Synthesis of Bradyrhizose, a Unique Inositol-fused Monosaccharide Relevant to a Nod-factor Independent Nitrogen Fixation

Wei Li^a, Alba Silipo^b, Antonio Molinaro*^b and Biao Yu*^a

^aState Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. byu@mail.sioc.ac.cn

^bDepartment of Organic Chemistry and Biochemistry, University of Naples "Federico II", Via Cinthia 4, Napoli 80126, Italy. <u>molinaro@unina.it</u>

General remarks for the synthesis: All reactions were carried out under argon with regular solvents in glassware, unless otherwise noted. The chemicals were reagent grade as supplied. Analytical thin-layer chromatography was performed using silica gel 60 F254 glass plates. Compound spots were visualized by UV light (254 nm) and by heating with a solution with 10% H₂SO₄ in ethanol. Flash column chromatography was performed on silica gel. NMR spectra were referenced using Me₄Si (0 ppm), residual CHCl₃ (¹H NMR δ = 7.26 ppm, ¹³C NMR δ = 77.0 ppm). Peak and coupling constant assignments are based on ¹H NMR, COSY, HSQC, and NOESY. Splitting patterns were indicated as s (singlet), d (doublet), t (triplet), q (quartet), and brs (broad singlet) for ¹H NMR data. ESI-MS and MALDI-MS were run on an IonSpec Ultra instrument using HP5989A or VG Quattro MS. Optical rotations were measured using a Perkin-Elmer 241 polarimeter. [α]_D values are given in 10⁻¹ deg cm² g⁻¹.

To a mixture of tri-*O*-acetyl-D-glucal (10.0 g, 36.7 mmol), methyl acrylate (6.60 mL, 73.6 mmol), and Cu(OAc)₂ (6.68 g, 36.8 mmol) in DMA (50 mL) and AcOH (50 mL) was added Pd(OAc)₂ (4.14 g, 18.4 mmol) at 65 °C. After stirring for 2.5 h under O₂, the mixture was filtered and diluted with ethyl acetate. The mixture was washed with water, saturated NaHCO₃, and brine, respectively. The organic layer was dried, filtered, and then concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 6:1 to 4:1 to 2:1) to provide glycal **2** (9.94 g, 76%) as a yellow syrup: ¹H NMR (500 MHz, CDCl₃) δ = 7.20 (d, *J* = 15.9 Hz, 1H), 6.98 (s, 1 H), 5.63 (d, *J* = 15.8 Hz, 1H), 5.58 (d, *J* = 2.2 Hz, 1H), 5.15 (t, *J* = 3.4 Hz, 1H), 4.52–4.47 (m, 1H), 4.46–4.42 (m, 1H), 4.18 (dd, *J* = 11.8, 4.1 Hz, 1H), 3.72 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H), 2.07

To a solution of glycal 2 (9.94 g, 27.9 mmol) in MeOH (50 mL) was added MeONa (430 mg, 7.96 mmol) at RT. After stirring for 4 h, the mixture was neutralized with H^+ resins, and was then filtered and concentrated.

To a suspension of the residue above (3.31 g, 14.4 mmol) in anhydrous THF (150 mL) was added *m*-CPBA (5.97 g, 29.4 mmol) at RT. After 1.5 h, anhydrous MeOH (50 mL) was added, and the stirring continued overnight. The mixture was then concentrated.

To a solution of the residue above in anhydrous acetonitrile (100 mL) and 2,2-dimethoxypropane (9.0 mL, 73.2 mmol) was added *p*-TsOHH₂O (100 mg, 0.53 mmol) at RT. After 40 min, another portion of *p*-TsOHH₂O (60 mg, 0.35 mmol) was added and the stirring continued for 3.5 h. The reaction was quenched with TEA (3 mL). The mixture was concentrated and purified by silica gen column chromatography (petroleum ether/ethyl acetate, 1:1) to give ester **3** (4.18 g, 91%) as a colorless syrup: $[\alpha]_D^{27} = 72.6$ (*c* = 0.9 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.01$ (d, *J* = 15.7 Hz, 1H), 6.20 (d, *J* = 15.7 Hz, 1H), 4.38 (s, 1H), 3.94–3.88 (m, 2H), 3.87–3.84 (m, 2H), 3.75–3.68 (m, 4H), 3.31 (s, 3H), 3.05 (s, 1H), 3.02–2.95 (br s, 1H), 1.51 (s, 3H), 1.41 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 166.8$, 149.2, 122.2, 103.1, 100.2, 76.6, 71.7, 71.2, 63.7, 62.2, 55.3, 51.8, 29.2, 19.2 ppm; HR-ESI calcd for C₁₄H₂₃O₈ [M + H]⁺ 319.1387; found 319.1385.

