Rh(III)- or Ir(III)-Catalyzed Ynone Synthesis from Aldehydes via Chelation-Assisted C-H Bond Activation

Wen Ai,^{*a*,*b*,} Yunxiang Wu,^{*b*} Huanyu Tang,^{*b*} Xueyan Yang,^{*a*,*} Yaxi Yang,^{*b*,*} Yuanchao Li^{*b*} and Bing Zhou^{*b*,*}

^a Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^b Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China

Corresponding Authors

* E-mail: zhoubing2012@hotmail.com; yxy@ecust.edu.cn;

Table of contents:

General Methods and Materials

Table S1. Optimization of the Rh-catalyzed ynone synthesis

Table S2. Optimization of the ynone synthesis from 4a

Experimental Procedures and Characterizations

¹H and ¹³C NMR Spectra of Compounds

General methods:

¹H NMR (400 or 300 MHz) and ¹³C NMR (125, 100 MHz) spectra were determined with CDCl₃ as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts were reported in ppm from internal TMS (δ). All coupling constants (*J* values) were reported in hertz (Hz). High-resolution mass spectra were recorded using the EI method with a double focusing magnetic mass analyzer. Reactions were monitored by thin-layer chromatography or LC-MS analysis. Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel (200-300 mesh).

Materials:

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. [Cp*RhCl₂]₂,^{S1} [IrCp*Cl₂]₂,^{S2} N-Sulfonyl 2-aminobenzaldehyde,^{S3} Ethynyl benziodoxolones^{S4} were prepared according to the previously reported synthetic methods.

		S (Cp*RhCl ₂) ₂ (2. additive (x n solvent, temp	.5 mol %) O	
entry	additive (x mol %)	solvent	<i>T</i> (°C)	yield (%)
1	AgSbF ₆ (10 mol %)	DCE	80	50
2	AgOTf (10 mol %)	DCE	80	34
3	$AgBF_4$ (10 mol %)	DCE	80	<10
4	CsOAc (20 mol %)	DCE	80	0
5	Cu(OAc) ₂ (20 mol %)	DCE	80	0
6	$Zn(OTf)_2 (10 \text{ mol }\%)$	DCE	80	86
7	$Zn(OTf)_2 (10 \text{ mol }\%)$	MeOH	80	<10
8	$Zn(OTf)_2 (10 \text{ mol }\%)$	THF	80	30
9	$Zn(OTf)_2 (10 \text{ mol }\%)$	CH ₃ CN	80	<10
10	$Zn(OTf)_2 (10 \text{ mol } \%)$	DCE	60	86
$11^{[b]}$	$Zn(OTf)_2 (10 \text{ mol }\%)$	DCE	60	84
12 ^[c]	Zn(OTf) ₂ (10 mol %)	DCE	60	0

Table S1. Optimization of the Rh-catalyzed ynone synthesis.^[a]

[a] **1a** (0.2 mmol), **2a** (0.22 mmol), $(Cp*RhCl_2)_2$ (2.5 mol %), additive (x mol %), and solvent (2 mL) at 80 °C for 8 h. Yield of isolated product. [b] H₂O (1 mmol, 5 equiv) was added and the reaction mixture was heated under air at 60 °C for 8 h. [c] No ($Cp*RhCl_2$)₂ was used.

