H}), 131.0

 (C_{arom-H}) , 133.1 (C_{arom-H}) , 136.7 (C_{q-arom}) , 137.8 (C_{q-arom}) , 138.6 (C_{q-arom}) , 198.6 (CO); LRMS (m/z): 196.2 (M^{+}) .

Indanone.^[3] (99 mg, 75%). ¹H-NMR (CDCl₃) δ_{H} : 2.67 (t, 2H, J = 5.8, CH₂), 3.13 (t, 2H, J = 5.3, CH₂), 7.37 (t, 1H, J = 7.5, H_{arom}), 7.48 (d, 1H, J = 7.5, H_{arom}), 7.59 (t, 1H, J = 7.5, H_{arom}), 7.76 (d, 1H, J = 7.5, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 25.8 (CH₂), 36.2 (CH₂), 123.7 (C_{arom-H}), 126.7 (C_{arom-H}), 127.3 (C_{arom-H}), 134.6 (C_{arom-H}), 137.1 (C_{q-arom}), 155.2 (C_{q-arom}), 207.1 (CO); LRMS (m/z): 132.1 (M⁺).

1-Tetralone.^[3] (131 mg, 90%). ¹H-NMR (CDCl₃) δ_{H} : 2.13 (m, 2H, CH₂), 2.65 (m, 2H, CH₂), 2.96 (t, 2H, J = 7.6, CH₂), 7.17-7.35 (m, 2H, H_{arom}), 7.46 (t, 1H, J = 6.7, H_{arom}), 8.03 (d, 1H, J = 7.8, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 23.3 (CH₂), 29.7 (CH₂), 39.2 (CH₂), 126.6 (C_{arom-H}), 127.1 (C_{arom-H}), 128.8 (C_{arom-H}), 132.6 (C_{q-arom}), 133.4 (C_{arom-H}), 144.5 (C_{q-arom}), 198.4 (CO); LRMS (m/z): 146.1 (M⁺).

Fluorenone.^[3] (169 mg, 94%). ¹H-NMR (CDCl₃) δ_{H} : 7.20-7.25 (m, 2H, H_{arom}), 7.36-7.44 (m, 4H, H_{arom}), 7.59 (dd, 2H, J = 0.8, 7.4, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 120.1 (C), 124.0 (C_{arom-H}), 128.8 (C_{arom-H}), 133.9 (C_{q-arom}), 134.5 (C_{arom-H}), 144.18 (C_{q-arom}), 193.7 (CO); LRMS (m/z): 180.2 (M⁺).

Benzoic acid.^[8] From benzyl alcohol (119 mg, 98%); from DL-mandelic acid (85 mg, 70%); from hydrobenzoin (170 mg, 70%); from benzoin (183 mg, 75%).¹H-NMR (CDCl₃) δ_{H} : 7.49 (t, 2H, J = 7.5, H_{arom}), 7.63 (t, 1H, J = 6.8, H_{arom}), 8.15 (d, 2H, J = 8.4, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 128.4 (C_{arom-H}), 129.6 (C_{q-arom}), 130.1 (C_{arom-H}), 133.7 (C_{arom-H}), 172.1 (COOH); LRMS (m/z): 122.1 (M⁺).

4-Isopropylbenzoic acid.^[9] (115 mg, 70%). ¹H-NMR (CDCl₃) δ_{H} : 1.29 (d, 6H, J = 6.9, CH₃), 2.99 (q, 1H, J = 6.9, CH), 7.34 (d, 2H, J = 8.4, H_{arom}), 8.06 (d, 2H, J = 8.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 23.7 (CH₃), 34.2 (CH), 126.6 (C_{arom-H}), 126.9 (C_{q-arom}), 130.4 (C_{arom-H}), 155.3 (C_{q-arom}), 172.4 (COOH); LRMS (m/z): 164.1 (M⁺).

4-Ethylbenzoic acid.^[8] (100 mg, 67%). ¹H-NMR (CDCl₃) δ_{H} : 1.28 (t, 3H, J = 7.3, CH₃), 2.73 (q, 2H, J = 7.3, CH₂), 7.31 (d, 2H, J = 8.1, H_{arom}), 8.05 (d, 2H, J = 8.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 15.1 (CH₃), 29.0 (CH₂), 126.8 (C_{q-arom}), 128.0 (C_{arom-H}), 130.4 (C_{arom-H}), 150.8 (C_{q-arom}), 172.4 (COOH); LRMS (m/z): 150.1 (M⁺).

