Supporting Information

Hierarchical structured α-Al₂O₃ supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins

Xiangping Zhou,^a Jian Ji,^a Di Wang,^a Xuezhi Duan,^{a,*} Gang Qian,^a De Chen^b and

Xinggui Zhou^a

^a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^b Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway

*Corresponding author: <u>xzduan@ecust.edu.cn;</u> Fax: +86-21-64253528.

1. Catalyst preparation

Hierarchical structured boehmite was prepared by a two-step solvothermal method described earlier (Chin. J. Inorg. Chem. 2011, 27: 251-258), and then calcined at 1300 °C (heating rate, 5 °C ·min⁻¹) for 4 h to obtain hierarchical structured α -Al₂O₃ (i.e., α -Al₂O₃-H). The α -Al₂O₃-H and commercial α -Al₂O₃ (α -Al₂O₃-C, Nuoda Chemical Co. Ltd., China) were used to support iron species without S promoter using ammonium iron citrate (J.T. Baker, 14.5-16.0 wt% Fe) by incipient wetness impregnation method. The two impregnated samples were dried at ambient temperature for 12 h and then at 120 °C for 12 h and calcined at 500 °C for 2 h. The as-obtained two samples were donated as Fe/a-Al₂O₃-H and Fe/a-Al₂O₃-C, respectively. Similarly, Fe/a-Al₂O₃-H catalysts with different content of S promoter (Fe/a-Al₂O₃-H-xS, x representing the nominal loading of S (10⁻² wt%)) were prepared using ammonium iron citrate and ferrous sulfate heptahydrate (Sinopharm Chemical Reagent Co. Ltd., China) precursors, where the amount of ferrous sulphate heptahydrate precursor is determined by the nominal S content. In addition, bulk α -Fe₂O₃ was obtained from the calcination of ammonium iron citrate at 500 °C for 2 h.

ICP results of two kinds of iron precursors and properties of iron catalysts with or without S promoter were listed in Table S1 and Table S2, respectively. As shown in Table S1, the S content in ammonium iron citrate precursor is very low, which can be ignored in our work. Because the S contents of our prepared S-promoted Fe catalysts are in the range of 0.03-0.08 wt%, the amount of ferrous sulfate precursor is much lower than that of ammonium iron citrate precursor. Therefore, different Fe-based

catalysts contain comparable Na contents, and thus the effects of S concentration are apparent in the current work.

2. Characterization

The microstructures and elemental analysis of supports were characterized by field emission scanning electron microscopy (FESEM, FEI NOVA Nano SEM 450, Netherlands) fitted with an energy dispersive X-ray spectroscopy (EDS, EDAX). Xray diffraction (XRD) was carried out using a Rigaku D/Max2550VB/PC X-ray diffractometer (Rigaku, Japan) with Cu K_a radiation (λ =1.54056 Å). The surface areas of α-Al₂O₃ supports were measured on ASAP 2020 (Micromeritics, USA) at 77 K after out-gassing the samples at 190 °C and 1 mmHg for 6 h. The elemental content of iron precursors were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES, Agilent 725ES, USA). H₂ temperature-programmed reduction (H₂-TPR) was performed using an Autochem 2920 (Micromeritics, USA) with 50 mg sample and 10% H₂/Ar (30 mL·min⁻¹) as reducing gas. The temperature was increased from room temperature to 900 °C at a heating rate of 10 °C·min⁻¹. The microstructures and elemental mappings of catalysts were characterized by highresolution transmission electron microscopy (HRTEM, JEOL JEM-2100, Japan) fitted with an energy dispersive X-ray spectroscopy (EDS, Oxford-INCA). Thermal gravimetric-differential thermal analysis (TG-DTA) was conducted with a flow of air in the temperature range 30-800 °C (heating rate: 10 °C·min⁻¹) carried out on a TA SDT-Q600 thermobalance.