To a solution of ester **3** (5.02 g, 15.8 mmol) in anhydrous DCM (90 mL) was added DIBAL-H (1 M in cyclohexane, 50.0 mL, 50.0 mmol) at -70 °C. After 40 min, the mixture was warmed to 0 °C, and H₂O (2.0 mL), aqueous NaOH (15%, 2.0 mL), and H₂O (5.0 mL) were added subsequently. The mixture was then moved to RT and stirred for 15 min. Anhydrous MgSO₄ was added, and the stirring was continued for another 15 min. The mixture was then filtered, eluted with DCM and MeOH (10:1), and then concentrated.

To a solution of the residue above and imidazole (1.62 g, 23.8 mmol) in anhydrous DCM (50 mL) was added TBDPSCl (5.0 mL, 19.5 mmol) at RT. The mixture was stirred for 40 min, and then quenched with saturated NaHCO₃. The stirring was continued for another 5 min. The mixture was diluted with ethyl acetate, and washed with brine. The organic layer was dried, filtered, and

concentrated.

To a solution of the residue above and DMAP (150 mg, 1.23 mmol) in anhydrous DCM (50 mL) were added TEA (3.30 mL, 23.7 mmol) and acetic anhydride (1.80 mL, 19.1 mmol) at RT. After stirring for 2.5 h, the reaction was quenched with saturated NaHCO₃. The mixture was diluted with ethyl acetate, and was then washed with brine. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 6:1 to 4:1) to give **4** (7.40 g, 82%) as a colorless syrup: $[\alpha]_D^{27} = 39.3$ (*c* = 1.4 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.67-7.65$ (m, 4H), 7.43–7.37 (m, 6H), 5.97–5.86 (m, 2H), 5.31 (d, *J* = 9.7 Hz, 1H), 4.33 (s, 1H), 4.20 (d, *J* = 4.4 Hz, 2H), 4.10 (t, *J* = 9.5 Hz, 1H), 3.90–3.80 (m, 3H), 3.33 (s, 3H), 2.03 (s, 3H), 1.48 (s, 3H), 1.38 (s, 3H), 1.06 ppm (s, 9H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 169.6$, 135.510, 135.499, 133.62, 133.60, 130.7, 130.3, 129.7, 127.68, 127.67, 104.1, 99.9, 76.4, 72.3, 69.8, 64.4, 63.8, 62.4, 55.2, 29.2, 26.8, 20.8, 19.23, 19.20 ppm; HR-ESI calcd for C₃₁H₄₂O₈SiNa [M + Na]⁺ 593.2541; found 593.2551.

To a solution of **4** (10.5 g, 18.4 mmol) in MeOH (70 mL) was added Dowex 50WX2 (350 mg) at RT. After stirring for 3 h, the mixture was filtered and concentrated.

To a solution of the residue above, imidazole (1.89 g, 27.8 mmol), and PPh₃ (5.84 g, 22.3 mmol) in anhydrous THF (60 mL) was added I₂ (5.60 g, 22.1 mmol). The mixture was heated to 60 °C and stirred for 1 h. The mixture was diluted with ethyl acetate, washed with saturated Na₂SO₃ and brine, respectively. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 2:1) to give iodide **5** (11.8 g, 100%) as a yellow syrup: $[\alpha]_D^{26} = 60.7$ (c = 0.3 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.66-7.64$ (m, 4H), 7.45–7.36 (m, 6H), 5.98 (dt, J = 15.6, 4.6 Hz, 1H), 5.81 (dt, J = 15.6, 1.6 Hz, 1H), 5.17 (d, J = 9.4 Hz, 1H), 4.37 (s, 1H), 4.21 (d, J = 4.0 Hz, 2H), 3.77 (td, J = 9.4, 6.2 Hz, 1H), 3.65 (dd, J = 10.6, 2.4 Hz, 1H), 3.54 (ddd, J = 9.3, 7.0, 2.3 Hz, 1H), 3.44–3.39 (m, 4H), 2.38 (d, J = 6.2 Hz, 1H), 2.18 (s, 1H), 2.08 (s, 3H), 1.05 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 172.0$, 135.5, 133.59, 133.56, 131.5, 129.7, 128.7, 127.7, 103.5, 75.9, 75.6, 71.5, 63.8, 55.7, 26.8, 20.9, 19.2, 7.0 ppm; HR-ESI calcd for C₂₈H₃₇O₇ISiNa [M + Na]⁺ 663.1245; found 663.1256.