4-Methylbenzoic acid.^[8] (95 mg, 70%). ¹H-NMR (CDCl₃) δ_{H} : 2.44 (s, 3H, CH₃), 7.28 (d, 2H, J = 8.4, H_{arom}), 8.02 (d, 2H, J = 8.2, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 21.7 (CH₃), 127.1 (C_{q-arom}), 129.1 (C_{arom-H}), 130.2 (C_{arom-H}), 144.6 (C_{q-arom}), 172.2 (COOH); LRMS (m/z): 136.1 (M⁺).

4-(Trifluoromethyl)benzoic acid.^[10] (171 mg, 90%). ¹H-NMR (MeOD) δ_{H} : 7.77 (d, 2H, J = 7.7, H_{arom}), 8.18 (d, 2H, J = 7.3, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 123.2 (d, J = 272, CF₃), 127.4 (d, J = 3.7, $C_{\text{arom-H}}$), 132.1 ($C_{\text{arom-H}}$), 135.5 (d, J = 32.8, $C_{\text{q-arom}}$), 136.2 ($C_{\text{q-arom}}$), 168.6 (COOH); LRMS (m/z): 190.0 (M⁺).

3-Methoxybenzoic acid.^[11] (114 mg, 75%). ¹H-NMR (CDCl₃) δ_{H} : 3.86 (s, 3H, OCH₃), 7.15 (dd, 1H, J = 7.4, 1.8, H_{arom}), 7.37 (t, 1H, J = 8.0, H_{arom}), 7.62 (s, 1H, H_{arom}), 7.72 (d, 1H, J = 7.6, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 55.4 (OCH₃), 114.4 (C_{arom-H}), 120.4 (C_{arom-H}), 122.7 (C_{arom-H}), 129.5 (C_{arom-H}), 130.6 (C_{q-arom}), 159.6 (C_{q-arom}), 172.1 (COOH); LRMS (m/z): 152.0 (M⁺).

4-Methoxybenzoic acid.^[10] (102 mg, 67%). ¹H-NMR (CDCl₃) δ_{H} : 3.88 (3H, s, OCH₃), 6.95 (2H, d, J = 8.8, H_{arom}), 8.07 (2H, d, J = 8.9, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 55.4 (OCH₃), 126.6 (C_{q-arom}), 129.2 (C_{arom-H}), 130.2 (C_{arom-H}), 144.6 (C_{q-arom}), 172.3 (COOH); LRMS (m/z): 152.0 (M⁺).

3-Phenoxybenzoic acid.^[10] (128 mg, 60%). ¹H-NMR (CDCl₃) δ_{H} : 7.03 (2H, d, J = 7.7, H_{arom}), 7.15 (1H, t, J = 7.3, H_{arom}), 7.26 (1H, t, J = 3.8, H_{arom}); 7.38 (3H, dd, J = 13.3, 5.6, H_{arom}), 7.44 (1H, d, J = 8, H_{arom}), 7.71 (1H, s, H_{arom}), 7.84 (1H, d, J = 7.7, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 119.2 (C_{arom-H}), 119.8 (C_{arom-H}), 123.9 (C_{arom-H}), 124.8 (C_{arom-H}), 129.9 (C_{arom-H}), 131.0 (C_{q-arom}), 156.5 (C_{arom-H}), 157.6 (C_{arom-H}), 160.5 (C_{q-arom}), 160.9 (C_{q-arom}), 171.0 (COOH); LRMS (m/z): 214.0 (M⁺).

3,4,5-Trimethoxybenzaldehyde.^[12] (157 mg, 80%). ¹H-NMR (CDCl₃) δ_{H} : 3.91 (s, 9H, OCH₃), 7.11 (s, 2H, H_{arom}), 9.85 (s, 1H, CHO); ¹³C-NMR (CDCl₃) δ_{C} : 56.2 (OCH₃), 60.9 (OCH₃), 106.6 (C_{arom-H}), 131.6 (C_{q-arom}), 143.5 (C_{q-arom}), 153.6. (C_{q-arom}), 190.9 (CHO); LRMS (m/z): 196.1 (M⁺).

