Supporting information for:

Frustrated Lewis Pair-Like Reactions of Nucleophilic Palladium Carbenes with B(C₆F₅)₃

Peng Cui, Cezar C. Comanescu and Vlad M. Iluc*

DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556

*Corresponding author: viluc@nd.edu

1	Expe	erimental	S5
	1.1	General remarks	S5
	1.2	Synthesis of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)	S5
	1.3	Synthesis of $[PC(sp^3)H_2P]^{tBu}$ (7)	S 6
	1.4	Synthesis of $[PC(sp^3)HP]^{tBu}PdCl(6)$	S 7
	1.5	Synthesis of $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)	S 7
	1.6	Synthesis of $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5)	S 8
	1.7	Synthesis of $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]([8][BAr_4^F])$	S9
	1.8	Synthesis of $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]([9][BAr_4^F])$ S	510
	1.9	Reaction of $[PC(sp^2)P]^HPd(PMe_3)$ (1) with $B(C_6F_5)_3$ and H_2	510
	1.10	Reaction of $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3) with $B(C_6F_5)_3$ and H_2	511
	1.11	X-ray data for compounds 3-6, [8][BAr ₄ ^F] and [9][BAr ₄ ^F] $\ldots \ldots \ldots \ldots \ldots$	511
	1.12	References	\$13
2	DFT	Results	514
2	DFT 2.1	ResultsS $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)	5 14 514
2	DFT 2.1 T	ResultsS $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)	5 14 514 514
2	DFT 2.1 T F	ResultsS $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)	5 14 514 514
2	DFT 2.1 T F	ResultsS $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sable S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Bottom: Xray structure of 4	514 514 514
2	DFT 2.1 T F	ResultsS $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sable S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)tom: Xray structure of 4Sable S2. Selected distances (Å) and angles (°) for the optimized geometry and the	514 514 514 517
2	DFT 2.1 T F	Results S $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sable S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sable S2. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)	514 514 514 517 518
2	DFT 2.1 T F T	Results S $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sable S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Bottom: Xray structure of 4Sable S2. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S2. Overlaid structures for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4) (red: Xray,	514 514 514 517 518
2	DFT 2.1 T F T	Results S $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Stable S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Bottom: Xray structure of 4tom: Xray structure of 4crystal structure of [(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3) (4)Stable S2. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S2. Overlaid structures for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4) (red: Xray, blue: optimized)	514 514 517 518 518
2	DFT 2.1 T F T 2.2	Results S $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sable S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Bottom: Xray structure of 4tom: Xray structure of 4crystal structure of f($(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (5)structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (5)structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (5)structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (7)structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (7)	514 514 514 517 518 518 518
2	DFT 2.1 T F T 2.2 T	Results S $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)S able S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)S igure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Bottom: Xray structure of 4S able S2. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)S igure S2. Overlaid structures for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4) (red: Xray, blue: optimized)S $[o-(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (o-4)S able S3. Optimized coordinates for $[o-(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (o-4)S	514 514 514 517 518 518 518 519 519
2	DFT 2.1 T F 2.2 C T F	Results S $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sable S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)Sigure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Bottom: Xray structure of 4tom: Xray structure of 4crystal structure of [(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3) (4)structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)(control of control	514 514 514 517 518 518 518 519 519 522

	Figure S4. Optimized geometry for $(C_6F_5)_3B$. S22
	Table S4. Optimized coordinates for $(C_6F_5)_3B$. S23
	2.4 Calculated energies for borane adducts	. S24
	2.5 $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)	. S25
	Table S5. Optimized coordinates for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)	. S25
	Figure S5. Overlaid structures for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3) (red: Xray, blue: op-	
	timized)	. S27
	Table S6. Selected distances (Å) and angles (°) for the optimized geometry and the	
	crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)(4)$. S28
	Figure S6. Optimized geometry for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)	. S28
	Figure S7. Frontier molecular orbitals for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)	. S28
2		G3 0
3	NVIR Spectra 2.1 NMD Superture for $I(C, E) = D \cdot D(C + 2) D \cdot D \cdot D \cdot (A)$	529
	5.1 INMIR Spectra for $[(C_6F_5)_3 D - PC(Sp)P]$ Pd(PMe ₃) (4)	. 529
	Figure So. If NMR spectrum for 4	. 529 520
	Figure S7. $F\{11\}$ NVIR spectrum for 4	\$21
	Figure S10. C{ 11} NMR spectrum for 4	\$32
	Figure S11. D_{11} TWIK spectrum for 4	S32
	Figure S12. 40 C $11710000 \text{ spectrum 101} \text{ f} 1110000 \text{ spectra for 4}$	S34
	Figure S14. ¹ H- ¹³ C HSOC NMR spectrum for 4	S35
	3.2 NMR Spectra for $[PC(sp^3)H_2P]^{tBu}$ (7)	S36
	Figure S15. ¹ H NMR spectrum for 7	. \$36
	Figure S16. ${}^{31}P{}^{1}H{}$ NMR spectrum for 7	. \$37
	Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum for 7	. S38
	Figure S18. $^{1}H^{-13}C$ HSQC NMR spectrum for 7	. S39
	3.3 NMR Spectra for $[PC(sp^3)HP]^{tBu}PdCl(6)$. S40
	Figure S19. ¹ H NMR spectrum for 6	. S40
	Figure S20. ³¹ P{ ¹ H} NMR spectrum for 6	. S41
	Figure S21. ¹³ C{ ¹ H} NMR spectrum for 6	. S42
	Figure S22. ¹ H- ¹³ C HSQC NMR spectrum for 6 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. S43
	3.4 NMR Spectra for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)	. S44
	Figure S23. ¹ H NMR spectrum for $3 \dots $. S44
	Figure S24. ³¹ P{ ¹ H} NMR spectrum for 3	. S45
	Figure S25. ¹³ C{ ¹ H} NMR spectrum for $3 \dots $. S46
	Figure S26. ^{1}H - ^{13}C HSQC NMR spectrum for 3	. S47
	Figure S27. $-25 \degree C^{13}C{^1H}$ NMR spectrum for 3	. S48
	Figure S28. $-40 \degree C^{13}C{}^{1}H{}$ NMR spectrum for 3	. S49
	Figure S29. -40 °C ¹ H- ¹³ C HSQC NMR spectrum for 3	. S50
	3.5 NMR Spectra for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{Bu}Pd(PMe_3)$ (5)	. \$51
	Figure S30. 25 °C 'H NMR spectrum for 5 $\dots \dots $. 551
	Figure S51. $-35 \degree C$ ⁺ H NMR spectrum for 5	. 852
	Figure 532. 55° H NNK spectrum for 5	. 553
	Figure 535. variable temperature $^{-}$ H INMK spectra for 5	. 334
	Figure 534. 25 $C^{-1}F(T)$ invite spectrum for 5	. 333

	Figure S35. $-35 \degree C^{31}P{^1H}$ NMR spectrum for 5	. S56
	Figure S36. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra for 5	. S57
	Figure S37. 55 °C ${}^{13}C{}^{1}H$ NMR spectrum for 5	. S58
	Figure S38. 55 °C 1 H- 13 C HSQC NMR spectrum for 5	. S59
	Figure S39. 25 °C 19 F{ 1 H} NMR spectrum for 5	. S60
	Figure S40. 55 °C ¹⁹ F{ ¹ H} NMR spectrum for 5	. S61
	Figure S41. Variable temperature ${}^{19}F{}^{1}H$ NMR spectra for 5	. S62
	Figure S42. 25 °C ¹¹ B{ ¹ H} NMR spectrum for 5	. S63
	3.6 NMR Spectra for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]([8][BAr_4^F])$. S64
	Figure S43. ¹ H NMR spectrum for [8][BAr ₄ ^F]	. S64
	Figure S44. ³¹ P{ ¹ H} NMR spectrum for [8][BAr ₄ ^F]	. S65
	Figure S45. ¹³ C(¹ H) NMR spectrum for [8][BAr ^F ₄]	. S66
	Figure S46. ¹⁹ F{ ¹ H} NMR spectrum for [8][BAr ^F ₄]	. S67
	Figure S47. ¹¹ B{ ¹ H} NMR spectrum for [8][BAr ^F ₄]	. S68
	Figure S48. ¹ H- ¹³ C HSQC NMR spectrum for [8][BAr ^F ₄]	. S69
	Figure S49. ¹ H- ¹ H COSY NMR spectrum for [8][BAr ^F ₄]	. S70
	3.7 NMR Spectra for $[{PC(sp^3)HP}PdPMe_3][HB(C_6F_5)_3]([8][HB(C_6F_5)_3]) \dots$. S71
	Figure S50. ³¹ P{ ¹ H} NMR spectrum for [8][HB(C_6F_5) ₃]	. S71
	Figure S51. ¹¹ B{ ¹ H} NMR spectrum for [8][HB(C_6F_5) ₃]	. \$72
	3.8 NMR Spectra for $[{PC(sp^3)HP}^{Da}PdPMe_3][BAr_4]([9][BAr_4]) \dots \dots \dots$. 8/3
	Figure S52. ¹ H NMR spectrum for $[9][BAr_4]$. 5/3
	Figure S53. $^{\circ}P{}^{\circ}H{}$ NMR spectrum for $[9][BAr_4]$. 5/4
	Figure S54. "C('H) NMR spectrum for $[9][BAF_4]$. 5/5
	Figure S55. Γ { Π } NMR spectrum for [9][DAr ₄]	. 570
	Figure 550. B(11) NVIK spectrum for $[9][DAI_4]$. 377 878
	Figure S57 ³¹ $P(^{1}H)$ NMR spectrum for [0][HB (C ₆ F ₅) ₃] ([7][HD (C ₆ F ₅) ₃])	. 570 \$78
	Figure S57. If The NMR spectrum for [9][HB($C_{c}F_{c}$) _a]	. 570 \$70
		. 577
4	Crystal Data	S80
	4.1 Crystal data for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)	. S80
	Figure S59. Thermal-ellipsoid representation of 4	. S80
	Table S7. Crystal data and structure refinement for 4	. S81
	Table S8. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$	
	for 4	. S82
	Table S9. Anisotropic displacement parameters $(Å^2)$ for 4	. S85
	Table S10. Distances [Å] for 4 . <th< th=""><th>. S87</th></th<>	. S87
	Table S11. Angles [°] for 4 \cdots \cdots \cdots	. S89
	4.2 Crystal data for $[PC(sp^3)HP]^{tBu}PdCl(6)$. S92
	Figure S60. Thermal-ellipsoid representation of 6	. S92
	Table S12. Crystal data and structure refinement for 6	. S93
	Table S13. Atomic coordinates and equivalent isotropic displacement parameters $(3,2)$	a e :
	(A^2) for 6	. S94
	Table S14. Anisotropic displacement parameters (A^2) for 6 A^2	. S97
	Table S15. Distances [A] for 6 \ldots \ldots \ldots \ldots \ldots \ldots	. S98

Table S16. Angles [°] for 6 S100)
4.3 Crystal data for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)	3
Figure S61. Thermal-ellipsoid representation of 3	3
Table S17. Crystal data and structure refinement for 3	1
Table S18. Atomic coordinates and equivalent isotropic displacement parameters	
$(Å^2)$ for 3	5
Table S19. Anisotropic displacement parameters $(Å^2)$ for 3)
Table S20. Distances [Å] for 3	2
Table S21. Angles [°] for 3	5
4.4 Crystal data for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5))
Figure S62. Thermal-ellipsoid representation of 5)
Table S22. Crystal data and structure refinement for 5)
Table S23. Atomic coordinates and equivalent isotropic displacement parameters	
$(Å^2)$ for 5	Ĺ
Table S24. Anisotropic displacement parameters ($Å^2$) for 5	5
Table S25. Distances [Å] for 5 S127	7
Table S26. Angles [°] for 5 S129)
4.5 Crystal data for [{PC(sp^3)HP}PdPMe_3][BAr ^F ₄] ([8][BAr ^F ₄])	3
Figure S63. Thermal-ellipsoid representation of $[8][BAr_4^F]$	3
Table S27. Crystal data and structure refinement for $[8][BAr_4^F]$ S134	ł
Table S28. Atomic coordinates and equivalent isotropic displacement parameters	
(A^2) for [8][BAr ₄ ^F]	5
Table S29. Anisotropic displacement parameters ($Å^2$) for [8][BAr ₄ ^F])
Table S30. Distances [Å] for $[8][BAr_4^F]$ <	2
Table S31. Angles [°] for $[8][BAr_4^F]$ <th< td=""><td>ł</td></th<>	ł
4.6 Crystal data for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]([9][BAr_4^F])$	3
Figure S64. Thermal-ellipsoid representation of $[9][BAr_4^F]$	3
Table S32. Crystal data and structure refinement for $[9][BAr_4^F]$ S149)
Table S33. Atomic coordinates and equivalent isotropic displacement parameters	
(\mathring{A}^2) for [9][BAr₄^F])
Table S34. Anisotropic displacement parameters (\mathring{A}^2) for [9][BAr ₄ ^F]	5
Table S35. Distances [Å] for [9][BAr ₄ ^F] S158	3
Table S36.Angles [°] for $[9][BAr_4^F]$ S161	Ĺ

1 Experimental

1.1 General remarks

All experiments are performed under an inert atmosphere of N₂ using standard glovebox techniques. Solvents hexane, pentane, CH₂Cl₂ and diethylether were dried by passing through a column of activated alumina and stored in the glovebox. THF was dried over LiAlH₄ followed by vacuum transfer and stored in the glovebox. Deuterated solvents CDCl₃ and CD₂Cl₂ were dried over 4 Å molecular sieves under N₂, while C₆D₆ was dried over CaH₂ followed by vacuum transfer, and stored in the glovebox. 2,2'-dibromo-4,4'-di-*tert*-butyldiphenylmethane¹ and [H(OEt₂)₂][BAr^F₄]² were prepared according to the literature procedure, **1** was synthesized as we previously reported.³ ¹H, ¹³C{¹H}, ³¹P{¹H}, ¹⁹F{¹H} and ¹¹B{¹H} NMR spectra were recorded on Bruker DRX 400 or 500 spectrometer. All chemical shifts were reported in δ units with references to the residual solvent resonance of the deuterated solvents for proton and carbon chemical shifts, to external H₃PO₄, BF₃·OEt₂ and CFCl₃ for ³¹P, ¹¹B and ¹⁹F chemical shifts. CHN analyses were performed on a CE-440 Elemental Analyzer, or by Midwest Microlab, LLC. Gaussian 03 (revision D.02) was used for all reported calculations.⁴ The B3LYP (DFT) method was used to carry out the geometry optimizations on model compounds specified in text using the LANL2DZ basis set. The validity of the true minima was checked by the absence of negative frequencies in the energy Hessian.

1.2 Synthesis of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)

To a solution of $[PC(sp^2)P]^HPd(PMe_3)$ (1) (46.4 mg, 0.08 mmol) in 5 mL of THF, a solution of $B(C_6F_5)_3$ (41 mg, 0.08 mmol) in 5 mL of THF was added dropwise. The solution turned yellow within minutes. The volatiles were removed under reduced pressure and the resulting solid residue was triturated with *n*pentane. Analytically pure **4** (43.6 mg, 0.039 mmol, 49%) was isolated by recrystallization from a concentrated CH₂Cl₂ solu-

tion layered with Et₂O.

For 4: ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): $\delta = 7.45$ (t, ³*J*_{HH} = 7.2 Hz, 1H, Ar*H*), 7.31–7.21 (m, 2H, Ar*H*), 7.07 (t, ³*J*_{HH} = 6.8 Hz, 1H, Ar*H*), 6.55 (d, ³*J*_{HH} = 13.6 Hz, 1H, C₆*H*₄-B(C₆F₅)₃), 6.36 (dd, ³*J*_{HH} = 10.0, ⁴*J*_{HH} = 2.8 Hz, 1H, C₆*H*₄-B(C₆F₅)₃), 5.95 (br d, ³*J*_{HH} = 8.8 Hz, 1H, C₆*H*₄-B(C₆F₅)₃), 4.74 (br d, ³*J*_{HH} = 12.4 Hz 1H, C₆*H*₄-B(C₆F₅)₃), 2.62–2.51 (m, 1H, C*H*(CH₃)₂), 2.50–2.39 (m, 2H, C*H*(CH₃)₂), 2.24–2.13 (m, 1H, C*H*(CH₃)₂), 1.53 (d, ²*J*_{HP} = 7.2 Hz, 9H, P(C*H*₃)₃), 1.34 (dd, ³*J*_{HP} = 11.7 Hz, ³*J*_{HH} = 6.8 Hz, 3H, CH(C*H*₃)₂), 1.29 (dd, ³*J*_{HP} = 6.8 Hz, ³*J*_{HH} = 3.6 Hz, 3H, CH(C*H*₃)₂), 1.23 (dd, ³*J*_{HP} = 14.0 Hz, ³*J*_{HH} = 7.2 Hz, 6H, CH(C*H*₃)₂), 1.18 (dd, ³*J*_{HP} = 12.8 Hz, ³*J*_{HH} = 7.2 Hz, 3H, CH(C*H*₃)₂), 1.13 (dd, ³*J*_{HP} = 11.6 Hz, ³*J*_{HH} = 7.2 Hz, 3H, CH(C*H*₃)₂), 1.05 (dd, ³*J*_{HP} = 17.6 Hz, ³*J*_{HH} = 7.2 Hz, 3H, CH(C*H*₃)₂), 0.86 (dd, ³*J*_{HP} = 17.6 Hz, ³*J*_{HH} = 6.8 Hz, 3H, CH(C*H*₃)₂), 1³C{¹H} NMR (100 MHz, CD₂Cl₂, 25 °C): δ = 161.51 (d, ¹*J*_{CF} = 111.2 Hz, ArC), 159.48 (d, *J* = 37.3 Hz, ArC), 149.91 (m, ArC), 149.38 (s, ArC), 149.02 (m, ArC), 148.77 (s, ArC), 147.57 (m, ArC), 141.47 (s, ArC), 139.78 (m, ArC), 138.42 (m, ArC), 137.31 (m, ArC), 135.99 (m, ArC), 132.60 (d, *J* = 32.7 Hz, ArC), 132.12 (s, ArC), 131.35 (d, *J* = 2.6 Hz, ArC), 129.88