O H 4a	NHTs + 2a	IPS catalyst (2.5 mol %) <u>additives (50 mol %)</u> solvent, 80 °C, 8 h	NHTs 5a	3
entry	catalyst (2.5 mol %)	additives	solvent	yield (%)
1	(Cp*RhCl ₂) ₂ /Zn(OTf) ₂	_	DCE	0
2	$(Cp*RhCl_2)_2/AgSbF_6$	-	DCE	0
3	$(Cp*IrCl_2)_2/AgNTf_2$	-	DCE	14
4	(Cp*IrCl ₂) ₂ /Zn(OTf) ₂	-	DCE	<5
5	(Cp*IrCl ₂) ₂ /AgNTf ₂	NaOAc (50 mol %)	DCE	35
6	(Cp*IrCl ₂) ₂ /AgNTf ₂	NaOAc (50 mol %)	THF	20
7	(Cp*IrCl ₂) ₂ /AgNTf ₂	NaOAc (50 mol %)	dioxane	60
8	(Cp*IrCl ₂) ₂ /AgNTf ₂	NaOAc (50 mol %)	MeOH	<5
9	(Cp*IrCl ₂) ₂ /AgNTf ₂	NaOAc (50 mol %)	CH ₃ CN	<10
10	(Cp*IrCl ₂) ₂ /AgNTf ₂	NaOAc (50 mol %)	DCE/AcOH	85

Table S2. Optimization of the ynone synthesis from **4a**.^[a]

[a] **4a** (0.2 mmol), **2a** (0.24 mmol), Ir/Ag = 1:4, and solvent (2 mL) at 80 °C for 8 h. Yield of isolated product.

Experimental Procedures and Characterizations:

a) General procedure for the synthesis of **3** (taking **3a** as an example):

(RhCp*Cl₂)₂ (2.5 mol %), Zn(OTf)₂ (10 mol %), 8-quinolinecarbaldehydes **1a** (0.2 mmol), alkyne **2a** (0.22 mmol, 1.1 equiv) and DCE (2 mL, 0.1 M) were added to a test tube. The reaction mixture was stirred at 60 °C for 8 h. On completion, a solution of NaOH (0.5 M aqueous solution) was added. After additional stirring at room temperature for 30 min, CH₂Cl₂ was added, and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (eluent: PE:EtOAc = 10: 1) gave the title compound **3a**.

Compound **3a**: 86%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 9.05 (dd, J = 4.2, 1.8 Hz, 1H), 8.32 (dd, J = 7.2, 1.4 Hz, 1H), 8.20 (dd, J = 8.3, 1.8 Hz, 1H), 8.00 (dd, J = 8.2, 1.4 Hz, 1H), 7.66 – 7.56 (m, 1H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 1.17 – 1.08 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 178.9, 151.7, 145.8, 136.8, 136.3, 132.9, 132.5, 128.6, 125.8, 121.9, 105.8, 98.2, 18.7, 11.3; HRMS (EI) Calcd for C₂₁H₂₇NOSi [M]⁺ 337.1862, found 337.1858.

Compound **3b**: 70%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 8.93 – 8.81 (m, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.38

-7.34 (m, 1H), 2.57 (s, 3H), 1.07 -0.94 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 183.6, 150.6, 146.3, 138.2, 136.5, 135.7, 129.7, 129.0, 126.4, 121.0, 106.2, 99.4, 19.6, 18.6, 11.2; HRMS (EI) Calcd for C₂₂H₂₉NOSi [M]⁺ 351.2018, found 351.2015.

Compound **3c**: 67%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, *J* = 4.0 Hz, 1H), 8.20 (s, 1H), 8.11 (d, *J* = 8.3 Hz, 1H), 7.76 (s, 1H), 7.43 (dd, *J* = 8.3, 4.2 Hz, 1H), 2.57 (s, 3H), 1.13 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 178.9, 150.9, 144.5, 136.4, 135.7, 135.6, 135.1, 131.9, 128.7, 121.9, 105.8, 98.1, 21.5, 18.7, 11.3; HRMS (EI) Calcd for C₂₂H₂₉NOSi [M]⁺ 351.2018, found 351.2014.