5. Aerobic oxidation of alcohols in the presence of NiBr₂ and 2. General procedure A round bottom flask equipped with a magnetic stirrer bar was charged with the alcohol (1 mmol), NaOAc (8.0 mg, 0.1 mmol), NiBr₂ (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 2 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol) and PEG 400 (1 mL) at room temperature. The system was purged with molecular oxygen, an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones and acids were prepared:

Acetophenone.^[1] (116 mg, 97%).

Benzoylcyanide.^[2] (127 mg, 97%).

Benzophenone.^[2] (169 mg, 93%).

1-(*p***-Tolyl)ethanone.**^[1] (131 mg, 98%).

1-Phenyl-1-propanone. ^[3] (126 mg, 94%).

1-(2-Methoxyphenyl)ethanone. ^[4] (147 mg, 98%).

2,2-Dimethyl-1-phenylpropanone. ^[5] (145 mg, 90%).

4-Chloroacetophenone.^[7] (134 mg, 87%).

2-Methylbenzophenone. ^[6] (173 mg, 88%).

Indanone.^[3] (123 mg, 93%).

1-Tetralone.^[3] (131 mg, 90%).

Fluorenone.^[3] (169 mg, 94%).

Cyclohexanone.^[21] (20 mg, 20%). ¹H-NMR (CDCl₃) δ_{H} : 1.37-1.48 (m, 2H, CH₂), 1.49-1.62 (m, 4H, CH₂), 2.01 (t, 4H, J = 6.7, CH₂); ¹³C-NMR (CDCl₃) δ_{C} : 24.7 (CH₂), 26.7 (CH₂), 41.6 (CH₂), 210.9 (CO).

Benzoic acid. ^[8] From benzyl alcohol (119mg, 98%); from DL-mandelic acid (119 mg, 98%); from hydrobenzoin (215 mg, 88%); from 1,2-diphenylethanol (237 mg, 97%); from benzoin (229 mg, 94%).

4-Isopropylbenzoic acid.^[9] (154 mg, 94%).

4-Ethylbenzoic acid.^[8] (141 mg, 94%).

4-Methylbenzoic acid.^[8] (122 mg, 90%).

4-(Trifluoromethyl)benzoic acid. ^[10] (184 mg, 97%).

3-Methoxybenzoic acid. ^[11] (137 mg, 90%).

4-Methoxybenzoic acid. ^[10] (122 mg, 80%).

3-Phenoxybenzoic acid. ^[10] (188 mg, 88%).

3,4,5-Trimethoxybenzaldehyde.^[12] (157 mg, 80%).

6. Aerobic oxidation of arylmethylene compounds in the presence of NiBr₂ and 1. General procedure A round bottom flask equipped with a magnetic stirrer bar was charged with the methylene compound (1 mmol), NaOAc (8.0 mg, 0.1 mmol), NiBr₂ (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 1 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol) and PEG 400 (1 mL) at room temperature. The system was purged with molecular oxygen, an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones and acids were prepared:

Acetophenone.^[1] (108 mg, 90%).

Benzophenone.^[2] (153 mg, 84%).

4-Benzoylpyridine.^[14] (92 mg, 50%). ¹H-NMR (CDCl₃) δ_{H} : 7.68-7.45 (m, 5H, H_{Ph}), 7.81 (d, 2H, J = 8.4, H_{arom}), 8.80 (d, 2H, J = 4.4, H_{py}); ¹³C-NMR (CDCl₃) δ_{C} : 122.9 (C_{arom-H}), 128.6 (C_{arom-H}), 130.1 (C_{arom-H}), 133.5 (C_{q-arom}), 135.8 (C_{arom-H}), 144.3 (C_{q-arom}), 150.3 (C_{q-arom(py)}), 195.1 (CO); LRMS (m/z, %): 183.2 (M⁺).

Benzoylcyanide .^[2] (103 mg, 79%).