(d, J = 8.5 Hz, ArC), 129.51 (d, J = 5.6 Hz, ArC), 129.73 (dd, J = 43.0, 7.6 Hz, ArC), 128.73 (s, ArC), 128.02 (dd, J = 18.3, 5.2 Hz, ArC), 126.00 (d, J = 6.6 Hz, ArC), 122.51 (dd, J = 16.8, 7.8 Hz, ArC), 43.87 (br m, $C(H)B(C_6F_5)_3$), 28.11 (dd, ${}^{1}J_{CP} = 15.3$ Hz, $J_{CF} = 2.5$ Hz, $CH(CH_3)_2$), 27.97 (dd, ${}^{1}J_{CP} = 12.6$ Hz, $J_{CF} = 2.5$ Hz, $CH(CH_3)_2$), 27.10 (ddd, ${}^{1}J_{CP} = 19.6$ Hz, $J_{CF} = 4.0$ Hz, $J_{\rm CF} = 2.0$ Hz, $CH(CH_3)_2$), 26.07 (ddd, ${}^{1}J_{\rm CP} = 19.9$ Hz, $J_{\rm CF} = 4.2$ Hz, $J_{\rm CF} = 2.0$ Hz, $CH(CH_3)_2$), 21.18 (d, ${}^{2}J_{CP} = 6.5$ Hz, CH(*C*H₃)₂), 20.54 (d, ${}^{2}J_{CP} = 4.0$ Hz, CH(*C*H₃)₂), 20.08 (d, ${}^{2}J_{CP} = 4.0$ Hz, $CH(CH_3)_2$), 20.00 (d, ${}^2J_{CP} = 5.4$ Hz, $CH(CH_3)_2$), 19.88 (d, ${}^2J_{CP} = 5.3$ Hz, $CH(CH_3)_2$), 19.69 (d, ${}^{1}J_{CP} = 23.1$ Hz, P(CH₃)₃), 19.22 (m, CH(CH₃)₂), 18.78 (dd, ${}^{2}J_{CP} = 5.8$ Hz, $J_{CF} = 3.2$ Hz, CH(CH₃)₂), 18.69 (app t, $J_{CP} = 5.2$ Hz, CH(CH₃)₂). ¹⁹F{¹H} NMR (470 MHz, CDCl₃, -40 °C): δ = -127.66 (d, ${}^{3}J_{FF} = 24.0$ Hz, 1F), -130.70 (dd, ${}^{3}J_{FF} = 26.3$ Hz, $J_{FP} = 54.5$ Hz, 1F), -131.49 (dd, ${}^{3}J_{\text{FF}} = 24.0 \text{ Hz}, J_{\text{FP}} = 55.9 \text{ Hz}, 1\text{F}, -134.28 \text{ (s, 1F)}, -137.62 \text{ (d, } {}^{3}J_{\text{FF}} = 23.8 \text{ Hz}, 1\text{F}, -138.97 \text{ (s, 1F)}, -138.97 \text{ (s,$ 2F), -140.75 (d, ${}^{3}J_{FF} = 23.0$ Hz, 1F), -164.58 (dt, ${}^{3}J_{FF} = 21.0$ Hz, $J_{FP} = 78.5$ Hz, 1F), -165.14(br s, 1F), -165.69 (t, ${}^{3}J_{FF} = 20.9$ Hz, 1F), -167.82 (dt, ${}^{3}J_{FF} = 21.2$ Hz, $J_{FP} = 76.1$ Hz, 1F), -168.17 (dt, ${}^{3}J_{FF} = 21.5$ Hz, $J_{FP} = 95.9$ Hz, 1F), -168.80 (t, ${}^{3}J_{FF} = 20.2$ Hz, 1F), -169.87 (t, ${}^{3}J_{FF}$ = 21.6 Hz, 1F). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 25 °C): δ = 74.79 (dd, ²J_{PP-trans} = 281.4 Hz, ${}^{2}J_{PP-cis} = 39.8 \text{ Hz}, 1P, P^{i}Pr_{2}), 64.83 \text{ (dd, } {}^{2}J_{PP-trans} = 281.4, {}^{2}J_{PP-cis} = 43.4 \text{ Hz}, 1P, P^{i}Pr_{2}), -30.61 \text{ (t,}$ ${}^{2}J_{PP-cis} = 41.6 \text{ Hz}, 1P, PMe_{3}).$ ${}^{11}B{}^{1}H{} \text{NMR} (128 \text{ MHz}, \text{CD}_{2}\text{Cl}_{2}, 25 \text{ °C}): \delta = -11.59 \text{ (s)}. \text{ Anal.}$ Calcd for C₄₆H₄₅BF₁₅P₃Pd·CH₂Cl₂: C, 47.92; H, 4.02. Found: C, 48.02; H, 3.91.

1.3 Synthesis of $[PC(sp^3)H_2P]^{tBu}$ (7)

^{*n*}BuLi (3.53 mL, 1.6 M in hexanes, 5.64 mmol) was added to a solution of bis(2-bromo-4-(tert-butyl)phenyl)methane (1.18 g, 2.686 mmol) in 20 mL of diethylether at -35 °C. The reaction mixture was allowed to stir at room temperature for 2 h. After cooling at -35 °C, ^{*i*}Pr₂PCl (860 mg, 5.64 mmol) in 10 mL of diethylether were added and the reaction mixture was stirred at room temperature overnight. Degassed saturated aqueous NH₄Cl (0.1 mL) was added

to quench the reaction. The solution was filtered and the residual solid was washed with diethlyether (3 × 10 mL). The combined organic extract was dried over anhydrous Na₂SO₄, and after the removal of volatiles under reduced pressure the ligand $[PC(sp^3)H_2P]^{tBu}$ (7) was obtained as a colorless oil. Yield: 1.3 g (94 %).

For 7: ¹H NMR (500 MHz, C₆D₆, 25 °C): $\delta = 7.63$ (t, ³*J*_{HP} = 2.3 Hz, 2H, Ar*H*), 7.19 (dd, ³*J*_{HH} = 8.0 Hz, ⁴*J*_{HP} = 3.8 Hz, 2H, Ar*H*), 7.15 (dd, ²*J*_{HH} = 8.0 Hz, ⁵*J*_{HP} = 2.0 Hz, 2H, Ar*H*), 5.21 (t, ⁴*J*_{HP} = 3.3 Hz, 2H, C*H*₂), 2.13 (sept, ³*J*_{HH} = 7.0 Hz, 4H, C*H*(CH₃)₂), 1.29 (s, 18H, C(C*H*₃)₃), 1.18 (dd, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 15.0 Hz, 12H, CH(C*H*₃)₂), 1.05 (dd, ³*J*_{HH} = 6.8 Hz, ³*J*_{HP} = 11.3 Hz, 12H, CH(C*H*₃)₂). ¹³C{¹H} NMR (126 MHz, C₆D₆, 25 °C): $\delta = 147.49$ (s, Ar*C*), 146.72 (d, ¹*J*_{CP} = 27.6 Hz, Ar*C*), 130.66 (d, ³*J*_{CP} = 6.8 Hz, Ar*C*), 129.81 (s, Ar*C*), 128.35 (s, Ar*C*), 125.86 (s, Ar*C*), 38.23 (t, ³*J*_{CP} = 25.3 Hz, CH₂), 34.57 (s, C(CH₃)₃), 31.53 (s, C(CH₃)₃), 24.48 (d, ¹*J*_{CP} = 14.1 Hz, CH(CH₃)₂), 20.57 (d, ²*J*_{CP} = 20.1 Hz, CH(CH₃)₂), 19.51 (d, ²*J*_{CP} = 10.3 Hz, CH(CH₃)₂). ³¹P{¹H} NMR (202 MHz, C₆D₆, 25 °C): $\delta = -6.15$ (s, *P*^{*i*}Pr₂). HRMS (ESI, CH₃CN): Calcd for C₃₃H₅₅P₂ (M–H⁺) 513.3774, found 513.3784.

1.4 Synthesis of $[PC(sp^3)HP]^{tBu}PdCl(6)$

A solution of 7 (680 mg, 1.326 mmol) in 5 mL benzene was added to a yellow slurry of [(COD)PdCl₂] (379 mg, 1.326 mmol) in 5 mL benzene at room temperature. After heating the yellow reaction mixture at 75 °C for 12 h, the solvent was removed under vacuum and the residue was washed with pentane to give the product as yellow solid. Yield: 700 mg (81 %).

For 6: ¹H NMR (400 MHz, C₆D₆, 25 °C): δ = 7.41–7.38 (m, 4H, Ar*H*), 7.20 (d, ³*J*_{HH} = 8.4 Hz, 2H, Ar*H*), 6.21 (s, 1H, C*H*_{backbone}), 2.66 (m, 2H, C*H*(CH₃)₂), 2.44 (m, 2H, C*H*(CH₃)₂), 1.50 (dt, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 7.0 Hz, 6H, CH(C*H*₃)₂), 1.44 (dt, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 7.0 Hz, 6H, CH(C*H*₃)₂), 1.44 (dt, ³*J*_{HH} = 7.0 Hz, ³*J*_{HP} = 7.0 Hz, 6H, CH(C*H*₃)₂), 1.22 (s, 18H, C(C*H*₃)₃), 1.19 (dt, ³*J*_{HH} = 7.6 Hz, ³*J*_{HP} = 7.6 Hz, 6H, CH(C*H*₃)₂). ¹³C{¹H} NMR (100 MHz, C₆D₆, 25 °C): δ = 156.08 (t, ¹*J*_{CP} = 15.0 Hz, Ar*C*), 148.24 (t, ³*J*_{CP} = 2.9 Hz, Ar*C*), 134.00 (t, ²*J*_{CP} = 16.4 Hz, Ar*C*), 128.65 (s, Ar*C*), 127.49 (s, Ar*C*), 127.05 (t, ²*J*_{CP} = 9.4 Hz, Ar*C*), 50.59 (t, ³*J*_{CP} = 2.8 Hz, CH_{backbone}), 34.45 (s, C(CH₃)₃), 31.49 (s, C(CH₃)₃), 25.90 (t, ¹*J*_{CP} = 9.8 Hz, CH(CH₃)₂), 18.74 (s, CH(CH₃)₂), 18.38 (s, CH(CH₃)₂). ³¹P{¹H} NMR (162 MHz, C₆D₆, 25 °C): δ = 49.36 (s, *P*^{*i*}Pr₂). Anal. Calcd for C₃₃H₅₃ClP₂Pd (653.59 g/mol): C, 60.64; H, 8.17. Found: C, 60.58; H, 8.21.

1.5 Synthesis of $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)

PMe₃ (0.9 mL, 1M in THF, 0.903 mmol) and **6** (281 mg, 0.430 mmol) were mixed in 3 mL of THF at room temperature. After stirring for 5 min, a solution of KN(SiMe₃)₂ (94 mg, 0.473 mmol) in 3 mL THF was added. The resulting dark brown reaction mixture was further stirred at room temperature for 90 min. The volatiles were removed under reduced pressure and the dark brown residues were extracted with hexane (8 × 8 mL). The combined extracts were concentrated to

about 2 mL and stored at -35 °C to induce crystallization. Analytically pure **3** was isolated as a dark brown crystalline solid. Yield: 214 mg (72 %).

For 3: ¹H NMR (500 MHz, C₆D₆, 25 °C): δ = 7.98 (d, ³J_{HH} = 7.5 Hz, 2H, Ar*H*), 6.92–6.89 (m, 4H, Ar*H*), 2.18 (m, 4H, C*H*(CH₃)₂), 1.40 (s, 18H, C(C*H*₃)₃), 1.28 (dt, ³J_{HH} = 6.5 Hz, ³J_{HP} = 6.8 Hz, 12H, CH(C*H*₃)₂), 1.10 (dt, ³J_{HH} = 9.0 Hz, ³J_{HP} = 7.3 Hz, 12H, CH(C*H*₃)₂), 0.92 (d, ²J_{HP} = 6.0 Hz, 9H, P(C*H*₃)₃). ¹³C{¹H} NMR (126 MHz, C₆D₆, 25 °C): δ = 162.72 (br s, Ar*C*), 133.09 (br s, Ar*C*), 128.72 (d, ¹J_{CP} = 22.3 Hz, Ar*C*), 128.35 (s, Ar*C*), 116.28 (br s, Ar*C*), 34.72 (s, *C*(CH₃)₃), 32.06 (s, C(CH₃)₃), 27.21 (t, ¹J_{CP} = 10.7 Hz, *C*H(CH₃)₂), 20.96 (t, ²J_{CP} = 3.2 Hz, CH(CH₃)₂), 19.81 (d, ¹J_{CP} = 18.0 Hz, P(CH₃)₃), 19.08 (s, CH(CH₃)₂). ¹³C{¹H} NMR (126 MHz, toluene-d8, 25 °C): δ = 162.81 (t, ¹J_{CP} = 19.8 Hz, Ar*C*), 136.06 (d, ²J_{CP-trans} = 103.7 Hz, *C*_{carbene}), 133.09 (s, Ar*C*), 128.76 (s, Ar*C*), 128.20 (s, Ar*C*), 116.36 (m, Ar*C*), 115.84 (td, J_{CP} = 22.4 Hz, J_{CP} = 10.9 Hz, Ar*C*), 33.66 (s, *C*(CH₃)₃), 31.96 (s, C(CH₃)₃), 27.21 (t, ¹J_{CP} = 10.6 Hz, CH(CH₃)₂), 20.85 (t, ²J_{CP} = 3.3 Hz, CH(CH₃)₂), 19.83 (d, ¹J_{CP} = 17.6 Hz, P(CH₃)₃), 18.96 (s, CH(CH₃)₂).

¹³C{¹H} NMR (126 MHz, toluene-d8, -40 °C): δ = 162.54 (t, ${}^{1}J_{CP}$ = 17.8 Hz, ArC), 134.17 (d, ${}^{2}J_{CP-trans}$ = 106.7 Hz, $C_{carbene}$), 132.44 (s, ArC), 128.93 (s, ArC), 128.23 (s, ArC), 116.05 (m, ArC), 115.92 (td, J_{CP} = 22.2 Hz, J_{CP} = 10.8 Hz, ArC), 33.59 (s, $C(CH_3)_3$), 31.87 (s, $C(CH_3)_3$), 26.89 (t, ${}^{1}J_{CP}$ = 10.8 Hz, $CH(CH_3)_2$), 20.68 (s, $CH(CH_3)_2$), 19.11 (d, ${}^{1}J_{CP}$ = 18.6 Hz, $P(CH_3)_3$), 18.79 (s, $CH(CH_3)_2$). ${}^{31}P{}^{1}H{}$ NMR (202 MHz, C_6D_6 , 25 °C): δ = 61.86 (d, ${}^{2}J_{PP}$ = 44.2 Hz, 2P, P^i Pr₂), -35.52 (t, ${}^{2}J_{PP}$ = 44.2 Hz, 1P, *P*Me₃). Anal. Calcd for C₃₆H₆₁P₃Pd (693.21 g/mol): C, 62.37; H, 8.87. Found: C, 62.44; H, 8.82.

1.6 Synthesis of $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5)

A solution of $B(C_6F_5)_3$ (30 mg, 0.058 mmol) in 3 mL of hexane was added to a drak brown solution of **3** (40 mg, 0.058 mmol) in 4 mL of hexane. A greenish-yellow slurry was formed immediately. After stirring the mixture at room temperature for 20 min, the supernatant was decanted and the residual solids were washed with pentane, and dried under reduced pressure to give the crude product as greenishyellow solid. Recrystallization from diethylether at -35 °C afforded analytically pure **5** as a greenish-yellow crystalline solid. Yield: 33 mg (47 %).

For 5: ¹H NMR (500 MHz, CDCl₃, 25 °C): δ = 7.48 (d, ³J_{HH} = 7.5 Hz, 3H, Ar*H*), 7.13 (br s, 2H, Ar*H*), 6.42 (br s, 1H, Ar*H*), 2.53

(br s, 4H, $CH(CH_3)_2$), 1.58 (d, ${}^2J_{HP}$ = 8.0 Hz, 9H, $P(CH_3)_3$), 1.49 (br s, 6H, $CH(CH_3)_2$), 1.31 (br s, 21H, CH(CH₃)₂ and C(CH₃)₃), 1.09 (br s, 12H, CH(CH₃)₂), 0.77 (br s, 3H, CH(CH₃)₂). ¹H NMR (500 MHz, CDCl₃, -35 °C): $\delta = 7.45$ (t, ${}^{3}J_{HH} = 7.3$ Hz, 3H, ArH), 7.13 (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H, Ar*H*), 7.07 (dd, ${}^{3}J_{\text{HH}} = 8.0$ Hz, ${}^{4}J_{\text{HH}} = 2.0$ Hz, 1H, Ar*H*), 6.43 (dd, ${}^{3}J_{\text{HH}} = 8.0$ Hz, ${}^{4}J_{\text{HH}} = 8.0$ Hz, ${}^{4}J_{\text{H}} = 8.0$ Hz, ${$ 2.3 Hz, 1H, ArH), 2.62–2.47 (m, 4H, CH(CH₃)₂), 1.57 (d, ${}^{2}J_{HP}$ = 8.5 Hz, 9H, P(CH₃)₃), 1.49 (m, 6H, CH(CH₃)₂), 1.32 (s, 9H, C(CH₃)₃), 1.23 (s, 12H, CH(CH₃)₂ and C(CH₃)₃), 1.12 (dd, ${}^{3}J_{HP} =$ 17.0 Hz, ${}^{3}J_{\text{HH}} = 7.0$ Hz, 6H, CH(CH₃)₂), 0.97 (dd, ${}^{3}J_{\text{HP}} = 16.0$ Hz, ${}^{3}J_{\text{HH}} = 7.0$ Hz, 6H, CH(CH₃)₂), $0.72 (dd, {}^{3}J_{HP} = 16.5 Hz, {}^{3}J_{HH} = 6.8 Hz, 3H, CH(CH_{3})_{2}). {}^{13}C{}^{1}H} NMR (126 MHz, CDCl_{3}, 55 °C):$ $\delta = 150.13$ (m, ArC), 149.30 (m, ArC), 148.24 (m, ArC), 147.35 (m, ArC), 144.03 (m, ArC), 142.12 (m, ArC), 139.93 (m, ArC), 137.94 (m, ArC), 135.89 (m, ArC), 131.83 (d, J_{CP} = 39.2 Hz, ArC), 128.83 (br s, ArC), 126.97 (m, ArC), 72.47 (br d, ${}^{2}J_{CP} = 95.3$, $C_{backbone}$), 34.75 (s, $C(CH_{3})_{3}$), 31.47 (s, C(CH₃)₃), 27.03 (br s, CH(CH₃)₂), 20.18 (d, J_{CF} = 57.3 Hz, CH(CH₃)₂), 19.63 (d, ${}^{1}J_{CP}$ = 22.1 Hz, $P(CH_3)_3$), 18.84 (d, $J_{CF} = 44.7$ Hz, $CH(CH_3)_2$). ³¹P{¹H} NMR (202 MHz, $CDCl_3$, 25 °C): $\delta = 63.11$ (d, ${}^{2}J_{PP-trans} = 278.6$ Hz, 1P, $P^{i}Pr_{2}$), 44.82 (dd, ${}^{2}J_{PP-trans} = 281.4$ Hz, ${}^{2}J_{PP-cis} = 64.8$ Hz, 1P, P^i Pr₂), -26.12 (t, ${}^{2}J_{PP-cis} = 54.6$ Hz, 1P, PMe₃). ${}^{31}P{}^{1}H}$ NMR (202 MHz, CDCl₃, -35 °C): $\delta = 62.68 \text{ (ddd, } {}^{2}J_{\text{PP-trans}} = 281.4 \text{ Hz}, \, {}^{2}J_{\text{PP-cis}} = 44.0 \text{ Hz}, \, J_{\text{PF}} = 33.1 \text{ Hz}, \, 1\text{P}, \, P^{i}\text{Pr}_{2}), \, 44.92 \text{ (dd,}$ ${}^{2}J_{\text{PP-trans}} = 281.4 \text{ Hz}, {}^{2}J_{\text{PP-cis}} = 62.4 \text{ Hz}, 1P, P^{i}\text{Pr}_{2}), -25.06 \text{ (dd, } {}^{2}J_{\text{PP-cis}} = 62.2, 45.1 \text{ Hz}, 1P, PMe_{3})$ ppm; ¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25 °C): $\delta = -137.11$ (br s, 1F, B(C₆F₄)), -137.98 (br s, $B(C_6F_5)_2$, (o-F)) and -138.12 (br m, $B(C_6F_5)_2$, (o-F)), -138.55 (br s, 1F, $B(C_6F_4)$), -140.77 (br s, 1F, B(C₆F₄)), -146.81 (br s, 1F, B(C₆F₄)), -165.28 (t, ${}^{3}J_{FF} = 20.4$ Hz, B(C₆F₅)₂, (*p*-F)), -165.34 $(t, {}^{3}J_{FF} = 19.5 \text{ Hz}, B(C_{6}F_{5})_{2}, (p-F)), -169.56 (td, {}^{3}J_{FF} = 23.5 \text{ Hz}, {}^{4}J_{FF} = 5.7 \text{ Hz}, B(C_{6}F_{5})_{2}, (m-F)),$ -169.67 (td, ${}^{3}J_{FF} = 23.5$ Hz, ${}^{4}J_{FF} = 6.2$ Hz, B(C₆F₅)₂, (*m*-F)), -195.46 (br s, 1F, BF). ${}^{19}F{}^{1}H{}^{1}$ NMR NMR (470 MHz, CDCl₃, 55 °C): $\delta = -136.93$ (br 1F, B(C₆*F*₄)), -137.95 (s, 3F, B(C₆*F*₄) and B(C₆*F*₅)₂, (*o*-F)), -140.99 (br 1F, B(C₆*F*₄)), -146.62 (br 1F, B(C₆*F*₄)), -165.67 (t, ${}^{3}J_{FF} = 20.7$ Hz, B(C₆*F*₅)₂, (*p*-F)), -165.72 (t, ${}^{3}J_{FF} = 20.2$ Hz, B(C₆*F*₅)₂, (*p*-F)), -169.86 (td, ${}^{3}J_{FF} = 19.7$ Hz, ${}^{4}J_{FF} = 5.2$ Hz, B(C₆*F*₅)₂, (*m*-F)), -169.98 (td, ${}^{3}J_{FF} = 21.4$ Hz, ${}^{4}J_{FF} = 6.4$ Hz, B(C₆*F*₅)₂, (*m*-F)), -195.24 (br s, 1F, B*F*). ${}^{11}B{}^{1}H{}$ NMR (160 MHz, CDCl₃, 25 °C): $\delta = 0$ (br). Anal. Calcd. for C₅₄H₆₁BF₁₅P₃Pd (1205.19 g/mol): C, 53.82; H, 5.10. Found: C, 53.48; H, 5.05.

