RSCPublishing

Thermally-activated recombination in one component of (CH₃NH₃)PbI₃ / TiO₂ observed by photocurrent spectroscopy

Patrick Cottingham, David C. Wallace, Ke Hu, Gerald Meyer, and Tyrel M. McQueen

Preparation of CH₃NH₃I. 33 wt% methylamine ethanol solution (Aldrich, $D_{25^{\circ}C} = 0.756$ g/mL, 28.3 mL, 0.228 mol) and 57 wt% hydroiodic acid in water (Aldrich, $D_{25^{\circ}C} = 1.701$ g/mL, 25.0 mL, 0.189 mol) containing hydrophosphous acid as a stabilizer were mixed and stirred at 0 °C to form a clear solution. The solution was rotavapped down to form white precipitate and dried. The solid was washed three cycles by diethyl ether and was then vacuum dried (Yield = 89%).

Mesoporous TiO₂ and ZrO₂ Thin Films on FTO Substrate. The procedure has been described in a previous publication.¹ Briefly, 10 mL titanium(IV) isopropoxide (Aldrich, \ge 97%) was added dropwise to 60 mL di water with 0.42 mL HNO₃ (70% V/V). The solution was heated to ~95 °C and the volume was reduced to ~20 mL (~160 g/L in TiO₂ concentration). The solution was put in an acid digestion bomb and autoclaved at 200 °C for 12 hours. The resulting product was opaque white in appearance and 0.9 g carbowax (Polyethyleneglycol Bisphenol A Epichlorohydrin Copolymer 15,000-20,000 Da, Aldrich) was added. The TiO₂ paste was "doctor-bladed" onto a precleaned fluorine doped tin oxide (FTO, 15 Ω/\Box , Hartford Glass) substrate using Scotch TapeTM as the spacer, dried, and sintered in a tube furnace at 450 °C under constant oxygen flow for 30 minutes. Mesoporous ZrO₂ thin films were made in a similar way except that Zr(IV) propoxide (70% in 1-propanol) was used as the precursor.

Preparation of CH₃NH₃PbI₃ Substrates. 40.3% in weight perovskite solution was prepared by adding 0.979 g CH₃NH₃I and 2.864 g PbI₂ (Aldrich, 99%) in 5 mL γ-butyrolactone (Aldrich, ≥ 99%) and stirred under argon at 60 °C overnight. The solution was filtrated through a 0.22 µm PVDF syringe filter (MILLEX[®]GV). The resulting coating solution was spread on the substrates, allowed to wait for 1 minute, and spun coat on FTO substrate (1a) or mesoporous TiO₂ and ZrO₂ on FTO substrates (1b) for 45 seconds at speed of 4000 rpm. The coated slides were annealed at 100 °C for 30 minutes and the color turned from light yellow to black.

X-Ray Diffraction of CH₃NH₃PbI₃ in mesoporous TiO₂. In order to verify that the PbI₂ used to synthesize (CH₃NH₃)PbI₃ was fully reacted and (CH₃NH₃)PbI₃ was not decomposed, x-ray diffraction was performed on a sample of (CH₃NH₃)PbI₃ / mesoporous TiO₂. Data were collected using a Bruker D8 diffractometer equipped with Cu K α radiation ($\lambda_1 = 1.54056$ Å, $\lambda_2 = 1.54439$ Å) and a LynxEye detector. This data is shown in Fig. S1, along with data collected on powdered PbI₂. It is clear from the complete absence of any peaks in the former pattern near many values of 20 where strong reflections occur in the latter pattern that no significant fraction of PbI₂ exists in the (CH₃NH₃)PbI₃ sample.