Compound **3d**: 64%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 9.03 (dd, J = 4.1, 1.6 Hz, 1H), 8.23 (d, J = 2.3 Hz, 1H), 8.13 (dd, J = 8.3, 1.5 Hz, 1H), 7.97 (d, J = 2.3 Hz, 1H), 7.49 (dd, J = 8.3, 4.2 Hz, 1H), 1.12 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 151.7, 144.3, 138.4, 135.4, 132.9, 131.8, 131.1, 129.5, 122.7, 105.4, 99.8, 18.7, 11.3; HRMS (EI) Calcd for C₂₁H₂₆ClNOSi [M]⁺ 371.1472, found 371.1468.

Compound **3e**: 60%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 9.08 (dd, J = 4.1, 1.5 Hz, 1H), 8.64 (dd, J = 8.6, 1.5 Hz, 1H), 8.21 (d, J = 7.9 Hz, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.59 (dd, J = 8.6, 4.2 Hz, 1H), 1.12 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 178.0, 152.1, 146.4, 136.5, 136.0, 133.1, 132.0, 126.6, 126.1, 122.6, 105.7,

98.9, 18.7, 11.3; HRMS (EI) Calcd for $C_{21}H_{26}CINOSi$ [M]⁺ 371.1472, found 371.1466.

Compound **3f**: 74%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 9.07 (d, J = 2.6 Hz, 1H), 8.60 (dd, J = 8.5, 1.3 Hz, 1H), 8.48 (d, J = 8.3 Hz, 1H), 7.44 (dd, J = 8.5, 4.2 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 4.08 (s, 3H), 1.14 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 159.5, 152.1, 147.1, 136.0, 131.0, 128.8, 121.0, 120.8, 105.8, 103.4, 96.3, 56.3, 18.7, 11.3; HRMS (EI) Calcd for C₂₂H₂₉NO₂Si [M]⁺ 367.1968, found 367.1965.

b) General procedure for the synthesis of **5** (taking **5a** as an example):

(IrCp*Cl₂)₂ (2.5 mol %), AgNTf₂ (10 mol %), NaOAc (50 mol %), *N*-sulfonyl-2-aminobenzaldehyde **4a** (0.2 mmol), alkyne **2a** (0.24 mmol, 1.2 equiv) and DCE-AcOH (2 mL, 0.1 M, ratio = 3:1) were added to a test tube. The reaction mixture was stirred at 80 °C for 8 h. On completion, the resulting mixture was diluted by adding water and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (eluent: PE:EtOAc = 8: 1) gave the title compound **5a**.

Compound **5a**: 85%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.20 (s, 1H), 8.24 (dd, J = 8.0, 1.5 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.69 (dd, J = 8.4, 0.7 Hz, 1H), 7.52 – 7.44 (m, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.13 – 7.06 (m, 1H), 2.36 (s, 3H), 1.21 – 1.09 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 180.1, 144.2, 141.1, 136.6, 135.8, 134.9, 129.9, 127.4, 122.7, 122.3, 118.3, 102.5, 100.9, 21.7, 18.7, 11.2; HRMS (EI) Calcd for C₂₅H₃₃NO₃SSi [M]⁺ 455.1950, found 455.1944.

Compound **5b**: 82%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 10.99 (s, 1H), 8.08 (d, *J* = 1.7 Hz, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 8.5 Hz, 1H), 7.30 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 2.35 (s, 3H), 2.29 (s, 3H), 1.21 – 1.08 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 144.0, 138.6, 136.7, 136.5, 135.3, 132.4, 129.8, 127.4, 122.5, 118.7, 102.5, 100.7, 21.6, 20.6, 18.6, 11.2; HRMS (EI) Calcd for C₂₆H₃₅NO₃SSi [M]⁺ 469.2107, found 469.2105.

Compound **5c**: 92%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 10.64 (s, 1H), 7.72 – 7.63 (m, 4H), 7.19 (d, J = 8.1 Hz, 2H), 7.08 (dd, J = 9.1, 3.0 Hz, 1H), 3.77 (s, 3H), 2.34 (s, 3H), 1.22 – 1.05 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 179.5, 155.2, 143.9, 136.4, 134.2, 129.7, 127.3, 123.9, 123.1, 121.5, 117.4, 102.5, 100.6, 55.6, 21.6, 18.6, 11.1; HRMS (EI) Calcd for C₂₆H₃₅NO₄SSi [M]⁺ 485.2056, found 485.2053.