1.7 Synthesis of $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]([8][BAr_4^F])$

 $[H(OEt_2)_2][BAr_4^F]$ (16.6 mg, 0.016 mmol) in 1 mL of diethyl ether was slowly added to a dark-brown solution of **1** (9.5 mg, 0.016 mmol) in 1 mL of ether at $-35^{\circ}C$. The resulted pale yellow solution was then allowed to stir at room temperature for 10 min. After reducing volume of the solution to about 0.5 mL under reduced pressure, *n*pentane (5 mL) was layered and the mixture was stored at $-35^{\circ}C$ to give product [8][BAr_4^F] as yellow crystalline blocks. Yield: 24 mg (quantitative).

For [8][BAr₄^F]: ¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 7.72 (s, 8H, ortho-Ar_F*H*), 7.53 (s, 4H, para-Ar_F*H*), 7.55–7.51 (m, 2H, Ar*H*), 7.39 (t, ³*J*_{HH} = 7.6 Hz, Ar*H*), 7.25 (t, ³*J*_{HH} = 7.9 Hz, Ar*H*), 7.13 (d, t, ³*J*_{HH} = 7.9 Hz, Ar*H*), 6.36 (d, ³*J*_{HP} = 12.0 Hz, 1H, CH_{backbone}), 2.57 (m, 2H, CH(CH₃)₂), 2.50 (m, 2H, CH(CH₃)₂), 1.53 (d, ²*J*_{HP} = 7.6 Hz, 9H, P(CH₃)₃), 1.40 (td, ³*J*_{HH} = 6.8 Hz, ³*J*_{HP} = 6.8 Hz, 6H, CH(CH₃)₂),

1.18 (td, ${}^{3}J_{HH} = 7.2$ Hz, ${}^{3}J_{HP} = 9.2$ Hz, 6H, CH(CH₃)₂), 1.12 (td, ${}^{3}J_{HH} = 7.2$ Hz, ${}^{3}J_{HP} = 8.4$ Hz, 6H, CH(CH₃)₂), 1.09 (td, ${}^{3}J_{HH} = 7.2$ Hz, ${}^{3}J_{HP} = 7.4$ Hz, 6H, CH(CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR (100 Hz, CDCl₃, 25 °C): $\delta = 161.90$ (q, ${}^{1}J_{CB} = 49.53$ Hz, ipso-Ar_FC), 156.06 (td, $J_{CP} = 13.5$ Hz, $J_{CP} = 4.9$ Hz, ArC), 134.99 (s, ortho-Ar_FC), 132.20 (s, ArC), 131.86 (s, ArC), 130.70 (td, $J_{CP} = 20.0$ Hz, $J_{CP} = 9.0$ Hz, ArC), 129.11 (qq, ${}^{2}J_{CF} = 31.2$ Hz, ${}^{4}J_{CF} = 2.8$ Hz, meta-Ar_FC), 127.85 (td, $J_{CP} = 9.5$ Hz, $J_{CP} = 6.5$ Hz, ArC), 126.72 (t, $J_{CP} = 3.6$ Hz, ArC), 124.74 (q, ${}^{1}J_{CF} = 273.1$ Hz, CF₃), 117.63 (m, para-Ar_FC), 63.70 (dt, ${}^{2}J_{CP} = 85.2$ Hz, ${}^{3}J_{CP} = 5.3$ Hz, CH_{backbone}), 27.47 (t, ${}^{1}J_{CP} = 10.1$ Hz, CH(CH₃)₂), 27.41 (td, ${}^{1}J_{CP} = 12.8$ Hz, $J_{CP} = 20.0$ Hz, CH(CH₃)₂), 20.58 (t, ${}^{2}J_{CP} = 3.2$ Hz, CH(CH₃)₂), 19.38 (m, CH(CH₃)₂), 19.03 (d, ${}^{1}J_{CP} = 20.8$ Hz, P(CH₃)₃), 18.93 (s, CH(CH₃)₂), 18.15 (s, CH(CH₃)₂). ${}^{31}P{}^{1}H{}$ NMR (162 Hz, CDCl₃, 25 °C): $\delta = 59.99$ (d, ${}^{2}J_{PP-cis} = 45.5$ Hz, $P{}^{i}P{}{}^{2}$), -29.93 (t, ${}^{2}J_{PP-cis} = 45.8$ Hz, $P{}Me_{3}$). ${}^{19}F{}^{1}H{}$ NMR (470 MHz, CDCl₃, 25 °C): $\delta = -65.46$ (s). ${}^{11}B{}^{1}H{}$ NMR (160 MHz, CDCl₃, 25 °C): $\delta = -6.58$ (s). Anal. Calcd. for C₆₀H₅₈BF₂₄P₃Pd (1445.22 g/mol): C, 49.86; H, 4.05. Found: C, 49.40; H, 3.80.

1.8 Synthesis of $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F] ([9][BAr_4^F])$

 $[H(OEt_2)_2][BAr_4^F]$ (44 mg, 0.043 mmol) in 1 mL of diethyl ether was slowly added to a brown solution of **3** (30 mg, 0.043 mmol) in 2 mL of ether at -35 °C. The resulted bright yellow solution was then allowed to stir at room temperature for 10 min. After reducing volume of the solution to about 1 mL under reduced pressure, *n*-pentane (8 mL) was layered and the mixture was stored at -35 °C to give product [**9**][**BAr**₄^F] as yellow blocks. Yield: 67 mg (quantitative).

For [9][BAr₄^F]: ¹H NMR (500 MHz, CDCl₃, 25 °C): δ = 7.73 (s, 8H, ortho-Ar_FH), 7.55 (s, 4H, para-Ar_FH), 7.50 (td, ³J_{HH} = 9.0 Hz, ⁴J_{HH} = 2.0 Hz, 2H, ArH), 7.44 (d, ³J_{HH} = 8.0 Hz, 2H, ArH), 7.13 (d, ³J_{HH} = 8.0 Hz, 2H, ArH), 6.28 (d, ³J_{HP} = 12.0 Hz, 1H, CH_{backbone}), 2.57 (m, 2H, CH(CH₃)₂), 2.50(m, 2H, CH(CH₃)₂), 1.53 (d, ²J_{HP} = 7.5 Hz, 9H, P(CH₃)₃), 1.42 (dt, ³J_{HH} = 7.0 Hz, ³J_{HP} = 6.5 Hz, 6H, CH(CH₃)₂), 1.34 (s, 9H, C(CH₃)₃), 1.17 (dt, ³J_{HH} = 7.0 Hz, ³J_{HP}

= 9.5 Hz, 6H, CH(CH₃)₂), 1.16–1.09 (m, 12H, CH(CH₃)₂). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C): δ = 161.87 (q, ¹*J*_{CB} = 49.9 Hz, ipso-Ar_F*C*), 153.32 (td, *J*_{CP} = 13.5 Hz, *J*_{CP} = 5.0 Hz, Ar*C*), 149.89 (s, Ar*C*), 134.96 (s, ortho-Ar_F*C*), 130.30 (td, *J*_{CP} = 20.0 Hz, *J*_{CP} = 9.5 Hz, Ar*C*), 129.08 (s, Ar*C*), 129.07 (qq, ²*J*_{CF} = 31.8 Hz, ⁴*J*_{CF} = 2.6 Hz, meta-Ar_F*C*), 128.64 (s, Ar*C*), 127.33 (td, *J*_{CP} = 10.2 Hz, *J*_{CP} = 6.6 Hz, Ar*C*), 124.72 (q, ¹*J*_{CF} = 273.1 Hz, *C*F₃), 117.61 (m, para-Ar_F*C*), 62.94 (dt, ²*J*_{CP} = 85.9 Hz, ³*J*_{CP} = 5.4 Hz, *C*H_{backbone}), 34.71 (s, *C*(CH₃)₃), 31.36 (s, *C*(*C*H₃)₃), 27.43 (t, ¹*J*_{CP} = 10.2 Hz, *C*H(CH₃)₂), 19.43 (s, CH(CH₃)₂), 19.15 (d, ¹*J*_{CP} = 22.6 Hz, P(CH₃)₃), 19.02 (s, CH(CH₃)₂), 18.33 (s, CH(CH₃)₂). ³¹P{¹H} NMR (202 Hz, CDCl₃, 25 °C): δ = 59.64 (d, ²*J*_{PP-*cis* = 45.3 Hz, *P^{i*}Pr₂), -30.43 (t, ²*J*_{PP-*cis* = 46.3 Hz, *P*Me₃). ¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25 °C): δ = -65.51 (s). ¹¹B{¹H} NMR (160 MHz, CDCl₃, 25 °C): δ = -6.57 (s). Anal. Calcd for C₆₈H₇₄BF₂₄P₃Pd (1557.43 g/mol): C, 52.44; H, 4.79. Found: C, 52.37; H, 4.59.}}

1.9 Reaction of $[PC(sp^2)P]^HPd(PMe_3)$ (1) with $B(C_6F_5)_3$ and H_2

In a 100 mL of round-bottom flask purged with H₂ was added B(C₆F₅)₃ (7.4 mg, 0.014 mmol) in 1 mL of Et₂O through the septum by syringe. After stirring for about 1 min, $[PC(sp^2)P]^HPd(PMe_3)$ (1) (10 mg, 0.014 mmol) in 1 mL of Et₂O was slowly added by syringe in the same way. The bright yellow slurry was then monitored by NMR spectroscopy in C₆D₆. After 1 h full conversion of the starting material was observed. The final reaction mixture contained **4** and **[8][HB(C₆F₅)₃]**

in a 95:5 ratio. The identity of **[8]**[**HB**(C_6F_5)₃] was confirmed by comparing the NMR spectra with the one obtained for [{PC(*sp*³)HP}PdPMe₃][BAr^F₄] (**[8]**[**BAr^F₄**]). Due to the low yield we were not able to isolate a pure sample of **[8]**[**HB**(C_6F_5)₃]. For **[8]**[**HB**(C_6F_5)₃] (selected data): ¹H NMR (500 MHz, C_6D_6/Et_2O , 25 °C): $\delta = 6.13$ (d, ³*J*_{HP} = 12.0 Hz, 1H, CH_{backbone}). ³¹P{¹H} NMR (202 MHz, C_6D_6/Et_2O , 25 °C): $\delta = 59.39$ (br, *Pⁱ*Pr₂), -30.54 (t, ²*J*_{PP-*cis*} = 45.5 Hz, *P*Me₃). ¹¹B{¹H} NMR (160 MHz, C_6D_6/Et_2O , 25 °C): $\delta = -24.62$ (br s).

1.10 Reaction of $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3) with $B(C_6F_5)_3$ and H_2

In a 100 mL of round-bottom flask purged with H₂ was added B(C₆F₅)₃ (7.4 mg, 0.014 mmol) in 1 mL of hexane through the septum by syringe. After stirring for about 1 min, **3** (10 mg, 0.014 mmol) in 1 mL of hexane was slowly added by syringe in the same way. The greenish yellow slurry was then allowed to stirr under H₂ for 1 h. All volatiles were removed under reduced pressure to give a greenish yellow residue. The ¹H and ³¹P{¹H} NMR spectra recorded in CDCl₃ showed the formation of a mixture of **5** and [**9**][**HB**(C₆**F**₅)₃] in a 3:1 ratio. The identity of [**9**][**HB**(C₆**F**₅)₃] was confirmed by comparing the NMR spectra with the one obtained for [$\{PC(sp^3)HP\}^{tBu}PdPMe_3\}$ [BAr^F₄] ([**9**][BAr^F₄]). Because of the similar solubilities we were not able to separate the two products. For [**9**][**HB**(C₆**F**₅)₃] (selected data): ¹H NMR (500 MHz, CDCl₃, 25 °C): $\delta = 6.24$ (d, ³*J*_{HP} = 12.0 Hz, 1H, C*H*_{backbone}). ³¹P{¹H}</sup> NMR (202 MHz, CDCl₃, 25 °C): $\delta = -25.40$ (br s).

1.11 X-ray data for compounds 3-6, $[8][BAr_4^F]$ and $[9][BAr_4^F]$

X-Ray crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Single crystals were obtained from a concentrated CH₂Cl₂ solution layered with Et₂O at -35 °C. The resulting crystals were bright, light yellow plates. Crystal and refinement data for 4: C₄₆H₄₅BF₁₅P₃Pd; M_r =1092.94; Monoclinic; space group $P2_1/n$; a = 9.7351(4) Å; b = 29.7778(12) Å; c = 16.3484(6) Å; $\alpha = 90^{\circ}$; $\beta = 104.9431(16)^{\circ}$; $\gamma = 90^{\circ}$; V = 4579.0(3) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.605 \text{ mm}^{-1}$; d_{calc} = 1.585 g·cm⁻³; 88562 reflections collected; 11118 unique (R_{int} = 0.1029); giving R₁ = 0.0399, wR₂ = 0.0651 for 7584 data with [I>2\sigma(I)] and R₁ = 0.0814, wR₂ = 0.0749 for

all 11118 data. Residual electron density $(e^- \cdot A^{-3})$ max/min: 0.486/-0.604. CCDC Deposition: 1002270.

X-Ray crystal structure of [PC(*sp*³)HP]^{*t*Bu}PdCl (6). Single crystals were obtained as pale yellow blocks from a concentrated diethyl ether solution at -35 °C. Crystal and refinement data for **6**: C₃₃H₅₃ClP₂Pd; M_r =653.54; Monoclinic; space group *P*2₁/*c*; *a* = 12.3466(7) Å; *b* = 11.6819(7) Å; *c* = 23.5089(14) Å; $\alpha = 90^{\circ}$; $\beta = 91.4208(9)^{\circ}$; $\gamma = 90^{\circ}$; V = 3389.7(3) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.740$ mm⁻¹; d_{calc} = 1.281 g·cm⁻³; 45195 reflections collected; 5975 unique (R_{int} = 0.0509); giving R₁ = 0.0300, wR₂ = 0.0706 for 5310 data with [I>2 σ (I)] and R₁ = 0.0356, wR₂ = 0.0731 for all 5975 data. Residual electron density (e⁻·Å⁻³) max/min: 1.846/-1.555. CCDC Deposition: 1038108.

X-Ray crystal structure of [PC(*sp*²)P]^{*f*^{Bu}}Pd(PMe₃) (3). Single crystals were obtained as dark brown blocks from a concentrated hexane solution at -35 °C. Crystal and refinement data for **3**: $C_{36}H_{61}P_3Pd$; $M_r = 693.16$; Monoclinic; space group *C*2/*c*; *a* = 28.976(3) Å; *b* = 14.6255(14) Å; *c* = 31.853(4) Å; $\alpha = 90^{\circ}$; $\beta = 106.946(2)^{\circ}$; $\gamma = 90^{\circ}$; V = 12913(2) Å³; Z = 12; T = 120(2) K; $\lambda =$ 0.71073 Å; $\mu = 0.561$ mm⁻¹; $d_{calc} = 1.070$ g·cm⁻³; 103779 reflections collected; 11379 unique (R_{int} = 0.0366); giving R₁ = 0.0347, wR₂ = 0.0835 for 10264 data with [I>2 σ (I)] and R₁ = 0.0395, wR₂ = 0.0858 for all 11379 data. Residual electron density (e⁻·Å⁻³) max/min: 1.525/-0.772. CCDC Deposition: 1038109.

X-Ray crystal structure of $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{rBu}Pd(PMe_3)$ (5). Single crystals were obtained as greenish-yellow needles from a concentrated solution of fluorobenzene layered with hexane at room temperature. Crystal and refinement data for 5: $C_{54}H_{61}BF_{15}P_3Pd$; M_r =1205.15; Monoclinic; space group $P2_1/c$; a = 14.7706(10) Å; b = 13.9199(9) Å; c =28.5994(19) Å; $\alpha = 90^\circ$; $\beta = 93.208(2)^\circ$; $\gamma = 90^\circ$; V = 5871.0(7) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.479$ mm⁻¹; $d_{calc} = 1.363$ g·cm⁻³; 92881 reflections collected; 10345 unique ($R_{int} = 0.0419$); giving $R_1 = 0.0379$, w $R_2 = 0.0880$ for 8827 data with [I>2 σ (I)] and $R_1 = 0.0481$, w $R_2 = 0.0917$ for all 10345 data. Residual electron density (e^- ·Å⁻³) max/min: 0.600/-0.364. CCDC Deposition: 1038110.