To a solution of iodide 5 (653 mg, 1.02 mmol) in DCM (10 mL) was added Dess-Martin

periodinane (645 mg, 1.52 mmol) at RT. After stirring for 2 h, the reaction was quenched with saturated $Na_2S_2O_3$ and saturated $NaHCO_3$. The stirring continued for another 3 h. The mixture was diluted with ethyl acetate, washed with brine. The organic layer was dried, filtered, and concentrated.

To a solution of the residue above in anhydrous THF (10 mL) was added TEA (0.14 mL, 1.0 mmol) at RT. After 2 h, TLC showed the reactant was consumed. The mixture was then cooled to -70 °C, and MeLi (1 M in E₂O, 5.0 mL, 5.0 mmol) was added. After stirring for 1.5 h at -70 °C, the reaction was quenched with MeOH. The mixture was diluted with ethyl acetate, washed with water and brine, respectively. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 3:1) to provide triol **6** (278 mg, 56%) as a colorless syrup: $[\alpha]_D^{26} = 40.8$ (c = 0.2 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.69-7.66$ (m, 4H), 7.45–7.36 (m, 6H), 5.98–5.88 (m, 2H), 4.93 (s, 1H), 4.72 (d, J = 0.9 Hz, 1H), 4.45 (s, 1H), 4.29 (d, J = 3.3 Hz, 2H), 3.78 (s, 1H), 3.41 (s, 3H), 2.21 (s, 1H), 1.54 (s, 3H), 1.06 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 160.8$, 135.57, 135.56, 133.8, 133.6, 130.8, 129.7, 127.7, 104.4, 96.1, 75.6, 75.5, 73.4, 63.9, 55.6, 26.9, 23.7, 19.2 ppm; HR-MALDI calcd for C₂₇H₄₀O₆NSi [M + NH₄]⁺ 502.2619; found 502.2611.

To a solution of triol **6** (3.00 g, 6.19 mmol) in anhydrous DMF (30 mL) was added NaH (2.20 g, 55.0 mmol) at 0 $^{\circ}$ C. After 25 min, TBAI (2.29 g, 6.19 mmol) and BnBr (6.80 mL, 57.2 mmol) were added, and the mixture was moved to RT. The mixture was stirred for another 40 min, quenched with MeOH, and diluted with ethyl acetate. The mixture was washed with water and brine, respectively, and was then concentrated.

To a solution of the residue above in THF (40 mL) was added TBAF (1 M in THF, 7.0 mL, 7.0 mmol) at RT. The mixture was stirred overnight and concentrated.

To a solution of the residue above, TEA (0.86 mL, 6.2 mmol), and DMAP (65 mg, 0.53 mmol) in anhydrous DCM (30 mL) was added acetic anhydride (0.58 mL, 6.2 mmol) at RT. After stirring for 1 h, the mixture was diluted with ethyl acetate, and was then washed with saturated NaHCO₃ and brine, respectively. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 10:1) to give **7** (2.47 g, 71%) as a yellow syrup: $[\alpha]_D^{27} = 22.3$ (c = 1.0 in CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.36-7.32$ (m, 15H), 5.92–5.91 (m, 2H), 4.87–4.75 (m, 5H), 4.71–4.52 (m, 6H), 4.10 (s, 1H), 3.45 (s, 3H), 1.99 (s, 3H), 1.68 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 170.7$, 158.6, 139.5, 138.9, 138.8, 131.6, 128.3, 128.2, 127.4, 127.31, 127.26, 127.05, 127.97, 102.9, 96.7, 80.0, 79.9, 75.2, 66.3, 64.8, 64.7, 55.9, 23.7, 20.9 ppm; HR-ESI calcd for C₃₄H₃₈O₇Na [M + Na]⁺ 581.2510; found 581.2523.