Fluorenone.^[3] (175 mg, 97%).

Anthraquinone.^[13] (104 mg, 50%). ¹H-NMR (CDCl₃) δ_{H} : 7.79-7.82 (m, 2H, CH_{arom}), 8.30-8.33 (m, 2H, CH_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 127.2 (C_{arom-H}), 133.5 (C_{q-arom}), 134.4 (C_{arom-H}), 183.2 (CO); LSMR (m/z): 208.1 (M⁺).

Xanthenone.^[3] (153 mg, 78%). ¹H-NMR (CDCl₃) δ_{H} : 7.31 (t, 2H, J = 7.2, H_{arom}), 7.41 (d, 2H, J = 8.4, H_{arom}), 7.65 (t, 2H, J = 6.9, H_{arom}), 8.27 (d, 2H, J = 9.7, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 117.9 (C_{arom-H}, 121.7 (C_{arom-H}), 123.9 (C_{arom-H}), 126.6 (C_{arom-H}), 134.8 (C_{arom-H}), 156.1 (C_{q-arom}), 177.2 (CO); LRMS (m/z): 196.10 (M⁺).

Benzoic acid.^[8] From phenylacetic acid (55 mg, 45%); from deoxybenzoin (166 mg, 68%).

7. Aerobic oxidation of arylmethylene compounds in the presence of NiBr₂ and 2. General procedure A round bottom flask equipped with a magnetic stirrer bar was charged with the methylene compound (1 mmol), NaOAc (8.0 mg, 0.1 mmol), NiBr₂ (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol) and PEG 400 (1 mL per mmol of substrate) at room temperature. The system was purged with molecular oxygen, an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following ketones and acids were prepared:

Acetophenone.^[1] (116 mg, 97%).

Benzophenone.^[2] (176 mg, 97%).

4-Benzoylpyridine.^[14] (128 mg, 70%).

Benzoylcyanide .^[2] (107 mg, 82%).

Fluorenone.^[3] (176 mg, 98%).

Anthraquinone.^[13] (114 mg, 55%).

Xanthenone.^[3] (190 mg, 97%).

Benzoic acid.^[8] From phenylacetic acid (61 mg, 50%); from deoxybenzoin (220 mg, 90%).

8. Aerobic cleavage of C-C triple bond in the presence of NiBr₂ and 1. General procedure. A round bottom flask equipped with a magnetic stirrer bar was charged with the alkyne (1 mmol), NaOAc (8.0 mg, 0.1 mmol), NiBr₂ (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 1 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), and PEG 400 (1 mL) at room temperature. The system was purged with molecular oxygen, and an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following acids were prepared:

Benzoic acid.^[8] From phenylacetylene (110 mg, 90%); from 3-phenyl-2-propyn-1-ol (97 mg, 80%); from 3-phenyl-2-propynoic acid (88 mg, 72%); from ethyl phenylpropiolate (73 mg, 60%); from 1,3-diphenylprop-2-yn-1-one (200 mg, 82%); from 1-[4-(2-phenyleth-1-ynyl)phenyl]ethan-1-one (43 mg, 35%); from 1-phenyl-4-penten-1-yne (73 mg, 59%); from 1-phenyl-2-propyn-1-ol (113 mg, 93%); from 1,1,3-triphenyl-2-propyn-1-ol (61 mg, 50%).

4-Butylbenzoic acid.^[16] (158 mg, 89%). ¹H-NMR (CDCl₃) δ_{H} : 0.95 (t, 3H, J = 7.3, CH₃), 1.29-1.44 (m, 2H, CH₂), 1.61-1.64 (CH₂), 2.69 (t, 2H, J = 7.7, CH₂), 7.28 (d, 2H, J = 9.7, H_{arom}), 8.04 (d, 1H, J = 8.1, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 13.8 (CH₃), 22.2 (CH₂), 33.1 (CH₂), 35.7 (CH₂), 126.7 (C_{q-arom}), 128.5 (C_{arom-H}), 130.2 (C_{arom-H}), 149.4 (C_{q-arom}), 172. 3 (COOH); LRMS (m/z): 178.1 (M⁺).