X-Ray crystal structure of [{**PC**(*sp*³)**HP**}**PdPMe**₃][**BAr**^F₄] ([**8**][**BAr**^F₄]). Single crystals were obtained from a concentrated solution of diethyl ether layered with *n*-pentane at -35 °C. Crystal and refinement data for [**8**][**BAr**^F₄]: C₆₀H₅₈BF₂₄P₃Pd; M_r =1445.18; Monoclinic; space group $P2_1/n$; a = 13.1862(3) Å; b = 12.7167(3) Å; c = 37.1231(8) Å; $\alpha = 90^{\circ}$; $\beta = 94.9670(9)^{\circ}$; $\gamma = 90^{\circ}$; V = 6201.6(2) Å³; Z = 4; T = 120(2) K; $\lambda = 1.54178$ Å; $\mu = 4.145$ mm⁻¹; d_{calc} = 1.548 g·cm⁻³; 112788 reflections collected; 11345 unique (R_{int} = 0.0404); giving R₁ = 0.0453, wR₂ = 0.1137 for 10917 data with [I>2\sigma(I)] and R₁ = 0.0465, wR₂ = 0.1146 for all 11345 data. Residual electron density (e⁻·Å⁻³) max/min: 1.245/-1.122.

X-Ray crystal structure of [{**PC**(*sp*³)**HP**}^{*t*^{Bu}}**PdPMe**₃][**BAr**^F₄] ([9][**BAr**^F₄]). Single crystals were obtained as yellow blocks from a concentrated solution of diethyl ether layered with *n*-pentane at -35 °C. Crystal and refinement data for [9][**BAr**^F₄]: C₆₈H₇₄BF₂₄P₃Pd; M_r =1557.39; Triclinic; space group $P\bar{1}$; a = 13.7002(14) Å; b = 17.7228(18) Å; c = 18.5200(19) Å; $\alpha = 65.531(3)^\circ$; $\beta = 74.700(3)^\circ$; $\gamma = 88.259(3)^\circ$; V = 3931.8(7) Å³; Z = 2; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.390$ mm⁻¹; d_{calc} = 1.315 g·cm⁻³; 71970 reflections collected; 13848 unique (R_{int} = 0.0347); giving R₁ = 0.0492, wR₂ = 0.1270 for 11804 data with [I>2\sigma(I)] and R₁ = 0.0575, wR₂ = 0.1325 for all 13848 data. Residual electron density (e⁻·Å⁻³) max/min: 2.142/-1.161.

1.12 References

- (a) A. Konishi, Y. Hirao, M. Nakano, A. Shimizu, E. Botek, B. Champagna, D. Shiomi, K. Sato, T. Takui, K. Matsumoto, H. Kurata and T. Kubo, *J. Am. Chem. Soc.*, 2010, *132*, 11021-11023. (b) L. A. Yuryevich, A. A. Fyodorovich, V. A. Zelmanovich and R. Abbas, PCT Int. Appl. 2007111537, 2007.
- 2. M. Brookhart, B. Grant and A. F. Volpe, *Organometallics*, **1992**, *11(11)*, 3920.
- 3. C.C. Comanescu and V. M. Iluc, Organometallics, 2014, 33(21), 6059-6064.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian, Inc.*, Wallingford CT, 2004.

2 DFT Results

2.1 $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)

Table S1. Optimized coordinates for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

atom	X	У	Z
C	-2.318511	0.420889	2.256113
С	-2.611130	-0.527832	1.262324
С	-2.172984	-1.825174	1.596426
С	-1.547727	-2.167067	2.799808
С	-1.322218	-1.182859	3.765222
С	-1.715555	0.125904	3.485093
В	-3.237901	-0.158218	-0.217689
С	-4.122083	1.258443	-0.211710
С	-5.184129	1.407157	0.705620
С	-6.042165	2.507626	0.770227
С	-5.872844	3.561120	-0.133571
С	-4.846658	3.474668	-1.073584
С	-4.011509	2.346857	-1.094207
F	-5.414516	0.400421	1.641468
F	-7.050977	2.568739	1.716595
F	-6.704855	4.665309	-0.095038
F	-4.652855	4.507355	-1.979148
F	-3.016535	2.392559	-2.083093
F	-2.357520	-2.880265	0.701996
F	-1.136597	-3.471151	3.036932
F	-0.694924	-1.491702	4.960643
F	-1.466964	1.132614	4.409354
F	-2.598174	1.780469	2.049815
С	-1.875340	-0.076259	-1.256926
С	-0.861662	0.927869	-0.794668
С	0.455609	0.646049	-0.594997
С	1.003675	-0.713352	-0.699529
С	0.057667	-1.705522	-1.239981
С	-1.237400	-1.402112	-1.528104
С	2.317142	-0.993574	-0.331905
С	2.784866	-2.369602	-0.050272
С	4.142709	-2.741175	-0.256180
С	4.572342	-4.072037	-0.098493
С	3.679085	-5.058272	0.356908
С	2.355467	-4.688272	0.674119

atom	X	У	Z
С	1.915470	-3.372619	0.475581
Р	5.257156	-1.313314	-0.677633
С	6.783969	-1.425292	0.497178
С	7.807044	-2.538577	0.175024
Р	1.733075	1.904349	-0.084066
С	1.626005	3.372576	-1.325837
С	2.029297	2.884486	-2.735522
С	-4.344729	-1.271325	-0.773146
С	-4.727864	-1.299862	-2.129465
С	-5.681604	-2.165954	-2.676799
С	-6.337060	-3.074708	-1.843834
С	-6.027081	-3.078584	-0.482477
С	-5.064022	-2.191361	0.018743
F	-4.165240	-0.390665	-3.035756
F	-5.984549	-2.123518	-4.028679
F	-7.282548	-3.944823	-2.355624
F	-6.678688	-3.960322	0.363679
F	-4.863833	-2.269752	1.392862
Pd	3.726179	0.542154	-0.258792
Р	5.462182	2.397387	0.034611
С	6.034842	2.462851	1.838158
С	1.162865	2.565266	1.627956
С	1.418111	1.479839	2.696436
С	5.037787	4.217779	-0.270409
С	7.124200	2.343762	-0.873613
С	5.881701	-1.686720	-2.455974
С	6.926425	-0.660698	-2.940492
С	1.832072	3.898785	2.019605
С	0.266093	4.108775	-1.358413
С	4.677672	-1.762186	-3.420221
С	6.295176	-1.518181	1.961836
Н	4.745567	4.361751	-1.314874
Н	5.914013	4.840826	-0.056369
Н	4.215680	4.530421	0.377188
Н	6.965129	2.509724	-1.943575
Н	7.607243	1.373584	-0.740643
Н	7.784103	3.128726	-0.485974
Н	6.746686	3.283254	1.987170
Н	6.513090	1.517597	2.110574
Н	5.171138	2.611922	2.493246
Н	0.079621	2.720732	1.530011
Н	1.649274	4.698770	1.292154

atom	X	У	Z
Н	2.916776	3.776695	2.143991
Н	1.430436	4.233381	2.984835
Н	0.974776	0.518688	2.415932
Н	0.980400	1.789698	3.653009
Н	2.494982	1.321033	2.841155
Н	2.386681	4.076066	-0.965551
Н	0.382564	5.049868	-1.913362
Н	-0.108317	4.360519	-0.358926
Н	-0.498681	3.521468	-1.875093
Н	2.032262	3.731046	-3.435351
Н	1.314441	2.142328	-3.110603
Н	3.026973	2.426809	-2.739913
Н	5.026356	-2.043940	-4.422743
Н	4.170052	-0.792388	-3.495673
Н	3.940816	-2.504728	-3.095577
Н	6.347112	-2.681084	-2.395437
Н	5.562258	-0.737712	2.201225
Н	7.147142	-1.416189	2.647496
Н	5.819349	-2.486202	2.154587
Н	7.268892	-0.932098	-3.947604
Н	7.810208	-0.614605	-2.291379
Н	6.485842	0.342244	-2.998286
Н	7.286681	-0.457356	0.358859
Н	8.138169	-2.524279	-0.869707
Н	7.404747	-3.532307	0.397848
Н	8.697014	-2.401539	0.804679
Н	5.599434	-4.350056	-0.317363
Н	4.014049	-6.083479	0.489787
Н	1.665305	-5.423783	1.079843
Н	0.896890	-3.112754	0.740692
Н	-1.230369	1.933576	-0.624848
Н	-2.311722	0.293108	-2.193650
Н	-1.858459	-2.165455	-1.992225
Н	0.435331	-2.694807	-1.476731

Figure S1. Top: optimized geometry for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). Bottom: Xray structure of 4.

Bond / Angle*	Calculated	Bond / Angle**	X-Ray
B - C(4)	1.716	B - C(14)	1.681(4)
C(4) - C(3)	1.496	C(14) - C(15)	1.484(4)
C(4) - C(5)	1.500	C(14) - C(13)	1.492(4)
C(2) - C(3)	1.361	C(16) - C(15)	1.336(4)
C(2) - C(1)	1.474	C(16) - C(11)	1.462(4)
C(1) - C(6)	1.469	C(11) - C(12)	1.455(4)
C(6) - C(5)	1.362	C(12) - C(13)	1.334(4)
C(1)-C	1.392	C(11)-C	1.362(4)
C-Pd	2.085	C – Pd	2.071(3)
P(3) - Pd - C	175.39	P(3) - Pd - C	175.08(7)
P(1) - Pd - P(2)	163.01	P(1) - Pd - P(2)	160.08(3)
P(2) - Pd - C	81.84	P(2) - Pd - C	81.19(7)
P(1) - Pd - C	81.99	P(1) - Pd - C	79.01(7)

Table S2. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

*Optimized structure

**Xray structure

Figure S2. Overlaid structures for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4) (red: Xray, blue: optimized).

2.2 $[o-(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (o-4)

atom	X	У	Z
Pd	2.816224	-0.433860	-0.244889
С	4.904620	-3.229181	1.391597
Н	3.999970	-3.775604	1.669024
Н	5.687577	-3.447816	2.127013
Н	5.235850	-3.563129	0.404456
Р	1.848267	-2.495939	-1.094731
Р	4.546935	-1.370562	1.368696
С	4.104268	-1.092276	3.185233
Н	3.185477	-1.633171	3.429528
Н	3.924373	-0.031904	3.374410
Н	4.913465	-1.451254	3.832207
Р	3.583045	1.921353	-0.224447
С	6.322283	-0.715466	1.300553
Н	6.948230	-1.261360	2.016239
Н	6.340988	0.346524	1.556461
Н	6.731220	-0.849312	0.293993
С	2.629629	-3.260785	-2.678216
Н	1.914050	-4.023947	-3.014363
С	3.983012	-3.940889	-2.379973
Н	3.895830	-4.750611	-1.644594
Н	4.715837	-3.210737	-2.010192
Н	4.387846	-4.376204	-3.303165
С	2.763441	-2.194445	-3.785222
Н	1.805083	-1.709490	-3.999469
Н	3.121803	-2.667222	-4.709847
Н	3.481391	-1.416242	-3.501004
С	1.536104	-4.004440	0.062871
Н	2.536689	-4.415765	0.251086
С	0.663536	-5.106028	-0.581484
Н	0.604192	-5.960804	0.105927
Н	1.072648	-5.475499	-1.529832
Н	-0.357933	-4.749452	-0.749515
С	0.915164	-3.532223	1.393223
Н	0.820108	-4.381157	2.083055
Н	-0.086978	-3.126733	1.223160
Н	1.521310	-2.759592	1.881771
С	2.544356	3.665389	1.831561

Table S3. Optimized coordinates for $[o-(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (*o*-4).

atom	X	у	Z
Н	2.731748	4.524966	2.490006
Н	2.159767	2.845544	2.441208
Н	1.763594	3.950054	1.118693
С	3.858342	3.278105	1.123813
Н	4.208956	4.148390	0.551837
С	1.189238	0.374683	-1.284192
С	5.104482	1.054448	-2.483815
Н	4.786003	0.039664	-2.216568
Н	6.069651	0.992063	-3.005151
Н	4.367216	1.466777	-3.183740
С	4.959058	2.883115	2.129357
Н	5.124024	3.708514	2.834343
Н	5.920168	2.671219	1.642381
Н	4.659985	2.007367	2.717807
С	5.241028	1.950204	-1.233452
Н	5.967519	1.488001	-0.551564
С	5.760723	3.351928	-1.620062
Н	5.928920	4.001881	-0.753351
Н	5.072692	3.855322	-2.307971
Н	6.723716	3.245104	-2.138506
С	2.308732	2.653283	-1.360423
С	2.355833	3.987742	-1.813698
Н	3.090663	4.679012	-1.409091
С	1.465366	4.439425	-2.799440
Н	1.504122	5.468409	-3.146473
С	0.550762	3.523265	-3.362611
Н	-0.110090	3.837435	-4.166655
С	0.483816	2.207508	-2.892849
Н	-0.205881	1.516507	-3.363479
С	1.307879	1.752220	-1.815935
С	0.035065	-0.400807	-1.368728
С	0.191931	-1.838302	-1.610829
С	-0.674675	-2.475906	-2.463447
Н	-0.494863	-3.499659	-2.782991
С	-1.806904	-1.761925	-3.036749
Н	-2.391084	-2.243058	-3.817350
С	-2.125934	-0.510435	-2.591744
Н	-2.971343	0.024197	-3.017494
С	-1.393237	0.146318	-1.453716
Н	-1.329360	1.215783	-1.621148
В	-2.482270	0.151518	0.002523
С	-3.740353	-0.889321	-0.281606

atom	X	У	Z
С	-3.039326	1.716889	0.202597
С	-1.649370	-0.252205	1.372126
С	-6.102626	-1.434087	-0.838047
С	-5.825700	-2.799083	-0.900319
С	-4.518438	-3.226049	-0.649613
С	-3.537320	-2.281982	-0.351164
С	-5.074651	-0.525667	-0.535340
С	-3.338950	2.266630	1.465255
С	-3.775225	3.579871	1.685034
С	-3.958326	4.437142	0.599776
С	-3.720553	3.943413	-0.684350
С	-3.287980	2.623641	-0.847012
С	-0.483968	0.452300	1.728180
С	-2.021837	-1.211519	2.337279
С	-1.264259	-1.534782	3.470440
С	-0.076985	-0.850240	3.722805
С	0.298623	0.170604	2.851266
F	-5.482418	0.811029	-0.505582
F	-7.390542	-0.982281	-1.077337
F	-6.819919	-3.712402	-1.202464
F	-4.210426	-4.578603	-0.696227
F	-2.270053	-2.804616	-0.077433
F	-3.248801	1.486934	2.623528
F	-4.030455	4.032040	2.969766
F	-4.380570	5.740504	0.789450
F	-3.928829	4.758786	-1.785995
F	-3.172403	2.213813	-2.182634
F	-1.685212	-2.523146	4.345907
F	-3.240634	-1.881763	2.261231
F	0.718587	-1.171080	4.813648
F	1.455159	0.897157	3.124987
F	-0.107693	1.578484	0.989688

Figure S3. Optimized geometry for $[o-(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (*o*-4).

2.3 (C₆F₅)₃B

Figure S4. Optimized geometry for $(C_6F_5)_3B$.

atom	X	У	Z
В	0.618090	0.881920	0.332244
С	0.213315	0.397086	1.767707
С	1.891373	0.289678	-0.366094
С	-0.251205	1.959073	-0.405354
С	1.926586	-0.012415	-1.741861
С	3.046813	-0.550205	-2.381292
С	4.209400	-0.787722	-1.636703
С	4.231322	-0.495262	-0.266881
С	3.082330	0.021795	0.337636
F	0.792544	0.194992	-2.516746
F	3.019511	-0.844517	-3.727170
F	5.325152	-1.305939	-2.248324
F	5.376015	-0.720279	0.466502
F	3.153920	0.307896	1.694998
С	0.319633	2.990740	-1.176571
С	-0.435838	3.965905	-1.833235
С	-1.833366	3.918256	-1.748971
С	-2.452393	2.906547	-1.003424
С	-1.658794	1.963610	-0.344693
F	1.701944	3.083819	-1.278420
F	0.176125	4.964453	-2.559361
F	-2.594844	4.861283	-2.395864
F	-3.827085	2.852177	-0.925419
F	-2.315260	0.971984	0.373440
С	-0.288280	1.276171	2.747896
С	-0.645331	0.867035	4.035564
С	-0.525339	-0.485524	4.379984
С	-0.041451	-1.403766	3.439106
С	0.324569	-0.948893	2.169443
F	-0.412214	2.628364	2.454896
F	-1.112770	1.774119	4.961588
F	-0.880973	-0.910247	5.637228
F	0.070625	-2.736091	3.772409
F	0.787875	-1.896357	1.265407

Table S4. Optimized coordinates for $(C_6F_5)_3B$.

		Energy (hartree)	Energy gain (kcal/mol)
Carbene (1)	PMe_{3}	-1240.157101	
Borane	F ₅ F ₅ F ₅ F ₅ F ₅ F ₅	-2208.242571	
Ortho (0-4)	PMe_{3} $P-Pd-P$ H $(C_{6}F_{5})_{3}B_{\odot}$	-3448.414260	9.14
Para (4)	PMe_{3} $P-Pd-P$ $B(C_{6}F_{5})_{3}$ H	-3448.444732	28.27
Backbone carbon	PMe_{3} $P-Pd - P$ $(C_{6}F_{5})_{3}B \odot$	could not be optimized	
Ortho'	$P = Pd = P = B(C_6F_5)_3$	could not be optimized	

2.4 Calculated energies for borane adducts

2.5 $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)

atom	X	У	Z
С	1.448526	2.823317	0.634195
С	1.309205	1.449587	0.196266
С	2.567703	0.801649	-0.053384
С	3.799257	1.486853	-0.048748
С	3.899196	2.847986	0.292346
С	2.677247	3.476112	0.673652
С	0.038697	0.776499	0.047686
С	-1.222379	1.465863	-0.119080
С	-2.493643	0.827143	0.112644
С	-3.721078	1.501388	-0.007939
С	-3.808753	2.850707	-0.410646
С	-2.571605	3.476723	-0.720601
С	-1.343071	2.827558	-0.587802
Р	-2.318852	-0.971644	0.491281
С	-2.922213	-1.333413	2.293025
С	-1.734208	-1.147742	3.266585
С	-5.179876	3.553647	-0.521032
С	-5.045009	5.024705	-0.990169
Р	2.394639	-1.003899	-0.386522
С	3.537584	-1.948123	0.848626
С	5.053874	-1.702922	0.676398
С	5.223091	3.640596	0.300608
С	5.516059	4.169894	1.736718
Pd	0.026480	-1.312723	0.021181
Р	-0.087275	-3.870679	-0.054777
С	1.432101	-4.967588	0.241480
С	-3.488619	-1.954807	-0.691940
С	-5.002038	-1.904577	-0.382104
С	3.165902	-1.292494	-2.123019
С	3.260627	-2.787709	-2.489760
С	-0.678760	-4.573802	-1.714594
С	-1.285551	-4.719260	1.148853
С	-6.084782	2.806087	-1.546048
С	-5.886110	3.555039	0.867936
С	5.112121	4.853453	-0.671602
С	6.429537	2.777288	-0.146910
С	-3.200112	-1.517773	-2.147063

Table S5. Optimized coordinates for $[PC(sp^2)P]^{IBu}Pd(PMe_3)$ (3).

atom	X	у	Z
С	-4.122080	-0.474001	2.751331
С	2.359915	-0.501023	-3.176258
С	3.085479	-1.631228	2.292221
Н	-4.637217	0.958680	0.211138
Н	-6.253373	1.763095	-1.248343
Н	-5.619068	2.800051	-2.540127
Н	-7.066629	3.294781	-1.626534
Н	-0.446829	3.355499	-0.893461
Н	-2.561827	4.498022	-1.092805
Н	-6.872179	4.037950	0.803014
Н	-5.283048	4.098425	1.606806
Н	-6.034882	2.534657	1.243761
Н	-6.038324	5.490520	-1.042990
Н	-4.590813	5.091165	-1.987391
Н	-4.434103	5.615688	-0.295604
Н	4.698190	0.941840	-0.319867
Н	2.691311	4.509174	1.020201
Н	0.565850	3.355683	0.971136
Н	4.927523	4.510773	-1.698205
Н	6.039585	5.444476	-0.664560
Н	4.286217	5.517456	-0.389123
Н	6.586852	1.922942	0.525448
Н	7.345831	3.382540	-0.134951
Н	6.295182	2.393680	-1.167190
Н	-0.775317	-5.665488	-1.667824
Н	0.043009	-4.308944	-2.494207
Н	-1.644535	-4.135523	-1.981263
Н	4.705470	4.812770	2.100916
Н	6.445350	4.757619	1.752224
Н	5.622508	3.335323	2.442263
Н	-2.303754	-4.351143	0.995037
Н	-0.985791	-4.490812	2.176818
Н	-1.273512	-5.806301	1.003925
Н	1.155823	-6.025067	0.150756
Н	1.826387	-4.786922	1.246524
Н	2.209743	-4.738396	-0.491948
Н	-3.164212	-2.998655	-0.568438
Н	-3.217689	-2.394288	2.285398
Н	-3.745340	-2.163278	-2.850183
Н	-2.129259	-1.569814	-2.380489
Н	-3.522110	-0.483037	-2.310114
Н	-5.536355	-2.551494	-1.092932

atom	X	У	Z
Н	-5.404183	-0.892301	-0.496392
Н	-5.234588	-2.261536	0.627897
Н	-5.012724	-0.615377	2.130503
Н	-3.862906	0.590405	2.734174
Н	-4.386486	-0.741958	3.784296
Н	-1.377169	-0.110683	3.248320
Н	-0.885199	-1.788856	3.003003
Н	-2.050756	-1.384334	4.292457
Н	4.179652	-0.869065	-2.069446
Н	3.340237	-3.008325	0.643780
Н	1.330111	-0.874311	-3.245372
Н	2.831895	-0.602831	-4.163702
Н	2.311927	0.563865	-2.924076
Н	2.259600	-3.237378	-2.537525
Н	3.866438	-3.359466	-1.774667
Н	3.721490	-2.901936	-3.480500
Н	2.021657	-1.854838	2.439362
Н	3.235602	-0.569051	2.520387
Н	3.670971	-2.223111	3.009997
Н	5.608987	-2.384231	1.337278
Н	5.324182	-0.679845	0.957229
Н	5.399394	-1.883673	-0.349107

Figure S5. Overlaid structures for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3) (red: Xray, blue: optimized).