To a solution of **7** (2.47 g, 4.42 mmol) in 1,4-dioxane (40 mL) and H₂O (20 mL) were added Hg(OAc)₂ (3.00 g, 9.41 mmol) and AcOH (0.6 mL) at 60 °C. After 5 min, NaCl (0.26 g, 4.4 mmol) was added. After stirring for 1.5 h, the mixture was diluted with ethyl acetate. After washing with brine, the organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 4:1) to give ketone **8** (2.09 g, 87%) as a colorless syrup: $[\alpha]_D^{27} = -21.4$ (c = 0.3 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.45$ (d, J = 7.3 Hz, 2H), 7.34–7.23 (m, 13H), 6.00 (dt, J = 16.3, 5.5 Hz, 1H), 5.92 (d, J = 16.3 Hz, 1H), 5.05 (d, J = 11.6 Hz, 1H), 4.89 (d, J = 12.3 Hz, 1H), 4.72–4.65 (m, 3H), 4.61–4.57 (m, 3H), 4.39 (s, 1H), 4.08 (t, J = 3.4 Hz, 1H), 3.22 (dd, J = 15.0, 3.2 Hz, 1H), 2.52 (dd, J = 15.0, 3.8 Hz, 1H), 2.01 (s, 3H), 1.69 ppm (s, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 209.4$, 170.9, 139.4, 138.8, 138.7, 133.4, 129.3, 128.4, 128.32, 128.31, 127.8, 127.5, 127.44, 127.40, 127.3, 127.3, 86.8, 82.2, 81.2, 75.6, 72.5, 67.9, 66.6, 64.6, 42.1, 20.9, 19.1 ppm; HR-ESI calcd for C₃₃H₃₆O₇Na [M + Na]⁺ 567.2353; found 567.2342.

To a mixture of $Me_4NB(OAc)_3$ (5.04 g, 19.2 mmol) in MeCN (50 mL) was added AcOH (2.20 mL, 38.4 mmol) at 0 °C. After 30 min, ketone **8** (2.09 g, 3.84 mmol) in MeCN (20 mL) was added. The mixture was then moved to RT. After stirring for another 2 h, the reaction was quenched with potassium sodium tartrate, and the stirring continued for another 1 h. The mixture was diluted with ethyl acetate and washed with brine. The organic layer was dried, filtered, and concentrated. The residue was employed in the next step without further purification.

To a solution of the residue (2.10 g, 3.84 mmol) in anhydrous pyridine (8 mL) was added BzCl (0.60 mL, 5.17 mmol) dropwise at 0 °C. After stirring for 1 h, the reaction was quenched with H₂O. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 4:1) to give alcohol **9** (1.93 g, 77%) as a colorless syrup: $[\alpha]_D^{27} = 17.4$ (c = 0.9 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.04$ (d, J = 7.3 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.34–7.16 (m, 15H), 5.98 (dt, J = 16.2, 5.4 Hz, 1H), 5.91 (d, J = 16.4 Hz, 1H), 5.75 (dd, J = 10.1, 6.2 Hz, 1H), 5.03 (d, J = 11.6 Hz, 1H), 4.88 (d, J = 12.3 Hz, 1H), 4.73–4.66 (m, 3H), 4.60–4.58 (m, 3H), 4.16 (s, 1H), 3.95 (s, 1H), 2.36 (s, 1H), 2.24–2.17 (m, 2H), 1.99 (s, 3H), 1.82 ppm (s, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 170.9$, 165.6,

139.8, 139.22, 139.16, 134.3, 133.0, 130.5, 129.6, 128.6, 128.4, 128.29, 128.26, 128.19, 127.5, 127.3, 127.19, 127.18, 127.16, 127.1, 82.0, 76.5, 74.1, 67.5, 65.2, 64.7, 31.3, 20.9 ppm; HR-ESI calcd for $C_{40}H_{42}O_8Na$ [M + Na]⁺ 673.2772; found 673.2784.

To a solution of alcohol **9** (1.93 g, 2.96 mmol) in anhydrous DCM (10 mL) was added Dess-Martin periodinane (1.85 g, 4.36 mmol) at RT. The mixture was stirred for 1.5 h, and saturated NaHCO₃ (20 mL) and saturated Na₂S₂O₃ (20 mL) were added, and the stirring continued overnight. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated.

To a mixture of the residue above in DCM (2 mL) and MeOH (18 mL) was added NaBH₄ (0.504 g, 13.3 mmol) at 0 °C. After stirring for 0.5 h, the reaction was quenched with saturated NH₄Cl, and the stirring continued for another 5 min. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated.