2,4-Difluorobenzoic acid.^[15] (107 mg, 68%). ¹H-NMR (CDCl₃) δ_{H} : 7.05 (t, 2H, J = 9.3, H_{arom}), 8.01 (dd, 1H, J = 15.5, 8.2, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 103.0 (t, J = 26.2, C_{arom-H}), 109.6 (dd, J = 21.9, 3.9, C_{arom-H}), 132.4 (dd, J = 10.7, 2.4, C_{arom-H}), 159.8 (C_{q-arom}), 162.5 (C_{q-arom}), 163.4 (COOH); 165.8 (C_{q-arom}); LRMS (m/z): 158 (M⁺).

4-Methoxy-2-methylbenzoic acid.^[18] (146 mg, 88%). ¹H-NMR (MeOD) δ_{H} : 2.56 (s, 3H, CH₃), 3.82 (s, 3H, OCH₃), 6.76-6.79 (m, 1H, H_{arom}), 7.90-7.94 (m, 2H, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 21.1 (CH₃), 54.4 (OCH₃), 110.5 (C_{arom-H}), 116.5 (C_{arom-H}), 121.7 (C_{q-arom}), 132.9 (C_{arom-H}), 142.5 (C_{q-arom}), 162.6 (C_{q-arom}), 169.3 (COOH); LRMS (m/z): 166.1 (M⁺).

3,4-Dichlorobenzoic acid.^[19] (161 mg, 85%). ¹H-NMR (CDCl₃) δ_{H} : 7.56 (d, 1H, J = 8.4, H_{arom}), 7.92 (dd, 1H, J = 8.4, 2.0, H_{arom}), 8.18 (d, 1H, J = 1.9, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 127.8 (C_{arom-H}), 128.8 (C_{arom-H}), 129.4 (C_{q-arom}), 129.59 (C_{arom-H}), 130.7 (C_{arom-H}), 135.2 (C_{q-arom}), 164.5 (COOH); LRMS (m/z): 190 (M⁺).

4-Acetylbenzoic acid.^[20] (55 mg, 34%). ¹H-NMR (CDCl₃) δ_{H} : 2.64 (s, 3H, CH₃); 8.09 (d, 2H, J = 8.4, H_{arom}); 8.14 (d, 2H, J = 8.4, H_{arom}); ¹³C-NMR (DMSO-d₆) δ_{C} : 26.9 (CH₃); 129.0 (C_{arom-H}); 130.6 (C_{arom-H}); 135.0 (C_{q-arom}); 141.3 (C_{q-arom}); 166.8 (COOH); 197.6 (CO); LRMS (m/z): 164 (M⁺).

Benzophenone.^[2] from 1,1,3-triphenyl-2-propyn-1-ol (55 mg, 30%).

9. Aerobic cleavage of C-C triple bond in the presence of NiBr₂ and 2. General procedure. A round bottom flask equipped with a magnetic stirrer bar was charged with the alkyne (1 mmol), NaOAc (8.0 mg, 0.1 mmol), NiBr₂ (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 2 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol), 2 (20 μ L of a 5 x 10⁻⁶M solution in PEG-400, 10⁻⁷ mmol) and PEG 400 (1 mL) at room temperature. The system was purged with molecular oxygen, an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120 °C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (50 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 6 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was purified by flash column chromatography using hexane:ethyl acetate as eluent. By this procedure the following acids were prepared:

Benzoic acid.^[8] From phenylacetylene (112 mg, 92%); from diphenylacetylene (234 mg, 96%); from 3-phenyl-2-propyn-1-ol (115 mg, 94%); from 1-phenyl-1propyne (107 mg, 88%); from 3-phenyl-2-propynoic acid (91 mg, 75%); from ethyl phenylpropiolate (110 mg, 90%); from 1,3-diphenylprop-2-yn-1-one (210 mg, 86%); from 1-[4-(2-phenyleth-1-ynyl)phenyl]ethan-1-one (57 mg, 47%); from 1-phenyl-

4-penten-1-yne (110 mg, 90%); from 1-phenyl-2-propyn-1-ol (115 mg, 94%); from 1,1,3-triphenyl-2-propyn-1-ol (73 mg, 60%).