Compound **5d**: 94%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 10.83 (s, 1H), 7.90 (dd, J = 8.9, 3.0 Hz, 1H), 7.75 – 7.67 (m, 3H), 7.26 – 7.19 (m, 3H), 2.36 (s, 3H), 1.23 – 1.06 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 178.8, 157.7 (d, J = 243.7 Hz),

144.3, 137.1, 136.3, 129.9, 127.4, 123.7 (d, J = 5.0 Hz), 123.1 (d, J = 22.5 Hz), 121.1 (d, J = 6.25 Hz), 120.3 (d, J = 23.7 Hz), 102.0, 21.7, 18.6, 11.2; HRMS (EI) Calcd for C₂₅H₃₂FNO₃SSi [M]⁺ 473.1856, found 473.1852.

Compound **5e**: 83%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.03 (s, 1H), 8.25 (d, *J* = 2.5 Hz, 1H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 9.0 Hz, 1H), 7.43 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.25 (d, *J* = 8.2 Hz, 2H), 2.37 (s, 3H), 1.17 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 178.9, 144.5, 139.5, 136.3, 135.6, 134.4, 129.9, 128.0, 127.4, 123.4, 119.9, 102.4, 101.9, 21.7, 18.6, 11.2; HRMS (EI) Calcd for C₂₅H₃₂ClNO₃SSi [M]⁺ 489.1561, found 489.1559.

Compound **5f**: 82%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.04 (s, 1H), 8.41 (d, *J* = 2.3 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.58 (dt, *J* = 8.9, 5.6 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 2H), 2.37 (s, 3H), 1.23 – 1.10 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 178.8, 144.5, 139.9, 138.4, 137.4, 136.2, 129.9, 127.4, 123.7, 120.1, 115.1, 102.5, 101.9, 21.7, 18.7, 11.2; HRMS (EI) Calcd for C₂₅H₃₂BrNO₃SSi [M]⁺ 533.1056, found 533.1052.

Compound **5g**: 84%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.23 (s, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.50 (s, 1H), 7.26 – 7.19 (m, 2H), 6.90 (d, J = 8.0 Hz, 1H), 2.36 (s, 3H), 2.35 (s, 3H), 1.15 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 179.6, 147.7, 144.1, 141.2, 136.6, 134.9, 129.8, 127.4, 123.8, 120.3, 118.6, 102.6, 100.2, 22.4, 21.7, 18.7, 11.2; HRMS (EI) Calcd for C₂₆H₃₅NO₃SSi [M]⁺ 469.2107, found 469.2103.

Compound **5h**: 75%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.21 (s, 1H), 8.37 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 1H), 7.27 (d, J = 7.9 Hz, 2H), 2.38 (s, 3H), 1.30 – 1.12 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 144.76, 141.41, 136.8 (q, J = 33.0 Hz), 135.9, 135.4, 130.0, 127.5, 123.9, 123.0 (d, J = 271 Hz), 118.9 (q, J = 4.0 Hz), 115.1 (q, J = 4.0 Hz), 102.9, 102.1, 21.7, 18.7, 11.2; HRMS (EI) Calcd for C₂₆H₃₂F₃NO₃SSi [M]⁺ 523.1824, found 523.1819.

Compound **5i**: 83%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.18 (s, 1H), 10.02 (s, 1H), 8.41 (d, *J* = 8.1 Hz, 1H), 8.17 (s, 1H), 7.81 (d, *J* = 7.9 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 7.7 Hz, 2H), 2.37 (s, 3H), 1.14 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 191.0, 179.5, 144.7, 141.7, 140.5, 136.2, 135.5, 130.1, 127.5, 125.4, 121.8, 119.9, 103.0, 102.4, 21.7, 18.7, 11.2; HRMS (EI) Calcd for C₂₆H₃₃NO₄SSi [M]⁺ 483.1900, found 483.1897.