Bond / Angle*	Calculated	Bond / Angle**	X-Ray
Pd-C	2.089	Pd-C	2.076(3)
Pd-P(1)	2.423	Pd-P(1)	2.3120(7)
Pd - P(2)	2.416	Pd - P(2)	2.3099(7)
Pd-P(3)	2.562	Pd-P(3)	2.3701(7)
Pd - C - C(11)	118.17	Pd - C - C(11)	118.51(18)
Pd - C - C(21)	118.03	Pd - C - C(21)	118.79(18)
C(11) - C - C - (21)	123.79	C(11) - C - C - (21)	122.7(2)

Table S6. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of $[PC(sp^2)P]^{IBu}Pd(PMe_3)$ (**3**).

*Optimized structure

**Xray structure

Figure S6. Optimized geometry for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

Figure S7. Frontier molecular orbitals for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3). Left: HOMO, right: LUMO.

3 NMR Spectra

Figure S8. ¹H NMR spectrum for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

Figure S11. ¹¹B{¹H} NMR spectrum for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

Figure S12. $-40 \,{}^{\circ}\text{C}\,{}^{19}\text{F}{}^{1}\text{H}$ NMR spectrum for $[(C_6F_5)_3\text{B-PC}(sp^2)\text{P}]^{\text{H}}\text{Pd}(\text{PMe}_3)$ (4).

Figure S13. Variable temperature ${}^{19}F{}^{1}H$ NMR spectra for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

Figure S14. ¹H-¹³C HSQC NMR spectrum for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

3.2 NMR Spectra for $[PC(sp^3)H_2P]^{tBu}$ (7)

Figure S15. ¹H NMR spectrum for $[PC(sp^3)H_2P]^{tBu}$ (7).

Figure S16. ³¹P{¹H} NMR spectrum for $[PC(sp^3)H_2P]^{tBu}$ (7).

Figure S17. ¹³C{¹H} NMR spectrum for $[PC(sp^3)H_2P]^{tBu}$ (7).

Figure S18. ¹H-¹³C HSQC NMR spectrum for $[PC(sp^3)H_2P]^{tBu}$ (7).

3.3 NMR Spectra for $[PC(sp^3)HP]^{tBu}PdCl$ (6)

Figure S19. ¹H NMR spectrum for $[PC(sp^3)HP]^{Bu}PdCl$ (6).

Figure S20. ${}^{31}P{}^{1}H$ NMR spectrum for $[PC(sp^3)HP]'^{Bu}PdCl$ (6).

Figure S21. ${}^{13}C{}^{1}H$ NMR spectrum for $[PC(sp^3)HP]'^{Bu}PdCl$ (6).

Figure S22. ¹H-¹³C HSQC NMR spectrum for $[PC(sp^3)HP]^{tBu}PdCl$ (6).

3.4 NMR Spectra for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)

Figure S23. ¹H NMR spectrum for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

Figure S24. ³¹P{¹H} NMR spectrum for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

Figure S25. ¹³C{¹H} NMR spectrum for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

Figure S26. ¹H-¹³C HSQC NMR spectrum for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

Figure S27. 25 °C ¹³C{¹H} NMR spectrum for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3) in deuterated toluene.

Figure S28. $-40 \degree C \degree ^{13}C \{ \ ^{1}H \}$ NMR spectrum for $[PC(sp^{2})P]^{tBu}Pd(PMe_{3})$ (3) in deuterated toluene.

Figure S29. $-40 \degree C \degree H^{-13}C$ HSQC NMR spectrum for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3) in deuterated toluene.

3.5 NMR Spectra for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5)

Figure S30. 25 °C ¹H NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S31. $-35 \, {}^{\circ}C \, {}^{1}H \, NMR \, spectrum \, for \, [(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3) \, (\textbf{5}).$

Figure S32. 55 °C ¹H NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S33. Variable temperature ¹H NMR spectra for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S34. 25 °C ³¹P{¹H} NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S35. $-35 \circ C^{31}P{^{1}H}$ NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S36. Variable temperature ³¹P{¹H} NMR spectra for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S37. 55 °C ${}^{13}C{}^{1}H$ NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S38. 55 °C ¹H-¹³C HSQC NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S39. 25 °C ¹⁹F{¹H} NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S40. 55 °C ¹⁹F{¹H} NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

Figure S41. Variable temperature ¹⁹F{¹H} NMR spectra for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

-0.01 PMe₃ Ð tala an tha bh Albarta. Alla anal Alata na Albara bh Albara Albara Albara bha աներին ուներություն ուներությո 90 80 70 60 50 40 30 20 10 0 110 -20 -60 -80 -100 -40

Figure S42. 25 °C ¹¹B{¹H} NMR spectrum for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

3.6 NMR Spectra for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F] ([8][BAr_4^F])$

Figure S43. ¹H NMR spectrum for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]$ ([8][BAr_4^F]).

Figure S44. ³¹P{¹H} NMR spectrum for [{PC(sp^3)HP}PdPMe_3][BAr^F₄] ([8][BAr^F₄]).

Figure S45. ¹³C{¹H} NMR spectrum for [{ $PC(sp^3)HP$ }PdPMe₃][BAr₄^F] ([8][BAr₄^F]).

Figure S46. ¹⁹F{¹H} NMR spectrum for [{PC(sp^3)HP}PdPMe_3][BAr_4^F] ([8][BAr_4^F]).

Figure S47. ¹¹B{¹H} NMR spectrum for [{ $PC(sp^3)HP$ }PdPMe₃][BAr^F₄] ([8][BAr^F₄]).

 $\label{eq:Figure S48. } {}^{1}\text{H-}{}^{13}\text{C} \text{ HSQC} \text{ NMR spectrum for } [\{\text{PC}(\textit{sp}^{3})\text{HP}\}\text{PdPMe}_{3}][\text{BAr}_{4}^{\text{F}}] (\textbf{[8]}[\text{BAr}_{4}^{\text{F}}]).$

Figure S49. ¹H-¹H COSY NMR spectrum for [{ $PC(sp^3)HP$ }PdPMe₃][BAr₄^F] ([8][BAr₄^F]).

3.7 NMR Spectra for $[{PC(sp^3)HP}PdPMe_3][HB(C_6F_5)_3]([8][HB(C_6F_5)_3])$

Figure S50. ³¹P{¹H} NMR spectrum for [{PC(sp^3)HP}PdPMe_3][HB(C₆F₅)₃] ([8][HB(C₆F₅)₃]).

Figure S51. ¹¹B{¹H} NMR spectrum for [{PC(sp^3)HP}PdPMe_3][HB(C₆F₅)₃] ([8][HB(C₆F₅)₃]).

3.8 NMR Spectra for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F] ([9][BAr_4^F])$

Figure S52. ¹H NMR spectrum for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]$ ([9][BAr_4^F]).

Figure S53. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(*sp*³)HP} ${}^{\prime Bu}PdPMe_3$][BAr₄^F] ([9][BAr₄^F]).

50

Figure S54. ¹³C{¹H} NMR spectrum for [{PC(sp^3)HP}^{tBu}PdPMe₃][BAr₄^F] ([9][BAr₄^F]).

Figure S55. ¹⁹F{¹H} NMR spectrum for [{ $PC(sp^3)HP$ }^{tBu}PdPMe₃][BAr₄^F] ([9][BAr₄^F]).

Figure S56. ¹¹B{¹H} NMR spectrum for [{PC(sp^3)HP}^{tBu}PdPMe₃][BAr₄^F] ([9][BAr₄^F]).

3.9 NMR Spectra for $[{PC(sp^3)HP}^{tBu}PdPMe_3][HB(C_6F_5)_3]([9][HB(C_6F_5)_3])$

Figure S57. ³¹P{¹H} NMR spectrum for [{PC(sp^3)HP}^{tBu}PdPMe₃][HB(C₆F₅)₃] ([9][HB(C₆F₅)₃]).

Figure S58. ¹¹B{¹H} NMR spectrum for [{ $PC(sp^3)HP$ }^{*t*Bu}PdPMe₃][HB(C₆F₅)₃] ([9][HB(C₆F₅)₃]).

4 Crystal Data

4.1 Crystal data for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4)

Identification code:	cc197	
Empirical formula:	$C_{46}H_{45}BF_{15}P_3Pd$	
Formula weight:	1092.94	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/n$	
Unit cell dimensions:	a = 9.7351(4) Å	$\alpha = 90^{\circ}$
	b = 29.7778(12) Å	$\beta = 104.9431(16)^{\circ}$
	c = 16.3484(6) Å	$\gamma = 90^{\circ}$
Volume:	$4579.0(3) \text{ Å}^3$	
Z:	4	
Density (calculated):	$1.585 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.605 mm^{-1}	
F(000):	2208	
Crystal size:	$0.08 \times 0.05 \times 0.02 \text{ mm}^3$	
θ range for data collection:	1.46 to 28.13°	
Index ranges:	$-12 \le h \le 7, -39 \le k \le 39, -21 \le l \le 21$	
Reflections collected:	88562	
Independent reflections:	11118 [$\mathbf{R}_{int} = 0.1029$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.9874 and 0.9809	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	11118 / 0 / 606	
Goodness-of-fit on F ² :	1.005	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0399, wR_2 = 0.0651$	
R indices (all data):	$R_1 = 0.0814, wR_2 = 0.0749$	
Largest diff. peak and hole:	$0.486 \text{ and } -0.604 \text{ e}^{-1} \text{A}^{-3}$	

Table S7. Crystal data and structure refinement for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

atom	X	у	Z	U(eq)
Pd	0.04085(2)	0.86548(1)	0.76206(1)	0.011(1)
С	-0.1143(3)	0.83814(9)	0.81312(16)	0.012(1)
P(1)	0.08894(7)	0.78995(2)	0.75638(4)	0.013(1)
P(2)	-0.07381(8)	0.93128(2)	0.78231(4)	0.014(1)
P(3)	0.22990(8)	0.89747(2)	0.71584(5)	0.017(1)
C(11)	-0.1650(3)	0.79604(9)	0.79098(16)	0.013(1)
C(12)	-0.0818(3)	0.76522(9)	0.75394(16)	0.012(1)
C(13)	-0.1249(3)	0.72377(9)	0.72888(16)	0.014(1)
C(14)	-0.2630(3)	0.70389(8)	0.73445(17)	0.014(1)
C(15)	-0.3449(3)	0.73668(9)	0.77139(17)	0.015(1)
C(16)	-0.3003(3)	0.77775(9)	0.79883(17)	0.016(1)
C(21)	-0.1748(3)	0.86742(9)	0.86715(16)	0.014(1)
C(25)	-0.2943(3)	0.87930(10)	0.97793(18)	0.021(1)
C(24)	-0.3054(3)	0.92464(10)	0.95987(17)	0.020(1)
C(23)	-0.2457(3)	0.94189(9)	0.89884(17)	0.019(1)
C(22)	-0.1759(3)	0.91364(9)	0.85492(16)	0.014(1)
C(26)	-0.2306(3)	0.85075(9)	0.93218(17)	0.019(1)
C(31)	0.3291(3)	0.86472(10)	0.65720(19)	0.027(1)
C(32)	0.3708(3)	0.91530(10)	0.80586(19)	0.027(1)
C(33)	0.2019(3)	0.94762(10)	0.65048(19)	0.025(1)
C(36)	-0.3920(3)	0.60960(9)	0.87385(17)	0.016(1)
C(41)	0.1505(3)	0.76721(10)	0.66769(18)	0.022(1)
C(42)	0.2123(3)	0.76880(9)	0.85347(18)	0.019(1)
C(43)	0.0425(3)	0.77857(13)	0.58476(18)	0.037(1)
C(44)	0.1937(4)	0.71753(11)	0.6720(2)	0.040(1)
C(46)	0.1694(3)	0.78426(10)	0.93173(18)	0.026(1)
C(45)	0.3652(3)	0.78286(11)	0.8581(2)	0.032(1)
C(51)	-0.2085(3)	0.95525(10)	0.69220(18)	0.022(1)
C(52)	0.0414(3)	0.97719(9)	0.83649(17)	0.017(1)
C(53)	-0.1482(3)	0.97935(11)	0.6271(2)	0.031(1)
C(54)	-0.3101(3)	0.91813(11)	0.6505(2)	0.034(1)
C(55)	0.1237(3)	0.96073(10)	0.92394(18)	0.027(1)
C(56)	-0.0281(3)	1.02242(9)	0.8427(2)	0.027(1)
C(61)	-0.1736(3)	0.61597(9)	0.72866(17)	0.013(1)
C(62)	-0.1185(3)	0.57591(9)	0.76599(17)	0.015(1)
F(62)	-0.12013(17)	0.56754(5)	0.84709(10)	0.023(1)
C(63)	-0.0567(3)	0.54345(9)	0.72821(19)	0.019(1)
F(63)	-0.00088(17)	0.50615(5)	0.77089(11)	0.029(1)
C(64)	-0.0478(3)	0.54954(9)	0.6465(2)	0.022(1)
			Cont	inued on next page

Table S8. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	<u>y</u>	X	U(eq)
F(64)	0.01618(19)	0.51862(6)	0.60862(12)	0.034(1)
C(65)	-0.1034(3)	0.58754(10)	0.60523(18)	0.019(1)
F(65)	-0.09543(18)	0.59445(6)	0.52488(10)	0.029(1)
C(66)	-0.1659(3)	0.61916(9)	0.64529(17)	0.016(1)
F(66)	-0.21694(17)	0.65528(5)	0.59682(9)	0.023(1)
В	-0.2334(3)	0.65435(10)	0.78526(19)	0.013(1)
C(71)	-0.3806(3)	0.63189(9)	0.80117(16)	0.014(1)
C(72)	-0.5055(3)	0.63006(9)	0.73677(16)	0.014(1)
F(72)	-0.51001(16)	0.64818(5)	0.66038(9)	0.022(1)
C(73)	-0.6286(3)	0.60933(9)	0.74327(18)	0.017(1)
F(73)	-0.74421(16)	0.60803(6)	0.67679(10)	0.027(1)
C(74)	-0.6328(3)	0.58790(9)	0.81636(18)	0.018(1)
F(74)	-0.74904(16)	0.56539(6)	0.82273(11)	0.026(1)
C(75)	-0.5134(3)	0.58836(9)	0.88228(17)	0.018(1)
F(76)	-0.27987(16)	0.60651(6)	0.94260(10)	0.023(1)
C(81)	-0.1123(3)	0.66568(9)	0.87376(16)	0.014(1)
C(82)	-0.1458(3)	0.68757(9)	0.94111(17)	0.017(1)
F(82)	-0.28359(16)	0.69685(5)	0.93801(10)	0.022(1)
C(83)	-0.0490(3)	0.70073(10)	1.01404(17)	0.021(1)
F(83)	-0.08992(19)	0.72309(6)	1.07497(10)	0.031(1)
C(84)	0.0922(3)	0.69091(10)	1.02467(17)	0.023(1)
F(84)	0.18930(18)	0.70317(6)	1.09544(10)	0.036(1)
C(85)	0.1330(3)	0.67013(10)	0.95981(18)	0.021(1)
F(85)	0.27153(17)	0.66190(6)	0.96700(11)	0.032(1)
C(86)	0.0329(3)	0.65946(9)	0.88688(17)	0.016(1)
F(86)	0.08590(16)	0.64206(5)	0.82485(10)	0.022(1)
F(75)	-0.51527(17)	0.56733(6)	0.95474(10)	0.029(1)
H(13)	-0.0636	0.7057	0.7059	0.016
H(14)	-0.3196	0.6976	0.6753	0.016
H(15)	-0.4364	0.7278	0.7759	0.018
H(16)	-0.3586	0.7957	0.8243	0.019
H(25)	-0.3308	0.8676	1.0222	0.025
H(24)	-0.3541	0.9439	0.9894	0.024
H(23)	-0.2521	0.9731	0.8867	0.023
H(26)	-0.2244	0.8196	0.9448	0.022
H(31A)	0.2633	0.8513	0.6076	0.040
H(31B)	0.3813	0.8409	0.6935	0.040
H(31C)	0.3964	0.8842	0.6388	0.040
H(32A)	0.4513	0.9265	0.7861	0.040
H(32B)	0.4016	0.8898	0.8440	0.040
H(32C)	0.3355	0.9393	0.8361	0.040
H(33A)	0.2935	0.9586	0.6443	0.037
			Conti	nued on next page