To a solution of the residue above and 2,6-lutidine (1.00 mL, 8.59 mmol) in anhydrous DCM (15 mL) was added TBSOTf (1.00 mL, 4.35 mmol) at 0 °C. The mixture was moved to RT and stirred for 0.5 h. The reaction was quenched with MeOH. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 15:1) to provide **10** (2.01 g, 89%) as a yellow syrup: $[\alpha]_D^{27} = 9.7$ (c = 0.5 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.07$ (dd, J = 8.4, 1.4 Hz, 2H), 7.59–7.56 (m, 1H), 7.47–7.45 (m, 2H), 7.35–7.16 (m, 15H), 5.91–5.82 (m, 2H), 5.31 (dd, J = 12.3, 4.6 Hz, 1H), 4.92 (d, J = 13.8 Hz, 1H), 4.89 (d, J = 11.4 Hz, 1H), 4.83 (d, J = 13.8 Hz, 1H), 4.67 (d, J = 11.2 Hz, 1H), 4.60 (d, J = 11.4 Hz, 1H), 4.55 (d, J = 11.2 Hz, 1H), 4.53–4.51 (m, 2H), 3.96 (dd, J = 11.8, 3.9 Hz, 1H), 3.53 (s, 1H), 2.27 (q, J = 12.1 Hz, 1H), 2.11 (dt, J = 12.1, 4.3 Hz, 1H), 1.92 (s, 3H), 1.83 (s, 3H), 0.91 (s, 9H), 0.13 (s, 3H), 0.12 ppm (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ = 170.6, 165.6, 141.1, 139.4, 139.1, 133.9, 133.1, 130.4, 129.6, 128.5, 128.15, 128.14, 128.08, 127.3, 127.2, 127.09, 127.07, 127.0, 126.6, 126.1, 86.0, 82.9, 82.3, 76.1, 75.3, 72.6, 67.5, 65.6, 64.5, 33.5, 25.6, 20.7, 18.0, 12.9, -4.0, -5.0 ppm; assignments are labeled in the corresponding NOESY spectrum; HR-ESI calcd for $C_{46}H_{56}O_8SiNa [M + Na]^+$ 787.3637; found 787.3668.

A mixture of AD-mix α (3.22 g, 2.30 mmol), K₂OsO₄·H₂O (18 mg, 0.049 mmol), MeSO₂NH₂ (223

mg, 2.34 mmol), $K_2S_2O_8$ (652 mg, 2.41 mmol), (DHQ)₂PHAL (120 mg, 0.154 mmol) in *t*BuOH (4 mL) and H₂O (4 mL) was stirred for 0.5 h, and **10** (1.19 g, 1.55 mmol) was then added. After stirring for 24 h, the reaction was quenched with saturated Na₂S₂O₃. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 6:1) to give the corresponding diol (1.073 g).

To a solution of the diol (925 mg) above in anhydrous MeOH (20 mL) was added Mg(OMe)₂ (7% in MeOH, 4.5 mL, 2.97 mmol). The mixture was heated at 50 °C for 1 h, and was then neutralized with 5% HCl. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 3:1) to give triol **11** (784 mg, 76%) as a colorless syrup: $[\alpha]_D^{27} = -8.2$ (c = 0.3 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 8.04$ (d, J = 8.0 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.46–7.14 (m, 17H), 5.25 (dd, J = 12.2, 4.6 Hz, 1H), 5.08–5.04 (m, 2H), 4.96 (d, J = 11.4 Hz, 1H), 4.68–4.61 (m, 3H), 4.55 (d, J = 7.0 Hz, 1H), 4.51–4.48 (m, 2H), 3.73 (s, 1H), 3.71–3.68 (m, 1H), 3.66–3.63 (m, 1H), 3.54–3.49 (m, 1H), 2.86 (d, J = 8.4 Hz, 1H), 2.53 (d, J = 9.1 Hz, 1H), 2.29 (dd, J = 24.1, 12.0 Hz, 1H), 2.10–2.05 (m, 1H), 1.82 (s, 3H), 0.89 (s, 9H), 0.18 (s, 3H), 0.15 ppm (s, 3H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 165.5$, 139.8, 138.7, 138.6, 133.3, 130.2, 129.6, 128.53, 128.52, 128.3, 128.1, 127.7, 127.2, 127.0, 83.1, 82.8, 80.4, 75.7, 75.2, 71.7, 71.5, 69.5, 66.5, 66.3, 65.6, 33.2, 25.8, 18.0, 12.5, -3.6, -4.5 ppm; HR-ESI calcd for C₄₄H₅₆O₉SiNa [M + Na]⁺ 779.3586; found 779.3568.

To a solution of triol **11** (750 mg, 0.99 mmol) in anhydrous DCM (10 mL) were added trichloroisocyanuric acid (604 mg, 2.60 mmol) and TEMPO (1.8 mg, 0.012 mmol) at -10° C. After stirring for 2 h, the reaction was quenched with saturated Na₂S₂O₃. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated.