4-Butylbenzoic acid.^[17] (162 mg, 91%).

4-Bromobenzoic acid. ^[8] (158 mg, 79%). ¹H-NMR (CDCl₃) δ_{H} : 7.63 (d, 2H, J = 8.7, H_{arom}), 7.91(d, 2H, J = 8.7, H_{arom}); ¹³C-NMR (CDCl₃) δ_{C} : 125.8 (C_{q-arom}), 128.2 (C_{q-arom}), 129.5 (C_{arom-H}), 129.9 (C_{arom-H}), 165.9 (COOH); LRMS (m/z): 199.9 (M⁺).

2,4-Difluorobenzoic acid. ^[15] (112 mg, 71%).

4-Methoxy-2-methylbenzoic acid. ^[18](161 mg, 97%).

3,4-Dichlorobenzoic acid.^[19] (170 mg, 90%).

4-Acetylbenzoic acid. ^[20] (75 mg, 46%).

Benzophenone.^[2] from 1,1,3-triphenyl-2-propyn-1-ol (36 mg, 20%).

10. Large-scale aerobic oxidation of 1-phenylethanol. A round bottom flask equipped with a magnetic stirrer bar was charged with 1-phenylethanol (1.5 gr, 12.28 mmol), NaOAc (100 mg, 1.23 mmol), NiBr₂ (245 μ L of a 5 x 10⁻⁶M solution in PEG-400, 1.23 x 10⁻⁶ mmol), **2** (245 μ L of a 5 x 10⁻⁶M solution in PEG-400, 1.23 mmol) and PEG 400 (12.3 mL) at room temperature. The system was purged with molecular oxygen an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120°C under stirring for 120 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (100 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 30 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was obtained as a yellowish oil (1.41 g, 96%).

11. Large-scale oxidative cleavage of phenylacetylene. A round bottom flask equipped with a magnetic stirrer bar was charged with phenylacetylene (1.5 gr, 14.68 mmol), NaOAc (120 mg, 1.46 mmol), NiBr₂ (294 μ L of a 5 x 10⁻⁶M solution in PEG-400, 1.47 x 10⁻⁶ mmol), **2** (294 μ L of a 5 x 10⁻⁶M solution in PEG-400, 1.47 x 10⁻⁶ mmol) and PEG 400 (14.7 mL) at room temperature. The system was purged with molecular oxygen, an oxygen-filled balloon (1-1.2 atm) was connected. The mixture was heated at 120°C under stirring for 48 h. The reaction outcome was monitored by ¹H-NMR. Upon completion, the mixture was cooled to room temperature and water was added (100 mL aprox.). The resulting solution was acidified with HCl 1M (pH≈1-2), extracted with Et₂O (4 x 30 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and evaporated *in vacuo* to give a residue which was obtained as a white solid (1.2 g, 67%).

When the reaction time (heating at 120°C) was prolonged to 120h, the same procedure applied to phenylacetylene provided benzoic acid (1.73 g, 96%) as a white powder.

12. ¹H NMR and ¹³C NMR spectra

- Methyl 3,5-bis((1H-1,2,4-triazol-1-yl)methyl)benzoate

- Acetophenone

- Benzoylcyanide

- Fluorenone

- Benzophenone

- Indanone

- 1-Tetralone

- 1-(p-Tolyl)ethanone

- 1-Phenyl-1-propanone

- 1-(2-methoxyphenyl)ethanone

- 2,2-Dimethyl-1-phenylpropanone

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 2-methylbenzophenone

- 4-Chloroacetophenone

- Xanthenone

- Anthraquinone

- 4-Benzoylpyridine

- Cyclohexanone

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl(ppm)