Compound **5j**: 83%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.29 (s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.63 (s, 1H), 7.29 (s, 1H), 7.22 (d, J = 8.1 Hz, 2H), 3.93 (s, 3H), 3.81 (s, 3H), 2.35 (s, 3H), 1.19 – 1.07 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 155.4, 144.5, 144.2, 137.5, 136.4, 129.8, 127.4, 115.6, 115.2, 102.8, 101.9, 99.5, 56.5, 56.0, 21.7, 18.7, 18.4, 11.1; HRMS (EI) Calcd for C₂₇H₃₇NO₅SSi [M]⁺ 515.2162, found 515.2157.

Compound **5k**: 83%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.16 (s, 1H), 8.05 (dd, J = 10.5, 8.6 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.60 (dd, J = 12.1, 6.8 Hz, 1H), 7.27 (d, J = 7.9 Hz, 2H), 2.38 (s, 3H), 1.23 – 1.09 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 156.1 (d, J = 16.2 Hz), 153.5 (d, J = 21.3 Hz), 146.5 (d, J = 16.3 Hz), 144.7, 144.1 (d, J = 16.3 Hz), 138.8 (d, J = 13.7 Hz), 135.9, 130.1, 127.4, 122.8 (d, J = 23.7), 118.7, 107.8 (d, J = 28.7 Hz), 101.9 (d, J = 72.5 Hz), 21.7, 18.6, 11.1; HRMS (EI) Calcd for C₂₅H₃₁F₂NO₃SSi [M]⁺ 491.1762, found 491.1758.

Compound **51**: 84%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.16 (s, 1H), 8.24 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 8.9 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 8.9 Hz, 2H), 3.81 (s, 3H), 1.15 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 180.0, 163.3, 141.2, 135.8, 134.9, 131.0, 129.6, 122.6, 122.3, 118.3, 114.4, 102.5, 100.9, 55.7, 18.7, 11.2; HRMS (EI) Calcd for C₂₅H₃₃NO₄SSi [M]⁺ 471.1900, found 471.1898.

Compound **5m**: 76%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.21 (s, 1H), 8.25 (dd, J = 8.0, 1.6 Hz, 1H), 7.85 – 7.73 (m, 2H), 7.71 – 7.65 (m, 1H), 7.56 – 7.46 (m, 1H), 7.46 – 7.35 (m, 2H), 7.19 – 7.10 (m, 1H), 1.19 – 1.08 (m, 21H); ¹³C NMR

(100 MHz, CDCl₃) δ 180.1, 140.6, 139.9, 137.9, 135.9, 135.1, 129.6, 128.9, 123.3, 122.6, 118.6, 102.4, 101.5, 18.7, 11.2; HRMS (EI) Calcd for C₂₄H₃₀ClNO₃SSi [M]⁺ 475.1404, found 475.1401.

Compound **5n**: 65%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.32 (s, 1H), 8.27 (t, *J* = 8.2 Hz, 3H), 8.04 (d, *J* = 8.7 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 1.15 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 180.2, 150.4, 145.2, 139.9, 136.1, 135.2, 128.7, 124.5, 123.9, 122.9, 118.9, 102.2, 18.7, 11.2; HRMS (EI) Calcd for C₂₄H₃₀N₂O₅SSi [M]⁺ 486.1645, found 486.1641.

Compound **50**: 75%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 10.99 (s, 1H), 8.38 (d, *J* = 7.9 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 3.08 (s, 3H), 1.18 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 180.1, 141.4, 136.3, 135.3, 122.8, 122.1, 117.6, 102.5, 101.3, 40.4, 18.7, 11.2; HRMS (EI) Calcd for C₁₉H₂₉NO₃SSi [M]⁺ 379.1637, found 379.1632.