To a solution of the residue above in THF (10 mL) was added TBAF (1 M in THF, 1.50 mL, 1.50 mmol) at RT. After stirring for 1 h, the mixture was acidified by 5% HCl. The mixture was diluted with ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 4:1 to 2:1 to 1:1) to give **12** (378 mg, 60%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ = 8.04–8.02 (m, 4H), 7.58–7.54 (m, 2H), 7.45–7.15(m, 34H), 5.53 (d, *J* = 12.1 Hz, 1H), 5.45 (d, *J* = 11.7 Hz, 1H), 5.33–5.26 (m, 3H), 5.21 (d, *J* = 12.1 Hz, 1H), 5.16 (d, *J* = 11.7 Hz, 1H), 5.07 (dd, *J* = 10.9, 4.4 Hz, 2H), 4.72–4.60 (m, 5H), 4.51–4.46 (m, 2H), 4.19–4.09 (m, 4H), 4.04–3.97 (m, 2H), 3.86–3.78 (m, 3H), 3.75 (s, 1H), 3.54 (s, 1H), 3.40 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.09 (s, 1H), 2.57 (d, *J* = 6.5 Hz, 1H), 2.30–2.02 (m, 4H), 1.79 (s, 3H), 1.77 ppm (s, 3H); ¹³C

NMR (125 MHz, CDCl₃) δ = 165.53, 165.48, 139.6, 139.4, 138.6, 138.5, 137.7, 137.5, 133.34, 133.31, 130.0, 129.9, 129.6, 128.76, 128.75, 128.53, 128.52, 128.32, 128.30, 128.28, 128.25, 128.23, 128.15, 128.09, 128.0, 127.8, 127.7, 127.5, 127.4, 127.1, 127.03, 127.00, 126.8, 97.6, 92.6, 88.7, 88.6, 82.5, 82.3, 79.7, 76.9, 76.6, 76.3, 76.2, 75.9, 75.71, 75.67, 73.4, 72.2, 69.7, 68.98, 68.95, 67.2, 65.7, 65.6, 29.5, 29.4, 12.34, 12.31 ppm; HR-ESI calcd for $C_{38}H_{40}O_9Na [M + Na]^+$ 663.2565; found 663.2533.

To a solution of 12 (33 mg, 0.061 mmol), TEA (0.10 mL, 0.72 mmol), and DMAP (2 mg, 0.016 mmol) in anhydrous DCM (2 mL) was added BzCl (50 µl, 0.43 mmol) at RT. The mixture was stirred for 2 h, and then another portion of DMAP (32 mg, 0.26 mmol) was added. The stirring continued overnight, and the reaction was quenched with saturated NaHCO₃. The mixture was diluted with ethyl acetate, and then washed with brine. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 5:1) to provide S1 as a white foam (35 mg, 67%): ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.3 Hz, 2H), 8.04 (d, J = 8.3 Hz, 2H), 7.93 (d, J = 8.3 Hz, 2H), 7.67–7.17 (m, 24H), 6.68 (d, J = 3.9 Hz, 1H), 5.87 (dd, J = 10.3, 4.0 Hz, 1H), 5.68 (d, J = 11.5 Hz, 1H), 5.38 (dd, J = 12.2, 4.9 Hz, 1H), 5.34 (d, J = 11.5 Hz, 1H), 5.21 (d, J = 11.0 Hz, 1H), 4.73 (d, J = 11.0 Hz, 1H), 4.69 (d, J = 10.4 Hz, 1H), 4.65 (d, J = 10.4 Hz, 1H), 4.49 (d, J = 10.4 Hz, 1H), 4.33 (s, 1H), 4.07 (dd, J = 12.2, 3.7 Hz, 1H), 4.01 (s, 1H), 2.32 (q, J = 12.1 Hz, 1H), 2.14 (dd, J = 7.6, 4.4 Hz, 1H), 1.87 ppm (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 165.4, 164.7, 139.0, 138.3, 137.3, 133.7, 133.4, 133.2, 129.9, 129.9, 129.8, 129.7, 129.5, 129.4, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2, 128.0, 127.8, 127.6, 127.3, 127.2, 90.9, 88.8, 82.5, 76.7, 76.3, 75.6, 75.3, 69.9, 69.8, 69.6, 65.9, 29.3, 12.2 ppm; assignments are labeled in the corresponding NOESY spectrum.

To a solution of triol **11** (81 mg, 0.11 mmol) in THF (2 mL) was added TBAF (1 M in THF, 0.15 mL, 0.15 mmol) at RT. After stirring for 0.5 h, the mixture was diluted with ethyl acetate, and was then washed with 5% HCl and brine, respectively. The organic layer was dried, filtered, and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1:1, then DCM/MeOH, 20:1) to give the corresponding tetraol (66 mg, 96%).