- Benzoic acid

- 4-Isopropylbenzoic acid

- 4-Ethylbenzoic acid

- 4-Methylbenzoic acid

- 4-(Trifluoromethyl)benzoic acid

- 3-Phenoxybenzoic acid

- 3-Methoxybenzoic acid

- 4-Methoxybenzoic acid

- 3,4,5-Trimethoxybenzaldehyde

- 2,4-Difluorobenzoic acid

- 4-Butylbenzoic acid

- 4-Bromobenzoic acid

- 4-Methoxy-2-methylbenzoic acid

- 3,4-Dichlorobenzoic acid

- 4-Acetylbenzoic acid

12. Kinetic Plot

Conversion rate (%) vs time (h) in the oxidative cleavage of phenylacetylene

13. Summary of poisoning experiments

Table S2. Summary of poisoning experiments

Entry	Poisoning additive	Conv. 1 $(\%)^{a}$	Conv. 2 $(\%)^{a}$
1	Hg(0)	99	99
2	CS_2 (0.5eqv)	89	87
3	CS_2 (2eqv)	88	85
4	PPh ₃ (0.03eqv)	90	89
5	PPh_3 (0.3eqv)	90	89
6	PPh ₃ (4eqv)	90	88
7	py (150equiv) ^b	96	95
8	PVPy (300equiv) ^c	98	99

^{a)} Conversion rate measured by ¹H-NMR. 4-Chloroanisole was used as internal standard. ^{b)} py: Pyridine ^{c)} PVPy: Polyvinylpyridine.

14. References:

- [1] M. Kuroboshi, K. Goto, H. Tanaka, Synthesis 2009, 6, 903-908.
- [2] Y. A. Ibrahim, K. Kaul, N. A. Al-Awadi, Tetrahedron 2001, 57, 10171-10176.
- [3] A. Shaabani, A. Rahmati, Catal. Comm. 2008, 9, 1692-1697.
- [4] M. M. Khodaie, K. Bahrami, F. Shahbazi, Chem. Lett. 2008, 37, 844-845.
- [5] I. N. Lykakis, C. Tanielian, R. Seghrouchni, M. Orfanopoulos, J. Mol. Catal. A: Chem. 2007, 262, 176-184.
- [6] C. S. Cho, Catal. Comm. 2008, 9, 2261-2263.
- [7] X. Q. Wang, W. K. Li, C. Zhang, Adv. Synth. Catal. 2009, 351, 2342-2350.
- [8] K. Nemoto, H. Yoshida, N. Egusa, N. Morahashi, T. Hattori, J. Org. Chem. 2010, 75, 7855-7862.
- [9] L. Jayasinghe, B. M. M. Kumarihamg, K. H. R. N. Jyarathna, N. W. M. G. Udishani, B. M. R. Bnadara, N. Hara, Y. Fujimoto, *Phytochemistry* 2003, **62**, 637-641.
- [10] A. Correa, R. Martín, J. Am. Chem. Soc. 2009, 131, 15974-15975.
- [11] D. Yang, H. Yang, H. Fu, Chem. Commun. 2011, 47, 2348-2350.
- [12] S. Velosamy, M. Ahamed, T. Punniyamurthy, Org. Lett. 2004, 6, 4821-4824.
- [13] J. Zhuang, C. Wang, F. Xie, W. Zhang, Tetrahedron 2009, 65, 9797-9800.
- [14] E. Maerten, M. Suthier, A. Mortreux, Y. Castanet, *Tetrahedron* 2007, 63, 682-689.
- [15] T. Henriksen, R. K. Juhler, B. Svensmark, N. B. Cech, J. Am. Soc. Mass Spectrom 2005, 16, 446-455.
- [16] M. Karabacak, Z. Cinar, M. Kurt, S. Sudha, N. Sundaraganesan, Spectrochimica Acta Part A 2012, 85, 179-189.
- [17] L. F. Jones, M. E. Cochrane, B. D. Koivisto, D. A. Leigh, E. K. Brechin, *Inorg. Chim. Acta* 2008, 361, 3420-3426.
- [18] T. -H. Nguyen, N. T. T. Chau, A. –S. Castenet, K. P. P. Nguyen, J. Mortier, J. Org. Chem. 2007, 72, 3419-3429.
- [19] K. Alagira, K. R. Prabhu, *Tetrahedron* 2011, **67**, 8544-8551.
- [20] V. Nair, V. Varghese, R. R. Paul, A. Jose, C. S. Sinu, R. R. Menon, Org. Lett. 2010, 12, 2653-2655.
- [21] G.E. Hawkes, K. Herwing, J. D. Roberts, J. Org. Chem. 1974, 39, 1017-1028.