Compound **5p**: 60%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.17 (s, 1H), 8.22 (dd, J = 8.0, 1.5 Hz, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.71 – 7.66 (m, 1H), 7.52 – 7.44 (m, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.13 – 7.05 (m, 1H), 2.36 (s, 3H), 1.05 (t, J =7.9 Hz, 9H), 0.74 (q, J = 7.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 180.1, 144.2, 141.1, 136.6, 135.9, 135.1, 129.9, 127.4, 122.7, 122.2, 118.3, 101.6, 21.7, 7.51, 3.97; HRMS (EI) Calcd for C₂₂H₂₇NO₃SSi [M]⁺ 413.1481, found 413.1478.

Compound **5q**: 55%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.26 (s, 1H), 8.13 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.9 Hz, 1H), 7.52 – 7.43 (m, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 7.07 (dd, *J* = 11.2, 4.0 Hz, 1H), 2.37 (d, *J* = 10.9 Hz, 3H), 1.36 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 181.1, 144.1, 140.9, 136.7, 135.6, 134.9, 129.8, 127.4, 122.6, 118.3, 106.3, 30.2, 28.3, 21.7; HRMS (EI) Calcd for C₂₀H₂₁NO₃S [M]⁺ 355.1242, found 355.1238.

Compound **5r**: 55%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.68 (s, 1H), 8.08 (dd, J = 7.9, 1.4 Hz, 1H), 7.55 – 7.47 (m, 1H), 7.03 – 6.92 (m, 2H), 1.23 – 1.10 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 181.9, 163.1, 137.3, 133.2, 120.8, 119.6, 118.2, 101.7, 101.7, 18.7, 11.2; HRMS (EI) Calcd for C₁₈H₂₆O₂Si [M]⁺ 302.1702, found 302.1698.

Compound **5s**: 76%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 11.09 (s, 1H), 8.55 – 8.43 (m, 1H), 8.41 (dd, J = 4.8, 1.9 Hz, 1H), 8.04 (d, J = 8.2 Hz, 2H), 7.31 – 7.23 (m, 2H), 7.02 (dd, J = 7.8, 4.9 Hz, 1H), 2.39 (s, 3H), 1.18 – 1.08 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 153.7, 151.9, 144.2, 142.8, 137.1, 129.3, 128.8, 117.5, 116.4, 102.4, 101.8, 21.7, 18.7, 11.2; HRMS (EI) Calcd for C₂₄H₃₂N₂O₃SSi [M]⁺ 456.1903, found 456.1900. c) Procedure for the synthesis of pyrazole 6:

To a flask equipped with a magnetic stirring bar under argon were added ynone **3a** (1 mmol, 1.00 equiv.) and EtOH (30 mL). Phenylhydrazine (1.2 mmol, 1.20 equiv) was added dropwise via microsyringe. The reaction mixture was stirring at room temperature. After 10 hours, the mixture was passed through a Celite pad and the filtrate was washed with brine. The aqueous layer was extracted with CH_2Cl_2 and the combined organic layers were dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The residue was purified by flash chromatography on silica gel column (eluent: petroleum ether/ethyl acetate = 20:1) to afford the pyrazole product **6**.

Compound **6**: 84%, amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.94 (dd, *J* = 4.1, 1.8 Hz, 1H), 8.16 (dd, *J* = 8.3, 1.8 Hz, 1H), 8.09 (dd, *J* = 7.2, 1.5 Hz, 1H), 7.82 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.59 (dd, *J* = 8.1, 7.3 Hz, 1H), 7.41 (dd, *J* = 8.3, 4.1 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.20 (dd, *J* = 8.6, 1.1 Hz, 2H), 6.93 (tt, *J* = 7.5, 1.1 Hz, 1H), 1.20 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 146.1, 143.8, 136.1, 135.0, 129.5, 129.2, 128.6, 128.5, 126.4, 125.3, 121.3, 121.1, 113.6, 106.9, 98.6, 18.9, 11.4; HRMS (EI) Calcd for C₂₇H₃₃N₃Si [M]⁺ 427.2444, found 427.2441.