Table S8. – continued from previous page

atom	X	y	X	U(eq)
H(33B)	0.1569	0.9708	0.6773	0.037
H(33C)	0.1400	0.9405	0.5945	0.037
H(41)	0.2383	0.7845	0.6671	0.026
H(42)	0.2081	0.7352	0.8519	0.023
H(43A)	0.0814	0.7704	0.5371	0.055
H(43B)	0.0223	0.8109	0.5828	0.055
H(43C)	-0.0454	0.7618	0.5810	0.055
H(44A)	0.1084	0.6987	0.6618	0.060
H(44B)	0.2556	0.7109	0.7282	0.060
H(44C)	0.2447	0.7113	0.6289	0.060
H(46A)	0.1753	0.8171	0.9356	0.039
H(46B)	0.2335	0.7710	0.9822	0.039
H(46C)	0.0716	0.7747	0.9280	0.039
H(45A)	0.3902	0.7734	0.8063	0.048
H(45B)	0.4299	0.7687	0.9072	0.048
H(45C)	0.3736	0.8156	0.8636	0.048
H(51)	-0.2647	0.9777	0.7156	0.026
H(52)	0.1134	0.9825	0.8036	0.020
H(53A)	-0.1022	0.9575	0.5980	0.047
H(53B)	-0.0783	1.0017	0.6556	0.047
H(53C)	-0.2254	0.9944	0.5857	0.047
H(54A)	-0.3897	0.9312	0.6078	0.052
H(54B)	-0.3465	0.9026	0.6935	0.052
H(54C)	-0.2597	0.8966	0.6233	0.052
H(55A)	0.1621	0.9307	0.9189	0.041
H(55B)	0.0598	0.9594	0.9614	0.041
H(55C)	0.2020	0.9815	0.9476	0.041
H(56A)	-0.0790	1.0325	0.7859	0.040
H(56B)	0.0452	1.0444	0.8682	0.040
H(56C)	-0.0953	1.0194	0.8778	0.040

Table S8. – continued from previous page

atom		I	I		<u>I</u> L.	
	$\frac{U_{11}}{0.0105(1)}$	$\frac{U_{22}}{0.0102(1)}$	$\frac{0.0147(1)}{0.0147(1)}$	$\frac{U_{23}}{0.0012(1)}$	$\frac{U_{13}}{0.0050(1)}$	$\frac{U_{12}}{0.0014(1)}$
Pu C	0.0105(1)	0.0102(1)	0.014/(1)	-0.0013(1)	0.0050(1)	-0.0014(1)
U D(1)	0.0097(14)	0.0131(14)	0.0134(13)	0.001/(11)	0.0053(11)	0.0000(11)
P(1)	0.0101(3)	0.0116(4)	0.01/8(4)	-0.0021(3)	0.0058(3)	-0.0012(3)
P(2)	0.0146(4)	0.0108(4)	0.01/1(4)	-0.0014(3)	0.0051(3)	-0.0005(3)
P(3)	0.0158(4)	0.0165(4)	0.0200(4)	-0.0002(3)	0.0072(3)	-0.0034(3)
C(11)	0.0130(14)	0.0128(14)	0.0147(13)	0.0035(11)	0.0052(11)	0.0007(11)
C(12)	0.0062(13)	0.0145(14)	0.0145(14)	0.0008(11)	0.0038(11)	-0.0013(11)
C(13)	0.0121(14)	0.0164(15)	0.0136(14)	0.0011(11)	0.0052(11)	0.0011(11)
C(14)	0.0118(14)	0.0111(14)	0.0194(14)	-0.0010(11)	0.0067(12)	-0.0018(11)
C(15)	0.0096(14)	0.0146(15)	0.0222(15)	0.0013(12)	0.0061(12)	0.0004(11)
C(16)	0.0122(15)	0.0158(15)	0.0238(15)	-0.0011(12)	0.0101(12)	0.0006(12)
C(21)	0.0087(13)	0.0172(14)	0.0162(13)	-0.0026(12)	0.0030(11)	-0.0011(12)
C(25)	0.0206(16)	0.0251(17)	0.0187(15)	-0.0016(12)	0.0103(13)	-0.0023(13)
C(24)	0.0185(16)	0.0227(17)	0.0209(15)	-0.0079(12)	0.0100(13)	-0.0017(13)
C(23)	0.0190(16)	0.0126(14)	0.0258(16)	-0.0044(12)	0.0074(13)	0.0007(12)
C(22)	0.0131(14)	0.0147(14)	0.0159(14)	-0.0035(11)	0.0061(12)	-0.0031(11)
C(26)	0.0225(16)	0.0162(15)	0.0190(15)	0.0014(12)	0.0080(13)	0.0009(12)
C(31)	0.0238(17)	0.0247(16)	0.0381(18)	-0.0032(15)	0.0199(14)	-0.0081(15)
C(32)	0.0197(16)	0.0248(18)	0.0338(18)	0.0031(14)	0.0035(14)	-0.0053(14)
C(33)	0.0240(17)	0.0238(17)	0.0263(17)	0.0046(13)	0.0072(14)	-0.0043(14)
C(36)	0.0125(14)	0.0163(15)	0.0190(15)	-0.0007(12)	0.0012(12)	-0.0012(12)
C(41)	0.0181(16)	0.0226(16)	0.0300(17)	-0.0086(13)	0.0154(14)	-0.0058(13)
C(42)	0.0119(15)	0.0149(15)	0.0296(17)	0.0044(12)	0.0028(13)	0.0004(12)
C(43)	0.0298(19)	0.066(3)	0.0201(17)	-0.0166(17)	0.0154(15)	-0.0200(18)
C(44)	0.042(2)	0.0248(19)	0.068(3)	-0.0181(18)	0.041(2)	-0.0080(16)
C(46)	0.0243(17)	0.0270(18)	0.0219(16)	0.0036(13)	-0.0027(14)	0.0008(14)
C(45)	0.0144(16)	0.0334(19)	0.044(2)	0.0121(16)	0.0002(15)	-0.0003(14)
C(51)	0.0191(16)	0.0203(16)	0.0247(16)	0.0007(13)	0.0050(13)	0.0042(13)
C(52)	0.0177(15)	0.0137(15)	0.0206(15)	-0.0005(12)	0.0073(12)	-0.0024(12)
C(53)	0.0271(18)	0.037(2)	0.0272(18)	0.0110(15)	0.0038(15)	0.0030(15)
C(54)	0.0237(18)	0.040(2)	0.0316(19)	0.0046(16)	-0.0083(15)	-0.0096(16)
C(55)	0.0280(18)	0.0249(18)	0.0259(17)	-0.0039(14)	0.0004(14)	-0.0053(14)
C(56)	0.0314(18)	0.0139(15)	0.0390(19)	-0.0081(14)	0.0173(15)	-0.0063(14)
C(61)	0.0079(13)	0.0128(13)	0.0185(14)	-0.0020(11)	0.0028(11)	-0.0034(11)
C(62)	0.0118(14)	0.0146(14)	0.0192(15)	-0.0010(12)	0.0034(12)	-0.0022(11)
F(62)	0.0287(10)	0.0185(9)	0.0225(9)	0.0056(7)	0.0081(8)	0.0040(7)
C(63)	0.0134(15)	0.0118(14)	0.0323(18)	0.0009(13)	0.0072(13)	-0.0002(12)
F(63)	0.0269(10)	0.0144(9)	0.0478(11)	0.0051(8)	0.0118(9)	0.0067(7)
C(64)	0.0150(15)	0.0154(15)	0.0375(19)	-0.0107(13)	0.0128(14)	-0.0031(12)
F(64)	0.0356(11)	0.0218(10)	0.0530(12)	-0.0120(9)	0.0266(10)	0.0039(8)
					Continue	d on next page

Table S9. Anisotropic displacement parameters (Å²) for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(65)	0.0126(15)	0.0236(16)	0.0218(16)	-0.0046(13)	0.0069(12)	-0.0071(12)
F(65)	0.0354(11)	0.0323(10)	0.0232(9)	-0.0084(8)	0.0172(8)	-0.0043(9)
C(66)	0.0119(14)	0.0138(14)	0.0204(15)	-0.0016(12)	0.0016(12)	-0.0025(11)
F(66)	0.0304(10)	0.0202(9)	0.0178(9)	0.0015(7)	0.0072(8)	0.0039(8)
В	0.0104(16)	0.0130(15)	0.0153(16)	-0.0006(13)	0.0034(13)	0.0010(13)
C(71)	0.0138(14)	0.0120(13)	0.0172(14)	-0.0032(12)	0.0038(11)	-0.0010(12)
C(72)	0.0175(15)	0.0129(14)	0.0134(13)	0.0023(11)	0.0058(11)	0.0025(12)
F(72)	0.0193(9)	0.0265(10)	0.0172(8)	0.0041(7)	0.0019(7)	-0.0063(7)
C(73)	0.0108(14)	0.0171(15)	0.0228(15)	-0.0001(12)	0.0017(12)	0.0008(12)
F(73)	0.0135(9)	0.0347(11)	0.0284(10)	0.0042(8)	-0.0042(8)	-0.0066(8)
C(74)	0.0099(14)	0.0151(15)	0.0295(16)	0.0004(12)	0.0074(13)	-0.0018(12)
F(74)	0.0139(9)	0.0265(10)	0.0402(11)	0.0081(8)	0.0091(8)	-0.0064(8)
C(75)	0.0189(16)	0.0182(15)	0.0204(15)	0.0043(12)	0.0103(13)	-0.0021(12)
F(76)	0.0178(9)	0.0308(10)	0.0196(9)	0.0064(7)	0.0006(7)	-0.0066(8)
C(81)	0.0138(15)	0.0112(14)	0.0162(14)	0.0006(11)	0.0048(12)	-0.0026(11)
C(82)	0.0156(15)	0.0162(15)	0.0215(15)	-0.0009(12)	0.0096(12)	-0.0031(12)
F(82)	0.0182(9)	0.0273(10)	0.0246(9)	-0.0075(7)	0.0120(7)	-0.0022(7)
C(83)	0.0300(18)	0.0213(16)	0.0141(14)	-0.0025(12)	0.0111(13)	-0.0058(13)
F(83)	0.0385(11)	0.0387(11)	0.0193(9)	-0.0130(8)	0.0143(8)	-0.0120(9)
C(84)	0.0235(17)	0.0272(17)	0.0130(14)	-0.0003(13)	-0.0019(13)	-0.0117(14)
F(84)	0.0314(11)	0.0529(13)	0.0178(9)	-0.0070(8)	-0.0029(8)	-0.0142(9)
C(85)	0.0131(15)	0.0240(16)	0.0237(16)	0.0026(13)	0.0030(13)	-0.0002(13)
F(85)	0.0134(9)	0.0442(12)	0.0338(10)	-0.0031(9)	-0.0018(8)	0.0013(8)
C(86)	0.0173(15)	0.0148(15)	0.0171(14)	0.0002(11)	0.0043(12)	-0.0001(12)
F(86)	0.0124(8)	0.0284(10)	0.0262(9)	-0.0094(8)	0.0066(7)	-0.0003(7)
F(75)	0.0246(10)	0.0390(11)	0.0257(10)	0.0130(8)	0.0084(8)	-0.0072(8)

Table S9. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.071(3)	Pd-P(1)	2.3039(7)
Pd - P(2)	2.3208(7)	Pd-P(3)	2.3627(8)
C - C(11)	1.362(4)	C - C(21)	1.468(4)
P(1) - C(12)	1.809(3)	P(1) - C(41)	1.835(3)
P(1) - C(42)	1.837(3)	P(2) - C(22)	1.812(3)
P(2) - C(52)	1.843(3)	P(2) - C(51)	1.845(3)
P(3) - C(31)	1.811(3)	P(3) - C(32)	1.813(3)
P(3) - C(33)	1.815(3)	C(11) - C(12)	1.455(4)
C(11) - C(16)	1.462(4)	C(12) - C(13)	1.334(4)
C(13) - C(14)	1.492(4)	C(13) - H(13)	0.9500
C(14) - C(15)	1.484(4)	C(14) - B	1.681(4)
C(14) - H(14)	1.0000	C(15) - C(16)	1.336(4)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
C(21) - C(22)	1.391(4)	C(21) - C(26)	1.403(4)
C(25) - C(24)	1.380(4)	C(25) - C(26)	1.381(4)
C(25) - H(25)	0.9500	C(24) - C(23)	1.378(4)
C(24) - H(24)	0.9500	C(23) - C(22)	1.391(4)
C(23) - H(23)	0.9500	C(26) - H(26)	0.9500
C(31) - H(31A)	0.9800	C(31) - H(31B)	0.9800
C(31)-H(31C)	0.9800	C(32) - H(32A)	0.9800
C(32)-H(32B)	0.9800	C(32) - H(32C)	0.9800
C(33)-H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33)-H(33C)	0.9800	C(36) - F(76)	1.353(3)
C(36) - C(75)	1.378(4)	C(36) - C(71)	1.390(4)
C(41) - C(43)	1.524(4)	C(41) - C(44)	1.535(4)
C(41) - H(41)	1.0000	C(42) - C(46)	1.516(4)
C(42) - C(45)	1.529(4)	C(42) - H(42)	1.0000
C(43)-H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43)-H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(46)-H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(45) - H(45A)	0.9800
C(45) - H(45B)	0.9800	C(45) - H(45C)	0.9800
C(51) - C(53)	1.521(4)	C(51) - C(54)	1.523(4)
C(51) - H(51)	1.0000	C(52) - C(56)	1.522(4)
C(52) - C(55)	1.528(4)	C(52) - H(52)	1.0000
C(53)-H(53A)	0.9800	C(53) - H(53B)	0.9800
C(53)-H(53C)	0.9800	C(54) - H(54A)	0.9800
C(54)-H(54B)	0.9800	C(54) - H(54C)	0.9800
C(55)-H(55A)	0.9800	C(55) - H(55B)	0.9800
C(55)-H(55C)	0.9800	C(56) - H(56A)	0.9800
			Continued on next page

Table S10. Distances [Å] for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

atom – atom	distance	atom – atom	distance
C(56)-H(56B)	0.9800	C(56)-H(56C)	0.9800
C(61) - C(62)	1.384(4)	C(61) - C(66)	1.387(4)
C(61) - B	1.667(4)	C(62) - F(62)	1.353(3)
C(62) - C(63)	1.367(4)	C(63) - F(63)	1.349(3)
C(63) - C(64)	1.372(4)	C(64) - F(64)	1.349(3)
C(64) - C(65)	1.357(4)	C(65) - F(65)	1.352(3)
C(65) - C(66)	1.375(4)	C(66) - F(66)	1.352(3)
B - C(81)	1.648(4)	B - C(71)	1.662(4)
C(71) - C(72)	1.389(4)	C(72) - F(72)	1.351(3)
C(72) - C(73)	1.376(4)	C(73) - F(73)	1.349(3)
C(73) - C(74)	1.365(4)	C(74) - F(74)	1.342(3)
C(74) - C(75)	1.367(4)	C(75) - F(75)	1.344(3)
C(81) - C(86)	1.386(4)	C(81) - C(82)	1.389(4)
C(82) - F(82)	1.358(3)	C(82) - C(83)	1.372(4)
C(83) - F(83)	1.341(3)	C(83) - C(84)	1.372(4)
C(84) - F(84)	1.342(3)	C(84) - C(85)	1.372(4)
C(85) - F(85)	1.346(3)	C(85) - C(86)	1.368(4)
C(86) - F(86)	1.354(3)		

Table S10. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-P(1)	79.01(7)	C-Pd-P(2)	81.19(7)
P(1) - Pd - P(2)	160.08(3)	C-Pd-P(3)	175.08(7)
P(1) - Pd - P(3)	101.40(3)	P(2) - Pd - P(3)	98.52(3)
C(11) - C - C(21)	122.2(2)	C(11)-C-Pd	120.44(19)
C(21) - C - Pd	117.17(18)	C(12) - P(1) - C(41)	108.52(13)
C(12) - P(1) - C(42)	105.76(12)	C(41) - P(1) - C(42)	106.40(14)
C(12) - P(1) - Pd	101.72(9)	C(41) - P(1) - Pd	120.21(10)
C(42) - P(1) - Pd	113.22(10)	C(22) - P(2) - C(52)	105.60(12)
C(22) - P(2) - C(51)	103.78(13)	C(52) - P(2) - C(51)	108.41(13)
C(22) - P(2) - Pd	102.36(9)	C(52) - P(2) - Pd	116.06(9)
C(51) - P(2) - Pd	118.80(10)	C(31) - P(3) - C(32)	101.09(15)
C(31) - P(3) - C(33)	98.69(14)	C(32) - P(3) - C(33)	101.79(14)
C(31) - P(3) - Pd	121.18(10)	C(32) - P(3) - Pd	110.30(10)
C(33) - P(3) - Pd	120.57(10)	C - C(11) - C(12)	119.3(2)
C - C(11) - C(16)	126.4(2)	C(12) - C(11) - C(16)	114.4(2)
C(13) - C(12) - C(11)	123.1(2)	C(13) - C(12) - P(1)	126.7(2)
C(11) - C(12) - P(1)	109.93(18)	C(12) - C(13) - C(14)	124.4(2)
C(12) - C(13) - H(13)	117.8	C(14) - C(13) - H(13)	117.8
C(15) - C(14) - C(13)	110.5(2)	C(15) - C(14) - B	114.7(2)
C(13) - C(14) - B	109.6(2)	C(15) - C(14) - H(14)	107.2
C(13) - C(14) - H(14)	107.2	B - C(14) - H(14)	107.2
C(16) - C(15) - C(14)	125.2(2)	C(16) - C(15) - H(15)	117.4
C(14) - C(15) - H(15)	117.4	C(15) - C(16) - C(11)	122.2(2)
C(15) - C(16) - H(16)	118.9	C(11) - C(16) - H(16)	118.9
C(22) - C(21) - C(26)	118.0(2)	C(22) - C(21) - C	119.4(2)
C(26) - C(21) - C	122.6(3)	C(24) - C(25) - C(26)	120.5(3)
C(24) - C(25) - H(25)	119.7	C(26) - C(25) - H(25)	119.7
C(23) - C(24) - C(25)	119.7(3)	C(23) - C(24) - H(24)	120.2
C(25) - C(24) - H(24)	120.2	C(24) - C(23) - C(22)	120.1(3)
C(24) - C(23) - H(23)	119.9	C(22) - C(23) - H(23)	119.9
C(21) - C(22) - C(23)	120.7(2)	C(21) - C(22) - P(2)	113.33(19)
C(23) - C(22) - P(2)	125.9(2)	C(25) - C(26) - C(21)	120.5(3)
C(25) - C(26) - H(26)	119.7	C(21) - C(26) - H(26)	119.7
P(3) - C(31) - H(31A)	109.5	P(3) - C(31) - H(31B)	109.5
H(31A) - C(31) - H(31B)	109.5	P(3) - C(31) - H(31C)	109.5
H(31A) - C(31) - H(31C)	109.5	H(31B) - C(31) - H(31C)	109.5
P(3) - C(32) - H(32A)	109.5	P(3) - C(32) - H(32B)	109.5
H(32A) - C(32) - H(32B)	109.5	P(3) - C(32) - H(32C)	109.5
H(32A) - C(32) - H(32C)	109.5	H(32B) - C(32) - H(32C)	109.5
P(3) - C(33) - H(33A)	109.5	P(3)-C(33)-H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	P(3) - C(33) - H(33C)	109.5
		Continue	ed on next page

Table S11. Angles [°] for $[(C_6F_5)_3B-PC(sp^2)P]^HPd(PMe_3)$ (4).