To a mixture of the tetraol (64 mg, 0.10 mmol) and trichloroisocyanuric acid (63 mg, 0.27 mmol) in anhydrous DCM (3 mL) was added TEMPO (0.2 mg, 1.28 μ mol) at 0 °C. After stirring for 1 h, the reaction was then quenched with saturated Na₂S₂O₃. The mixture was diluted with

ethyl acetate and then washed with brine. The organic layer was dried, filtered, and concentrated.

To a solution of the residue above in anhydrous DCM (2 mL) was added DIBAL-H (1 M in cyclohexane, 0.50 mL, 0.50 mmol) at -70 °C. After stirring for 40 min, the reaction was quenched with H₂O. The mixture was diluted with ethyl acetate. NaHCO₃ (0.7 g) and Na₂SO₄ (0.7 g) were then added, and the stirring continued for another 2 h. The mixture was filtered (eluted with ethyl acetate) and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate, 1:2, then DCM/MeOH, 20:1) to give **13** (33 mg, 84%) as a white foam: ¹H NMR (400 MHz, CDCl₃) δ = 7.35–7.21 (m, 24H), 5.48 (d, *J* = 12.1 Hz, 0.6H), 5.41 (d, *J* = 11.8 Hz, 1H), 5.29 (t, *J* = 2.8 Hz, 0.6H), 5.17 (d, *J* = 12.1 Hz, 0.6H), 5.12 (d, *J* = 11.8 Hz, 1H), 5.07–5.03 (m, 1.6H), 4.81–4.77 (m, 1.6H), 4.74–4.69 (m, 3H), 4.56 (t, *J* = 6.1 Hz, 1H), 4.15 (s, 1H), 4.13–4.07 (m, 2H), 4.01–3.95 (m, 0.6H), 3.88–3.73 (m, 4.6H), 3.62 (s, 1H), 3.46 (d, *J* = 2.4 Hz, 0.6H), 3.24 (dd, *J* = 12.0, 3.7 Hz, 1H), 3.05 (s, 1H), 2.58 (d, *J* = 6.4 Hz, 0.6H), 2.10 (p, *J* = 12.0 Hz, 1.6H), 1.92 (dt, *J* = 12.0, 4.3 Hz, 1H), 1.86–1.81 (m, 2H), 1.53 (s, 1.8H), 1.51 (s, 3H).

To a solution of **13** (50 mg, 0.093 mmol) in MeOH (3 mL) was added 10% Pd/C (202 mg, 0.19 mmol) at RT. The mixture was stirred for 2 days under H₂ atmosphere, and was then filtered and concentrated. The residue was purified by RP-18 column chromatography (H₂O) to give bradyrhizose **1** (25 mg, 100%) as a white foam: $[\alpha]_D^{25} = 6.5$ (c = 0.2 in H₂O); HR-ESI calcd for C₁₀H₁₈O₈Cl [M + Cl]⁻ 301.0696; found 301.0694.

General remarks for the NMR spectroscopy of bradyrhizose

All 1D and 2D ¹H-NMR spectra were recorded on a solution of 10 mg bradyrhizose (1) in 0.5 mL of D₂O, TDE-d3, DMSO-d6 on Bruker 600 DRX equipped with a cryo probe. Spectra were calibrated with internal acetone [δ_{H} 2.225, δ_{C} 31.45]. 2D-DQF COSY spectra were acquired with 4096×1024 data points in both F_2 and F_1 dimensions. Quadrature indirect dimensions are achieved through States-TPPI method; spectra are processed applying a Qsine function to both dimensions and data matrix was zero-filled by factor of 2 before Fourier transformation. Coupling constants were determined on a first order basis from 2D phase sensitive DQF-COSY.^[S2-S3] Nuclear Overhauser enhancement spectroscopy (NOESY) are measured using data sets ($t_2 \times t_1$) of 4096 × 512 points, mixing times of 400-600 ms are used. Total correlation spectroscopy experiments (TOCSY) were performed with a spinlock time of 100 ms, using data sets ($t_2 \times t_1$) of 4096 × 512 points. In homonuclear experiments the data matrix is zero-filled in the *F1* dimension to give a matrix of 4096 x 2048 points and is resolution enhanced in both dimensions by a 90° shifted Qsine function before Fourier transformation. Heteronuclear single quantum coherence (HSQC),

HSQC-NOESY (mixing time 500 ms), and heteronuclear multiple bond correlation (HMBC) experiments were measured in the ¹H-detected mode via single quantum coherence with proton decoupling in the ¹³C domain, using data sets of 2048 x 256 points. Experiments were carried out in the phase-sensitive mode according to the method of States *et al.*^[S4] HMBC experiment was optimized for 6 Hz coupling constant. In all heteronuclear experiments, the data matrix was extended to 2048 x 1024 points using forward linear prediction extrapolation.