d) Procedure for the synthesis of 1-tosylquinolin-4(1H)-one 6a:

To a solution of ynone **5a** (0.1 mmol) in THF (1 mL) was added HOAc (0.3 mmol) and TBAF (0.2 mmol) at 0 $^{\circ}$ C. After addition, the solution was warmed up to room temperature and stirred for another 1h and quenched with water, extracted with ethyl acetate. The combined organic layers were dried over MgSO₄. The volatile

compounds were removed in vacuo and the residue was subjected to column chromatography on silica gel to afford **6a** in 78% yield.

Compound **6a**: amorphous solid, ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 8.5 Hz, 1H), 8.32 (dd, J = 8.0, 1.6 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.57 (ddd, J = 8.8, 7.1, 1.8 Hz, 1H), 7.43 – 7.34 (m, 1H), 7.31 (d, J = 8.1 Hz, 2H), 6.38 (d, J = 8.5 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 146.5, 137.9, 137.0, 133.9, 132.8, 130.5, 127.6, 127.3, 126.6, 125.8, 118.4, 112.6, 21.8; HRMS (EI) Calcd for C₁₆H₁₃NO₃S [M]⁺ 299.0616, found 299.0612.

e) Mechanic Studies: Procedure for the alkynylation catalyzed by Rh(III) complex.

8-quinolinecarbaldehydes **1a** (0.2 mmol), alkyne **2a** (0.22 mmol, 1.1 equiv), Complex **7** (2.5 mol%), Zn(OTf)₂ (5 mol%) and DCE (2 mL) were charged into a test tube. The reaction mixture was stirred at 80 °C for 8 h. On completion, a solution of NaOH (0.5 M aqueous solution) was added. After additional stirring at room temperature for 30 min, CH₂Cl₂ was added, and the phases were separated. The aqueous phase was extracted with CH₂Cl₂ and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (eluent: PE:EtOAc = 10: 1) gave the title compound **3a**, yield: 76%.

f) Mechanic Studies: The reaction of stoichiometric amounts of complex 7 with alkene **2a**

Complex **7** (0.1 mmol), alkyne **2a** (0.1 mmol, 1 equiv), $Zn(OTf)_2$ (0.1 mmol, 1 equiv) and DCE (1 mL) were charged into a test tube. The reaction mixture was stirred at 80 °C for 3 h. On completion, a solution of NaOH (0.5 M aqueous solution) was added. After additional stirring at room temperature for 30 min, CH_2Cl_2 was added, and the phases were separated. The aqueous phase was extracted with CH_2Cl_2 and the combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (eluent: PE:EtOAc = 10: 1) gave the title compound **3a**, yield: 66%.

Reference:

S1: K. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto, R. Yamaguchi*, Org. Lett. 2004, 6, 2785.

S2: R. G. Ball, W. A. G. Graham, D. M. Heinekey, J. K. Hoyano, A. D. McMaster, B. M. Mattson,S. T. Michel, *Inorg. Chem.*, **1990**, 29, 2023.

S3: (a) Tao Zhang, Zisong Qi, Xueyun Zhang, Lamei Wu, and Xingwei Li*, *Chemistry-A European Journal*, 2014, 20, 3283; (b) Alexey Kuznetsov, Anton Makarov, Aleksandr E. Rubtsov, Alexander V. Butin,* and Vladimir Gevorgyan*, *J. Org. Chem.* 2013, 78, 12144.

S4: J. P. Brand, C. Chevalley, R. Scopelliti and J. Waser*, *Chemistry-A European Journal*, **2012**, *18*, 5655.