atom – atom – atom	angle	atom – atom – atom	angle
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
F(76) - C(36) - C(75)	114.5(2)	F(76) - C(36) - C(71)	121.2(2)
C(75) - C(36) - C(71)	124.3(3)	C(43) - C(41) - C(44)	111.9(3)
C(43) - C(41) - P(1)	109.3(2)	C(44) - C(41) - P(1)	117.4(2)
C(43) - C(41) - H(41)	105.8	C(44) - C(41) - H(41)	105.8
P(1) - C(41) - H(41)	105.8	C(46) - C(42) - C(45)	110.6(2)
C(46) - C(42) - P(1)	111.33(19)	C(45) - C(42) - P(1)	111.1(2)
C(46) - C(42) - H(42)	107.9	C(45) - C(42) - H(42)	107.9
P(1) - C(42) - H(42)	107.9	C(41) - C(43) - H(43A)	109.5
C(41) - C(43) - H(43B)	109.5	H(43A) - C(43) - H(43B)	109.5
C(41) - C(43) - H(43C)	109.5	H(43A) - C(43) - H(43C)	109.5
H(43B) - C(43) - H(43C)	109.5	C(41) - C(44) - H(44A)	109.5
C(41) - C(44) - H(44B)	109.5	H(44A) - C(44) - H(44B)	109.5
C(41) - C(44) - H(44C)	109.5	H(44A) - C(44) - H(44C)	109.5
H(44B) - C(44) - H(44C)	109.5	C(42) - C(46) - H(46A)	109.5
C(42) - C(46) - H(46B)	109.5	H(46A) - C(46) - H(46B)	109.5
C(42) - C(46) - H(46C)	109.5	H(46A) - C(46) - H(46C)	109.5
H(46B) - C(46) - H(46C)	109.5	C(42) - C(45) - H(45A)	109.5
C(42) - C(45) - H(45B)	109.5	H(45A) - C(45) - H(45B)	109.5
C(42) - C(45) - H(45C)	109.5	H(45A) - C(45) - H(45C)	109.5
H(45B) - C(45) - H(45C)	109.5	C(53) - C(51) - C(54)	110.6(3)
C(53) - C(51) - P(2)	114.7(2)	C(54) - C(51) - P(2)	108.8(2)
C(53) - C(51) - H(51)	107.4	C(54) - C(51) - H(51)	107.4
P(2) - C(51) - H(51)	107.4	C(56) - C(52) - C(55)	110.9(2)
C(56) - C(52) - P(2)	117.5(2)	C(55) - C(52) - P(2)	108.60(19)
C(56) - C(52) - H(52)	106.4	C(55) - C(52) - H(52)	106.4
P(2) - C(52) - H(52)	106.4	C(51) - C(53) - H(53A)	109.5
C(51) - C(53) - H(53B)	109.5	H(53A) - C(53) - H(53B)	109.5
C(51) - C(53) - H(53C)	109.5	H(53A) - C(53) - H(53C)	109.5
H(53B) - C(53) - H(53C)	109.5	C(51) - C(54) - H(54A)	109.5
C(51) - C(54) - H(54B)	109.5	H(54A) - C(54) - H(54B)	109.5
C(51) - C(54) - H(54C)	109.5	H(54A) - C(54) - H(54C)	109.5
H(54B) - C(54) - H(54C)	109.5	C(52) - C(55) - H(55A)	109.5
C(52) - C(55) - H(55B)	109.5	H(55A) - C(55) - H(55B)	109.5
C(52) - C(55) - H(55C)	109.5	H(55A) - C(55) - H(55C)	109.5
H(55B) - C(55) - H(55C)	109.5	C(52) - C(56) - H(56A)	109.5
C(52) - C(56) - H(56B)	109.5	H(56A) - C(56) - H(56B)	109.5
C(52) - C(56) - H(56C)	109.5	H(56A) - C(56) - H(56C)	109.5
H(56B) - C(56) - H(56C)	109.5	C(62) - C(61) - C(66)	112.3(2)
C(62) - C(61) - B	119.8(2)	C(66) - C(61) - B	127.8(2)
F(62) - C(62) - C(63)	115.5(2)	F(62) - C(62) - C(61)	119.3(2)
C(63) - C(62) - C(61)	125.2(3)	F(63) - C(63) - C(62)	120.9(3)
		Continue	d on next page

Table S11. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
F(63) - C(63) - C(64)	119.6(3)	C(62) - C(63) - C(64)	119.4(3)
F(64) - C(64) - C(65)	120.9(3)	F(64) - C(64) - C(63)	120.6(3)
C(65) - C(64) - C(63)	118.5(3)	F(65) - C(65) - C(64)	119.7(3)
F(65) - C(65) - C(66)	120.1(3)	C(64) - C(65) - C(66)	120.2(3)
F(66) - C(66) - C(65)	114.0(2)	F(66) - C(66) - C(61)	121.7(2)
C(65) - C(66) - C(61)	124.3(3)	C(81) - B - C(71)	113.3(2)
C(81) - B - C(61)	110.8(2)	C(71) - B - C(61)	104.5(2)
C(81) - B - C(14)	104.3(2)	C(71) - B - C(14)	112.7(2)
C(61) - B - C(14)	111.5(2)	C(72) - C(71) - C(36)	112.5(2)
C(72) - C(71) - B	121.3(2)	C(36) - C(71) - B	126.0(2)
F(72) - C(72) - C(73)	115.4(2)	F(72) - C(72) - C(71)	119.9(2)
C(73) - C(72) - C(71)	124.6(2)	F(73) - C(73) - C(74)	119.0(2)
F(73) - C(73) - C(72)	120.9(2)	C(74) - C(73) - C(72)	120.1(3)
F(74) - C(74) - C(73)	121.2(2)	F(74) - C(74) - C(75)	120.5(3)
C(73) - C(74) - C(75)	118.3(3)	F(75) - C(75) - C(74)	119.2(2)
F(75) - C(75) - C(36)	120.6(2)	C(74) - C(75) - C(36)	120.2(3)
C(86) - C(81) - C(82)	112.2(2)	C(86) - C(81) - B	125.3(2)
C(82) - C(81) - B	122.1(2)	F(82) - C(82) - C(83)	115.1(2)
F(82) - C(82) - C(81)	119.8(2)	C(83) - C(82) - C(81)	125.0(3)
F(83) - C(83) - C(84)	119.4(3)	F(83) - C(83) - C(82)	121.2(3)
C(84) - C(83) - C(82)	119.4(3)	F(84) - C(84) - C(83)	120.8(3)
F(84) - C(84) - C(85)	120.6(3)	C(83) - C(84) - C(85)	118.6(3)
F(85) - C(85) - C(86)	120.4(3)	F(85) - C(85) - C(84)	119.9(3)
C(86) - C(85) - C(84)	119.7(3)	F(86) - C(86) - C(85)	114.7(2)
F(86) - C(86) - C(81)	120.4(2)	C(85) - C(86) - C(81)	124.9(3)

Table S11. – continued from previous page

4.2 Crystal data for $[PC(sp^3)HP]^{tBu}PdCl$ (6)

Figure S60. Thermal-ellipsoid (50% probability) representation of $[PC(sp^3)HP]^{tBu}PdCl$ (6). Most hydrogen atoms were omitted for clarity.

Identification code:	pc21	
Empirical formula:	$C_{33}H_{53}ClP_2Pd$	
Formula weight:	653.54	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 12.3466(7) Å	$\alpha = 90^{\circ}$
	b = 11.6819(7) Å	$\beta = 91.4208(9)^{\circ}$
	c = 23.5089(14) Å	$\gamma = 90^{\circ}$
Volume:	3389.7(3) Å ³	
Z:	4	
Density (calculated):	$1.281 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.740 mm^{-1}	
F(000):	1376	
Crystal size:	$0.15 \times 0.11 \times 0.09 \text{ mm}^3$	
θ range for data collection:	1.65 to 25.00°	
Index ranges:	$-14 \le h \le 14, -13 \le k \le 13, -27 \le l \le 27$	
Reflections collected:	45195	
Independent reflections:	5975 [$\mathbf{R}_{int} = 0.0509$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7457 and 0.7033	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	5975 / 0 / 348	
Goodness-of-fit on F ² :	1.041	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0300, wR_2 = 0.0706$	
R indices (all data):	$R_1 = 0.0356, wR_2 = 0.0731$	
Largest diff. peak and hole:	1.846 and $-1.555 e^{-1} \dot{A}^{-3}$	

Table S12. Crystal data and structure refinement for $[PC(sp^3)HP]'^{Bu}PdCl$ (6).

Table S13. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[PC(sp^3)HP]^{tBu}PdCl$ (6). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	У	Z	U(eq)
Pd	0.25809(1)	0.18347(2)	0.00762(1)	0.017(1)
C(1)	0.4307(2)	0.5698(2)	-0.19201(11)	0.026(1)
P (1)	0.38503(5)	0.18862(5)	-0.06302(3)	0.016(1)
C(11)	0.33696(19)	0.4065(2)	-0.03259(10)	0.018(1)
C(12)	0.38722(19)	0.3429(2)	-0.07529(10)	0.017(1)
C(13)	0.41867(19)	0.3948(2)	-0.12586(10)	0.018(1)
C(14)	0.39849(19)	0.5100(2)	-0.13708(10)	0.020(1)
C(15)	0.3435(2)	0.5703(2)	-0.09558(11)	0.023(1)
C(16)	0.3135(2)	0.5207(2)	-0.04462(10)	0.021(1)
C(22)	0.15767(18)	0.3736(2)	0.09020(10)	0.016(1)
C(21)	0.25181(19)	0.4171(2)	0.06699(10)	0.019(1)
C(19)	0.4857(3)	0.4883(3)	-0.23319(12)	0.040(1)
C(18)	0.3291(3)	0.6191(3)	-0.22207(12)	0.039(1)
C(17)	0.5092(3)	0.6680(3)	-0.17763(13)	0.042(1)
C(24)	0.13543(19)	0.5412(2)	0.14995(9)	0.017(1)
C(23)	0.10060(19)	0.4350(2)	0.13102(10)	0.018(1)
C(25)	0.2325(2)	0.5820(2)	0.12832(10)	0.022(1)
C(26)	0.2896(2)	0.5217(2)	0.08790(10)	0.022(1)
C(31)	0.52586(19)	0.1381(2)	-0.04898(10)	0.019(1)
С	0.31575(19)	0.3475(2)	0.02411(10)	0.018(1)
C(29)	-0.0414(2)	0.5672(3)	0.20144(13)	0.036(1)
C(28)	0.1364(3)	0.5973(3)	0.25196(11)	0.038(1)
C(27)	0.0702(2)	0.7369(2)	0.17994(12)	0.032(1)
C(32)	0.3438(2)	0.1283(2)	-0.13289(11)	0.023(1)
C(33)	0.5689(2)	0.1953(2)	0.00540(12)	0.030(1)
C(34)	0.6013(2)	0.1569(2)	-0.09824(12)	0.029(1)
C(36)	0.2290(2)	0.1670(3)	-0.14840(13)	0.036(1)
C(41)	0.1176(2)	0.1490(2)	0.13600(11)	0.024(1)
C(42)	-0.0104(2)	0.2258(2)	0.03521(11)	0.025(1)
C(43)	0.2301(2)	0.1456(3)	0.16419(13)	0.043(1)
C(44)	0.0708(3)	0.0291(2)	0.12749(13)	0.039(1)
C(45)	-0.1028(2)	0.2594(3)	0.07405(13)	0.032(1)
C(46)	-0.0102(3)	0.2997(3)	-0.01818(13)	0.046(1)
C(35)	0.3535(2)	-0.0025(2)	-0.13316(11)	0.027(1)
Cl	0.19180(5)	-0.00503(5)	-0.00835(3)	0.030(1)
P(2)	0.12535(5)	0.22817(5)	0.06852(3)	0.016(1)
C(2)	0.0749(2)	0.6097(2)	0.19524(10)	0.021(1)
H(13)	0.4548	0.3502	-0.1533	0.022
H(15)	0.3258	0.6483	-0.1024	0.027
			Cont	inued on next page

atom	X	У	X	U(eq)
H(16)	0.2763	0.5654	-0.0176	0.026
H(19A)	0.4362	0.4253	-0.2430	0.060
H(19B)	0.5518	0.4574	-0.2151	0.060
H(19C)	0.5041	0.5298	-0.2678	0.060
H(18A)	0.3494	0.6550	-0.2580	0.058
H(18B)	0.2960	0.6765	-0.1975	0.058
H(18C)	0.2772	0.5573	-0.2299	0.058
H(17A)	0.5292	0.7071	-0.2127	0.063
H(17B)	0.5744	0.6372	-0.1586	0.063
H(17C)	0.4740	0.7225	-0.1523	0.063
H(23)	0.0366	0.4030	0.1460	0.021
H(25)	0.2603	0.6532	0.1417	0.027
H(26)	0.3554	0.5523	0.0743	0.026
H(31)	0.5226	0.0539	-0.0417	0.023
Н	0.3890	0.3363	0.0424	0.021
H(29A)	-0.0784	0.5670	0.1641	0.054
H(29B)	-0.0799	0.6181	0.2272	0.054
H(29C)	-0.0405	0.4894	0.2170	0.054
H(28A)	0.1381	0.5165	0.2632	0.058
H(28B)	0.1000	0.6421	0.2811	0.058
H(28C)	0.2106	0.6253	0.2481	0.058
H(27A)	0.1440	0.7672	0.1778	0.047
H(27B)	0.0309	0.7785	0.2092	0.047
H(27C)	0.0327	0.7464	0.1430	0.047
H(32)	0.3935	0.1594	-0.1621	0.028
H(33A)	0.6412	0.1653	0.0150	0.044
H(33B)	0.5200	0.1790	0.0366	0.044
H(33C)	0.5732	0.2782	-0.0005	0.044
H(34A)	0.5746	0.1138	-0.1315	0.044
H(34B)	0.6743	0.1304	-0.0874	0.044
H(34C)	0.6037	0.2386	-0.1076	0.044
H(36A)	0.2107	0.1437	-0.1875	0.054
H(36B)	0.2244	0.2505	-0.1453	0.054
H(36C)	0.1780	0.1317	-0.1223	0.054
H(41)	0.0687	0.1923	0.1616	0.028
H(42)	-0.0245	0.1453	0.0226	0.030
H(43A)	0.2801	0.1056	0.1393	0.064
H(43B)	0.2266	0.1052	0.2006	0.064
H(43C)	0.2558	0.2240	0.1708	0.064
H(44A)	-0.0039	0.0349	0.1126	0.059
H(44B)	0.0715	-0.0114	0.1640	0.059
H(44C)	0.1146	-0.0131	0.1004	0.059
<u> </u>				Continued on next page

Table S13. – continued from previous page

atom	X	y	X	U(eq)
H(45A)	-0.1724	0.2454	0.0544	0.049
H(45B)	-0.0967	0.3408	0.0837	0.049
H(45C)	-0.0984	0.2137	0.1090	0.049
H(46A)	0.0479	0.2744	-0.0429	0.069
H(46B)	0.0018	0.3799	-0.0075	0.069
H(46C)	-0.0801	0.2925	-0.0385	0.069
H(35A)	0.3298	-0.0321	-0.1704	0.040
H(35B)	0.3078	-0.0347	-0.1037	0.040
H(35C)	0.4291	-0.0244	-0.1255	0.040

Table S13. – continued from previous page

diffsorroph						
atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
Pd	0.0177(1)	0.0117(1)	0.0207(1)	-0.0026(1)	0.0067(1)	-0.0029(1)
C(1)	0.0338(15)	0.0236(14)	0.0196(14)	0.0035(11)	0.0034(11)	0.0024(12)
P(1)	0.0187(3)	0.0135(3)	0.0172(3)	-0.0034(2)	0.0039(2)	-0.0020(2)
C(11)	0.0180(12)	0.0178(13)	0.0191(13)	-0.0019(10)	0.0029(10)	-0.0056(10)
C(12)	0.0167(12)	0.0155(13)	0.0200(13)	-0.0034(10)	0.0022(10)	-0.0030(10)
C(13)	0.0197(12)	0.0188(13)	0.0169(12)	-0.0044(10)	0.0026(9)	-0.0008(10)
C(14)	0.0202(12)	0.0206(13)	0.0186(13)	0.0006(10)	-0.0002(10)	-0.0013(10)
C(15)	0.0284(14)	0.0163(13)	0.0241(14)	-0.0009(10)	0.0026(11)	-0.0002(11)
C(16)	0.0256(13)	0.0173(13)	0.0213(13)	-0.0053(10)	0.0065(10)	-0.0013(10)
C(22)	0.0180(12)	0.0156(12)	0.0141(12)	0.0017(10)	0.0004(9)	-0.0020(10)
C(21)	0.0213(12)	0.0166(13)	0.0179(12)	-0.0002(10)	0.0019(10)	-0.0007(10)
C(19)	0.057(2)	0.0416(19)	0.0226(15)	0.0114(13)	0.0178(14)	0.0102(16)
C(18)	0.0475(18)	0.0450(19)	0.0237(15)	0.0082(13)	-0.0018(13)	0.0089(15)
C(17)	0.056(2)	0.0363(19)	0.0339(17)	0.0130(14)	0.0045(15)	-0.0159(15)
C(24)	0.0221(12)	0.0168(13)	0.0118(12)	0.0001(9)	0.0008(9)	0.0029(10)
C(23)	0.0175(12)	0.0171(13)	0.0180(12)	0.0019(10)	0.0033(9)	-0.0011(10)
C(25)	0.0292(14)	0.0162(13)	0.0210(13)	-0.0026(10)	0.0020(11)	-0.0058(11)
C(26)	0.0237(13)	0.0189(13)	0.0230(13)	-0.0016(10)	0.0081(10)	-0.0070(11)
C(31)	0.0246(13)	0.0152(12)	0.0180(12)	0.0006(10)	0.0030(10)	-0.0025(10)
С	0.0160(12)	0.0166(12)	0.0198(13)	-0.0017(10)	0.0021(10)	-0.0033(10)
C(29)	0.0319(15)	0.0340(17)	0.0438(18)	-0.0137(14)	0.0184(13)	0.0002(13)
C(28)	0.0485(18)	0.0479(19)	0.0190(14)	-0.0035(13)	0.0023(13)	0.0155(15)
C(27)	0.0437(17)	0.0211(14)	0.0304(15)	-0.0035(12)	0.0113(13)	0.0076(13)
C(32)	0.0288(14)	0.0198(14)	0.0208(13)	-0.0062(11)	0.0008(11)	-0.0022(11)
C(33)	0.0252(14)	0.0325(16)	0.0307(15)	-0.0043(12)	-0.0037(11)	0.0035(12)
C(34)	0.0239(14)	0.0306(16)	0.0331(16)	0.0036(12)	0.0075(12)	-0.0003(12)
C(36)	0.0370(16)	0.0325(17)	0.0385(17)	-0.0118(13)	-0.0158(13)	0.0021(13)
C(41)	0.0275(14)	0.0190(13)	0.0253(14)	0.0069(11)	0.0124(11)	0.0024(11)
C(42)	0.0188(12)	0.0238(14)	0.0314(15)	-0.0089(12)	-0.0005(11)	-0.0011(11)
C(43)	0.0352(17)	0.055(2)	0.0372(18)	0.0215(16)	0.0024(13)	0.0086(15)
C(44)	0.058(2)	0.0162(14)	0.0444(18)	0.0060(13)	0.0241(15)	-0.0019(14)
C(45)	0.0189(13)	0.0351(17)	0.0435(17)	-0.0136(14)	-0.0008(12)	0.0018(12)
C(46)	0.0380(17)	0.067(2)	0.0324(17)	0.0021(16)	-0.0113(14)	0.0089(16)
C(35)	0.0366(15)	0.0209(14)	0.0230(14)	-0.0074(11)	0.0033(11)	-0.0049(12)
Cl	0.0296(3)	0.0163(3)	0.0439(4)	-0.0100(3)	0.0143(3)	-0.0082(3)
P(2)	0.0167(3)	0.0122(3)	0.0198(3)	-0.0003(2)	0.0052(2)	-0.0021(2)
C(2)	0.0257(13)	0.0198(13)	0.0172(12)	-0.0012(10)	0.0042(10)	0.0032(11)