Fig. S1 X-ray diffraction patterns of powdered PbI₂ and a sample of (CH₃NH₃)PbI₃ in mesoporous TiO₂

Preparation of Device with Planar CH₃NH₃Pbl₃ and TiO₂ Blocking Layer. A dense, compact TiO₂ layer was deposited on FTO glass substrates (Hartford Glass, Inc.) in the following way. A 0.15 M solution of titanium(IV) isopropoxide (Aldrich, \ge 97%) in 2-propanol was spin-coated onto the substrate at 2000 RPM, followed by heating of the substrate at 110 °C for 10 minutes. The previous step was repeated twice with a 0.3 M solution followed by heating at 450 °C for 30 minutes. (CH₃NH₃)Pbl₃ was deposited onto the FTO/blocking layer substrates according a variation on the method of Gratzel et al.² Briefly, a 1 M suspension of Pbl₂ in dimethylformamide (DMF) which had been heated to 70 °C was spin-coated at 3000 RPM onto the FTO and blocking layer substrate which had also been preheated to 70 °C. This sample was then annealed for 30 minutes on a hotplate at 70 °C. The sample was then swirled in a 100 mg/ml solution of CH₃NH₃I in 2-propanol for 20 seconds. Drying the sample at 75 °C on a hotplate caused an immediate color change to homogenous dark brown. A solution of 10 mg/ml CH₃NH₃I and 1% in weight PEDOT:PSS (Aldrich, from dry pellets) in 2-propanol was spin-coated anot the sample at 2000 RPM in order to create a hole-transport layer. The sample was compressed against another piece of FTO glass and sealed with glue in order to create a complete photovoltaic device.

Device Measurement. Photocurrent measurements were conducted by mounting the samples in a bespoke probe which was inserted into a Quantum Design Physical Properties Measurement System (PPMS) in order to achieve precise control of the sample's temperature. A ~10 nm spectral band was selected from a white light source using a monochromator and used to illuminate the sample via an optical fiber. Samples were measured over the wavelength range $\lambda = 350-1100$ nm at each temperature, beginning with $\lambda = 350$ nm. Scans were performed at a series of decreasing temperatures, beginning at T = 300 K. A fraction of the light exiting the monochromator was directed into an Ophir photodiode in order normalize measured photocurrents on an per-incident-Watt basis. The light

RSCPublishing

intensity arriving at the sample varied with wavelength and did not exceed 25 nW cm⁻² at any wavelength. The output of the monochromator was mechanically chopped at 315 Hz and filtered for harmonics. Measurement of the photocurrent was accomplished by measuring the voltage across a resistor (R = 9.8 k Ω or 980 k Ω) connected across the terminals of the device using a Stanford Research Systems SRS830 lock-in amplifier.³

Comparison of Devices with Mesoporous TiO₂ and TiO₂ blocking layer. In order to verify that the appearance of two features in the photocurrent spectra of samples containing a mesoporous oxide matrix depends on infiltration of $(CH_3NH_3)PbI_3$ into the matrix, photocurrent measurements were performed on a device containing a dense, compact TiO₂ layer, but no mesoporous matrix. This spectra was collected at room temperature, with optical chopping at 50 Hz, using the SRS830 in current mode. In Fig. S2 this spectrum is compared with the T = 300 K spectrum of the mesoporous TiO₂ device described in the main text. It clear from this comparison that the presence of compact TiO₂ adjacent to a planar (CH₃NH₃)PbI₃ is insufficient to induce the appearance of two spectral components.

Fig. S2. The photocurrent of two devices, one consisting of $(CH_3NH_3)PbI_3$ in a mesoporous TiO₂ matrix (described further in main text) and one containing a dense, compact TiO₂ layer, a planar $(CH_3NH_3)PbI_3$ layer, and a PEDOT:PSS hole transport layer.

References:

1. Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.; Meyer, G. J. Inorg. Chem. 1994, 33, 5741.

RSCPublishing

2. J. Burschka, N. Pellet, S.-J. Moon, R. Humphrey-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, *Nature*, 2013, **499**, 316.

3. P. Cottingham, A. Lemire, and T.M. McQueen, Submitted Rev. Sci. Inst. (2015).