References:

- S1. Y. Bai, J. Zeng, S. Cai, X. W. Liu, Org. Lett. 2011, 13, 4394-4397.
- S2. U. Piantini, O. W. Sorensen, R. R. Ernst, J. Am. Chem. Soc. 1982, 104, 6800-6801.
- S3. M. Rance, O. W. Sorensen, G. Bodenhausen, G. E. Wagner, R.R., K. Wüthrich, Biochem. Biophys. Res. Commun. 1983, 117, 479-485.
- S4. D. J. States, R. A. Haberkorn, D. J. Ruben, J. Magn. Reson. 1982, 48, 286-292.

Figure SA. The isomeric equilibrium mixture of bradyrhizose as detected by NMR.

Figure SB: ¹H NMR spectrum of bradyrhizose in D₂O

Figure SC: HSQC NMR spectrum of bradyrhizose in D₂O. Cross peaks are labelled as indicated in Table S1

Figure SD: HSQC (blue) and HMBC (red) NMR spectra of bradyrhizose in D₂O; key long range scalar correlations are shown. Cross peaks are labelled as indicated in Table S1

Figure SE: HSQC (blue) and HSQC-NOESY (green) NMR spectra of bradyrhizose in D₂O; key NOE correlations are shown. Cross peaks are labelled as indicated in Table S1

93.15 ¹ Ј _{С,Н} = 163
' <i>J</i> _{C,H} = 163
70.3
68.2
72
67.17
04.4
31.1
69.1 (64.7)
75.9
76.9
14.39

Table S1. Isomer distribution of reducing bradyrhizose. ¹H and ¹³C chemical shifts (ppm) in D₂O, coupling constants ³ $J_{H,H}$ and ¹ $J_{C,H}$ (Hz). β and α anomers, pyranose form (A-B), furanose forms (C-D) and alternative ring closure (E) (% is a rough estimation)

Figure SF1-2: ¹H NMR spectrum of bradyrhizose in DMSO and its zoom in the anomeric region. Signals are labelled as indicated in Table S2

Figure SG: HSQC NMR spectrum of bradyrhizose in DMSO. Cross peaks are labelled as indicated in Table S2

Table S2. Isomer distribution of reducing bradyrhizose. ¹H and ¹³C chemical shifts (ppm) in DMSO, coupling constants ³ $J_{H,H}$ and ¹ $J_{C,H}$ (*Hz*). β and α anomers, pyranose form (A-B), furanose forms (C-D) and alternative ring closure (E) (% is a rough estimation)

	¹ H and ¹³ C β-anomer <mark>A residue</mark> (54.1%)		β-anomer 1 H and 13 C α-anomer (54.1%) B residue (22.6%)		¹ H and ¹³ C β-anomer <mark>C</mark> residue (8%)		¹ H and ¹³ C α-anomer D residue (3.5%)		¹ H and ¹³ C β-anomer E residue (15.7%)	
1	4.26 ³ J _{H,H} = 7.4 ¹ J _{C,H} = 156	97.87	4.865	93.08	4.77 ³ J _{H,H} = 3.64 ¹ J _{C,H} = 178	101.85	4.95	93.99	4.73 ¹ J _{C,H} = 160	93.6
2	2.21	72.87	3.504	69.6	3.88	82.5	4.00	76.53	3.42	71.78
3	3.37	79.19	3.605	75.4	4.07	76.9	4.404	75.58	3.66	68.3
4		72.23		73.06		87.15		86.38		73.5
5	3.19	70.59	3.646	65.6	3.22	66.0	3.24	65.8	3.53	64.9
6 _{ax} 6 _{eq}	1.71 1.55	32.0	1.45 1.67	32.3	1.68 1.45	37.3	1.39 1.68	37.2	1.58 1.58	3.59
7	3.32	72.6	3.32	73.0	3.43	71.88	3.53	71.58	3.21	72.8
8		76.8		75.5		76.9		76.9		75.6
9	3.29	79.7	3.23	77.5	3.32	72.48	3.32	72.77	3.24	77.47
10	1.09	16.1	1.11	16.5	1.00	15.9	0.97	15.7	1.10	16.29

Figure SH: ¹H NMR spectrum of bradyrhizose in TFE. Relative abundances: anomer A (β , 53.5%), anomer B (α , 25.1%), anomer C (β , 5.6%), anomer D (α , 5.0 %), anomer E (β , 10.7%)