3. Catalytic testing

FTO reaction was carried out on a fixed-bed quartz reactor under 1 bar. Typically, 100 mg catalyst was first reduced in H₂ (15 mL·min⁻¹) at 350 °C for 2 h (heating rate, 5 °C·min⁻¹). After reduction, syngas (CO/H₂=1/1 v/v, 15 mL·min⁻¹) was introduced to the reactor. The outlet products were analyzed on-line using a gas chromatograph (GCA90, Echrom). A capillary column (MEGA-1) connected to a flame ionization detector (FID) was used to analyze hydrocarbons, while a packed column (Porapak Q) connected to a thermal conductivity detector (TCD) to analyze CO, CO₂ and H₂. Calculation of CO conversion and product selectivity can refer to our recent work (*J. Mater. Chem. A* **2015**, 3: 4560-4567). In addition, the selectivity to oxygenates was below 1%C and therefore excluded.

Ţ	Content (wt%)		
Iron precursor –	Fe	S	Na
Ammonium iron citrate	15.0	0.0028	0.063
Ferrous sulphate heptahydrate	20.1	11.40	0.046

 Table S1 ICP results of two kinds of iron precursors.

Sample	Nominal loading (wt %)			
	Fe	S	Na	
Fe/a-Al ₂ O ₃ -C ^a	10.0	~0	0.042	
Fe/a-Al ₂ O ₃ -H ^a	10.0	~0	0.042	
Fe/α -Al ₂ O ₃ -H-3S ^b	10.0	0.03	~0.042	
Fe/α -Al ₂ O ₃ -H-5S ^b	10.0	0.05	~0.042	
Fe/α -Al ₂ O ₃ -H-8S ^b	10.0	0.08	~0.042	

Table S2 Elemental loading of iron catalysts with or without S promoter.

^a Using ammonium iron citrate precursor.

^bUsing ammonium iron citrate and ferrous sulfate precursors, and the amount of ferrous sulphate

determined by the S content.

Figure S1 Typical FESEM image (a) and XRD pattern (b) of hierarchical structured boehmite. Standard pattern of boehmite (JCPDS No. 88-2112) was also presented for comparison.

Figure S2 EDS spectra and FESEM images of α -Al₂O₃-H (a) and α -Al₂O₃-C (b).

Figure S3 XRD patterns of calcined Fe/ α -Al₂O₃-H (red) and Fe/ α -Al₂O₃-C (blue) samples. Standard patterns of α -Fe₂O₃ (JCPDS No. 33-0664) and α -Al₂O₃ (JCPDS No. 46-1212) were also presented for comparison.

Figure S4 Typical HRTEM images of calcined Fe/ α -Al₂O₃-C (a and b) and calcined Fe/ α -Al₂O₃-

H (c and d).

Figure S5 Typical HRTEM images and corresponding particle size distributions of fresh (a, b and c) and used (d, e and f) Fe/α -Al₂O₃-H catalysts. Reduction conditions: in H₂ (15 mL·min⁻¹) at 350 °C for 2 h (heating rate, 5 °C·min⁻¹). Reaction conditions: 350 °C, 1 bar, TOS=19 h and H₂/CO=1 with a GHSV=9000 mL·h⁻¹·g_{cat}⁻¹.

Figure S6 Typical HRTEM images of used Fe/ α -Al₂O₃-H. Reaction conditions: 350 °C, 1 bar, TOS=19 h and H₂/CO=1 with a GHSV=9000 mL·h⁻¹·g_{cat}⁻¹.

Figure S7 TGA curves of the used catalysts. Reaction conditions: 350 °C, 1 bar, TOS=19 h and

H₂/CO=1 with a GHSV=9000 mL \cdot h^-1 \cdot g_{cat}-1.

Figure S8 Typical HRTEM images and corresponding particle size distributions of fresh Fe/ α -Al₂O₃-H-3S (a and b), Fe/ α -Al₂O₃-H-5S (c and d) and Fe/ α -Al₂O₃-H-8S (e and f) catalysts. Reduction conditions: in H₂ (15 mL·min⁻¹) at 350 °C for 2 h (heating rate, 5 °C·min⁻¹). The mean iron particles sizes on the three fresh catalysts are 14.0, 14.1 and 13.9 nm, respectively.

Figure S9 FTY as a function of time on stream over Fe/α -Al₂O₃-H-3S (\blacktriangle), Fe/α -Al₂O₃-H-5S (\bullet) and Fe/α -Al₂O₃-H-8S (\blacklozenge) catalysts. The reaction was performed at 350 °C, 1 bar and H₂/CO=1 with a GHSV=9000 mL·h⁻¹·g_{cat}⁻¹.