Table S14. Anisotropic displacement parameters (Å²) for $[PC(sp^3)HP]^{/Bu}PdCl$ (6). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom – atom	distance	atom – atom	distance
Pd-C	2.078(2)	Pd-P(2)	2.2638(6)
Pd-P(1)	2.3125(6)	Pd-Cl	2.3758(6)
C(1) - C(19)	1.529(4)	C(1) - C(14)	1.530(3)
C(1) - C(17)	1.534(4)	C(1) - C(18)	1.537(4)
P(1) - C(12)	1.825(2)	P(1) - C(32)	1.847(2)
P(1) - C(31)	1.858(3)	C(11) - C(16)	1.393(4)
C(11) - C(12)	1.406(3)	C(11)-C	1.529(3)
C(12) - C(13)	1.398(3)	C(13) - C(14)	1.393(3)
C(13) - H(13)	0.9500	C(14) - C(15)	1.393(3)
C(15) - C(16)	1.389(3)	C(15) - H(15)	0.9500
C(16) - H(16)	0.9500	C(22) - C(21)	1.392(3)
C(22) - C(23)	1.402(3)	C(22) - P(2)	1.815(2)
C(21) - C(26)	1.394(3)	C(21) – C	1.529(3)
C(19) - H(19A)	0.9800	C(19) - H(19B)	0.9800
C(19) - H(19C)	0.9800	C(18) - H(18A)	0.9800
C(18) - H(18B)	0.9800	C(18) - H(18C)	0.9800
C(17) - H(17A)	0.9800	C(17) - H(17B)	0.9800
C(17) - H(17C)	0.9800	C(24) - C(23)	1.383(3)
C(24) - C(25)	1.397(3)	C(24) - C(2)	1.540(3)
C(23) - H(23)	0.9500	C(25) - C(26)	1.389(3)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(31) - C(34)	1.520(3)	C(31) - C(33)	1.526(4)
C(31) - H(31)	1.0000	C-H	1.0000
C(29) - C(2)	1.530(4)	C(29) - H(29A)	0.9800
C(29) - H(29B)	0.9800	C(29) - H(29C)	0.9800
C(28) - C(2)	1.525(4)	C(28) - H(28A)	0.9800
C(28) - H(28B)	0.9800	C(28) - H(28C)	0.9800
C(27) - C(2)	1.530(4)	C(27) - H(27A)	0.9800
C(27) - H(27B)	0.9800	C(27) - H(27C)	0.9800
C(32) - C(36)	1.524(4)	C(32) - C(35)	1.532(4)
C(32) - H(32)	1.0000	C(33) – H(33A)	0.9800
C(33) - H(33B)	0.9800	C(33) - H(33C)	0.9800
C(34) - H(34A)	0.9800	C(34) - H(34B)	0.9800
C(34) - H(34C)	0.9800	C(36) - H(36A)	0.9800
C(36)-H(36B)	0.9800	C(36) - H(36C)	0.9800
C(41) - C(43)	1.524(4)	C(41) - C(44)	1.527(4)
C(41) - P(2)	1.841(2)	C(41) - H(41)	1.0000
C(42) - C(46)	1.524(4)	C(42) - C(45)	1.530(4)
C(42) - P(2)	1.833(3)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
			Continued on next page

Table S15. Distances [Å] for $[PC(sp^3)HP]^{/Bu}PdCl$ (6).

	1 10		
atom – atom	distance	atom – atom	distance
C(44) – H(44B)	0.9800	C(44) – H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(35) – H(35A)	0.9800	C(35)-H(35B)	0.9800
C(35) – H(35C)	0.9800		

Table S15. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-P(2)	85.38(6)	C-Pd-P(1)	82.81(6)
P(2) - Pd - P(1)	164.24(2)	C-Pd-Cl	178.34(7)
P(2) - Pd - Cl	93.54(2)	P(1)-Pd-Cl	98.48(2)
C(19) - C(1) - C(14)	112.3(2)	C(19) - C(1) - C(17)	108.6(2)
C(14) - C(1) - C(17)	109.4(2)	C(19) - C(1) - C(18)	108.2(2)
C(14) - C(1) - C(18)	109.4(2)	C(17) - C(1) - C(18)	109.0(2)
C(12) - P(1) - C(32)	103.96(12)	C(12) - P(1) - C(31)	108.91(11)
C(32) - P(1) - C(31)	105.82(11)	C(12) - P(1) - Pd	98.75(8)
C(32) - P(1) - Pd	116.88(9)	C(31) - P(1) - Pd	120.81(8)
C(16) - C(11) - C(12)	117.0(2)	C(16) - C(11) - C	124.7(2)
C(12) - C(11) - C	118.2(2)	C(13) - C(12) - C(11)	121.0(2)
C(13) - C(12) - P(1)	124.60(18)	C(11) - C(12) - P(1)	113.61(17)
C(14) - C(13) - C(12)	121.9(2)	C(14) - C(13) - H(13)	119.1
C(12) - C(13) - H(13)	119.1	C(15) - C(14) - C(13)	116.3(2)
C(15) - C(14) - C(1)	120.2(2)	C(13) - C(14) - C(1)	123.5(2)
C(16) - C(15) - C(14)	122.6(2)	C(16) - C(15) - H(15)	118.7
C(14) - C(15) - H(15)	118.7	C(15) - C(16) - C(11)	121.1(2)
C(15) - C(16) - H(16)	119.5	C(11) - C(16) - H(16)	119.5
C(21) - C(22) - C(23)	121.3(2)	C(21) - C(22) - P(2)	114.28(17)
C(23) - C(22) - P(2)	124.08(17)	C(22) - C(21) - C(26)	117.2(2)
C(22) - C(21) - C	120.9(2)	C(26) - C(21) - C	121.6(2)
C(1) - C(19) - H(19A)	109.5	C(1) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5	C(1) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5	H(19B) - C(19) - H(19C)	109.5
C(1) - C(18) - H(18A)	109.5	C(1) - C(18) - H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5	C(1) - C(18) - H(18C)	109.5
H(18A) - C(18) - H(18C)	109.5	H(18B) - C(18) - H(18C)	109.5
C(1) - C(17) - H(17A)	109.5	C(1) - C(17) - H(17B)	109.5
H(17A) - C(17) - H(17B)	109.5	C(1) - C(17) - H(17C)	109.5
H(17A) - C(17) - H(17C)	109.5	H(17B) - C(17) - H(17C)	109.5
C(23) - C(24) - C(25)	116.8(2)	C(23) - C(24) - C(2)	122.4(2)
C(25) - C(24) - C(2)	120.7(2)	C(24) - C(23) - C(22)	121.4(2)
C(24) - C(23) - H(23)	119.3	C(22) - C(23) - H(23)	119.3
C(26) - C(25) - C(24)	122.1(2)	C(26) - C(25) - H(25)	119.0
C(24) - C(25) - H(25)	119.0	C(25) - C(26) - C(21)	121.0(2)
C(25) - C(26) - H(26)	119.5	C(21) - C(26) - H(26)	119.5
C(34) - C(31) - C(33)	111.6(2)	C(34) - C(31) - P(1)	114.05(18)
C(33) - C(31) - P(1)	108.34(17)	C(34) - C(31) - H(31)	107.5
C(33) - C(31) - H(31)	107.5	P(1) - C(31) - H(31)	107.5
C(11) - C - C(21)	116.0(2)	C(11)-C-Pd	108.56(15)
C(21) - C - Pd	115.65(15)	C(11) - C - H	105.2
		Continue	d on next page

Table S16. Angles $[^{\circ}]$ for $[PC(sp^3)HP]^{tBu}PdCl$ (6).

atom – atom – atom	angle	atom – atom – atom	angle
С(21)-С-Н	105.2	Pd-C-H	105.2
C(2) - C(29) - H(29A)	109.5	C(2) - C(29) - H(29B)	109.5
H(29A) - C(29) - H(29B)	109.5	C(2) - C(29) - H(29C)	109.5
H(29A) - C(29) - H(29C)	109.5	H(29B) - C(29) - H(29C)	109.5
C(2) - C(28) - H(28A)	109.5	C(2) - C(28) - H(28B)	109.5
H(28A) - C(28) - H(28B)	109.5	C(2) - C(28) - H(28C)	109.5
H(28A) - C(28) - H(28C)	109.5	H(28B) - C(28) - H(28C)	109.5
C(2) - C(27) - H(27A)	109.5	C(2) - C(27) - H(27B)	109.5
H(27A) - C(27) - H(27B)	109.5	C(2) - C(27) - H(27C)	109.5
H(27A) - C(27) - H(27C)	109.5	H(27B) - C(27) - H(27C)	109.5
C(36) - C(32) - C(35)	111.5(2)	C(36) - C(32) - P(1)	109.47(18)
C(35) - C(32) - P(1)	111.37(18)	C(36) - C(32) - H(32)	108.1
C(35) - C(32) - H(32)	108.1	P(1) - C(32) - H(32)	108.1
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(43) - C(41) - C(44)	111.8(2)	C(43) - C(41) - P(2)	108.78(18)
C(44) - C(41) - P(2)	112.0(2)	C(43) - C(41) - H(41)	108.0
C(44) - C(41) - H(41)	108.0	P(2) - C(41) - H(41)	108.0
C(46) - C(42) - C(45)	111.3(2)	C(46) - C(42) - P(2)	108.85(19)
C(45) - C(42) - P(2)	115.36(19)	C(46) - C(42) - H(42)	107.0
C(45) - C(42) - H(42)	107.0	P(2) - C(42) - H(42)	107.0
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
		Continue	ed on next page

 Table S16. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(22) - P(2) - C(42)	109.06(12)	C(22) - P(2) - C(41)	104.11(11)
C(42) - P(2) - C(41)	107.13(12)	C(22) - P(2) - Pd	103.64(8)
C(42) - P(2) - Pd	113.27(9)	C(41) - P(2) - Pd	118.88(8)
C(28) - C(2) - C(27)	108.2(2)	C(28) - C(2) - C(29)	109.5(2)
C(27) - C(2) - C(29)	107.9(2)	C(28) - C(2) - C(24)	108.4(2)
C(27) - C(2) - C(24)	111.0(2)	C(29) - C(2) - C(24)	111.8(2)

 Table S16. – continued from previous page

4.3 Crystal data for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3)

Figure S61. Thermal-ellipsoid (50% probability) representation of the two crystallographically independent molecules of $[PC(sp^2)P]^{IBu}Pd(PMe_3)$ (**3**). Hydrogen atoms were omitted for clarity.

Identification code:	pc23	
Empirical formula:	$C_{36}H_{61}P_3Pd$	
Formula weight:	693.16	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	C2/c	
Unit cell dimensions:	a = 28.976(3) Å	$\alpha = 90^{\circ}$
	b = 14.6255(14) Å	$\beta = 106.946(2)^{\circ}$
	c = 31.853(4) Å	$\gamma = 90^{\circ}$
Volume:	12913(2) Å ³	
Z:	12	
Density (calculated):	$1.070 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.561 mm^{-1}	
F(000):	4416	
Crystal size:	$0.13 \times 0.10 \times 0.09 \text{ mm}^3$	
θ range for data collection:	1.34 to 25.00°	
Index ranges:	$-34 \le h \le 34, -17 \le k \le 17, -37 \le l \le 37$	
Reflections collected:	103779	
Independent reflections:	11379 [$\mathbf{R}_{int} = 0.0366$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.8393 and 0.7062	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	11379 / 0 / 570	
Goodness-of-fit on F ² :	1.038	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0347, wR_2 = 0.0835$	
R indices (all data):	$R_1 = 0.0395, wR_2 = 0.0858$	
Largest diff. peak and hole:	1.525 and $-0.772 e^{A^{-3}}$	

Table S17. Crystal data and structure refinement for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

Table S18. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (**3**). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	y	Z	U(eq)
Pd	0.25640(1)	0.59937(1)	0.21152(1)	0.019(1)
С	0.31971(9)	0.64729(19)	0.20130(8)	0.021(1)
P(1)	0.30355(2)	0.60537(5)	0.28383(2)	0.021(1)
C(1)	0.5000	0.1709(2)	0.2500	0.018(1)
Pd(1)	0.5000	0.31270(2)	0.2500	0.019(1)
P(2)	0.22986(2)	0.61514(5)	0.13612(2)	0.020(1)
P(3)	0.18574(2)	0.54685(5)	0.22705(2)	0.025(1)
P(4)	0.54528(2)	0.28762(5)	0.32165(2)	0.020(1)
P(5)	0.5000	0.47313(7)	0.2500	0.035(1)
C(11)	0.35564(9)	0.68681(18)	0.23758(8)	0.020(1)
C(12)	0.35547(9)	0.66985(19)	0.28171(8)	0.022(1)
C(13)	0.39170(9)	0.7015(2)	0.31803(9)	0.026(1)
C(14)	0.43012(10)	0.7538(2)	0.31402(9)	0.031(1)
C(18)	0.45070(15)	0.8359(4)	0.38625(13)	0.070(1)
C(82)	0.5156(5)	0.2990(11)	0.3628(4)	0.050(2)
C(87)	0.4649(2)	0.2536(6)	0.3460(2)	0.042(1)
C(88)	0.5064(3)	0.4032(6)	0.3727(3)	0.042(1)
C(17)	0.47068(15)	0.7820(4)	0.35504(14)	0.070(1)
C(16)	0.39331(9)	0.74759(19)	0.23464(9)	0.023(1)
C(15)	0.42875(10)	0.7785(2)	0.27107(9)	0.029(1)
C(19)	0.49080(15)	0.6935(3)	0.38189(13)	0.070(1)
C(20)	0.51244(14)	0.8212(4)	0.34447(13)	0.070(1)
C(21)	0.32498(9)	0.64261(19)	0.15790(8)	0.022(1)
C(22)	0.28420(9)	0.62894(19)	0.12065(8)	0.022(1)
C(23)	0.28713(10)	0.62927(19)	0.07767(8)	0.024(1)
C(24)	0.33054(10)	0.63583(19)	0.06818(9)	0.025(1)
C(25)	0.37171(10)	0.6425(2)	0.10478(9)	0.029(1)
C(26)	0.36948(9)	0.6468(2)	0.14710(9)	0.029(1)
C(27)	0.33592(10)	0.6356(2)	0.02177(9)	0.029(1)
C(28)	0.35903(12)	0.7253(2)	0.01359(10)	0.041(1)
C(29)	0.28706(12)	0.6263(3)	-0.01318(10)	0.044(1)
C(31)	0.15144(10)	0.6353(2)	0.24524(10)	0.032(1)
C(30)	0.36836(16)	0.5560(3)	0.01691(12)	0.058(1)
C(32)	0.19423(11)	0.4605(2)	0.27007(10)	0.033(1)
C(33)	0.13669(11)	0.4912(2)	0.18560(10)	0.039(1)
C(41)	0.27332(11)	0.6682(2)	0.31866(9)	0.031(1)
C(42)	0.32384(10)	0.4948(2)	0.31158(9)	0.031(1)
C(43)	0.26055(11)	0.7631(2)	0.29834(10)	0.035(1)
C(44)	0.29676(12)	0.6716(3)	0.36772(10)	0.042(1)
			Continue	ed on next page

atom	X	<u>y</u>	X	U(eq)
C(45)	0.36961(11)	0.4972(3)	0.35042(11)	0.045(1)
C(46)	0.33036(15)	0.4268(3)	0.27707(13)	0.055(1)
C(51)	0.19391(9)	0.71761(19)	0.11394(9)	0.025(1)
C(52)	0.19605(10)	0.5177(2)	0.10445(9)	0.028(1)
C(53)	0.22088(11)	0.8025(2)	0.13657(10)	0.033(1)
C(54)	0.14255(10)	0.7140(2)	0.11774(11)	0.036(1)
C(55)	0.22791(14)	0.4333(2)	0.11507(12)	0.051(1)
C(56)	0.17456(12)	0.5292(2)	0.05492(10)	0.038(1)
C(61)	0.53692(8)	0.12409(17)	0.28287(8)	0.017(1)
C(62)	0.56387(9)	0.17047(17)	0.32141(8)	0.019(1)
C(63)	0.59824(9)	0.12740(19)	0.35524(9)	0.024(1)
C(64)	0.61089(9)	0.03592(19)	0.35291(9)	0.025(1)
C(65)	0.58673(9)	-0.00939(18)	0.31428(9)	0.023(1)
C(66)	0.55149(9)	0.03140(17)	0.28056(9)	0.020(1)
C(67)	0.64963(11)	-0.0088(2)	0.39079(10)	0.034(1)
C(68)	0.65810(12)	-0.1092(2)	0.38171(11)	0.041(1)
C(69)	0.69792(12)	0.0418(3)	0.39673(12)	0.052(1)
C(70)	0.63450(16)	-0.0048(3)	0.43223(11)	0.057(1)
C(81)	0.59973(10)	0.35952(19)	0.34326(9)	0.028(1)
C(83)	0.63413(11)	0.3430(2)	0.31590(12)	0.044(1)
C(84)	0.62641(13)	0.3548(2)	0.39211(11)	0.050(1)
C(89)	0.5106(4)	0.2824(10)	0.3647(4)	0.042(1)
C(85)	0.4729(3)	0.2044(7)	0.3520(3)	0.050(2)
C(86)	0.4890(3)	0.3688(6)	0.3727(3)	0.050(2)
C(91)	0.5401(2)	0.5451(4)	0.2844(2)	0.037(2)
C(92)	0.5002(2)	0.5371(5)	0.1963(2)	0.041(2)
C(93)	0.4406(2)	0.5144(4)	0.2520(2)	0.033(1)
H(13)	0.3900	0.6867	0.3466	0.031
H(18A)	0.4238	0.8023	0.3917	0.105
H(18B)	0.4393	0.8955	0.3733	0.105
H(18C)	0.4761	0.8449	0.4140	0.105
H(82)	0.5348	0.2682	0.3904	0.060
H(87A)	0.4448	0.2888	0.3212	0.063
H(87B)	0.4496	0.2524	0.3697	0.063
H(87C)	0.4684	0.1909	0.3364	0.063
H(88A)	0.5374	0.4354	0.3827	0.063
H(88B)	0.4901	0.4062	0.3956	0.063
H(88C)	0.4862	0.4322	0.3459	0.063
H(16)	0.3940	0.7675	0.2064	0.028
H(15)	0.4531	0.8180	0.2669	0.035
H(19A)	0.5161	0.7102	0.4086	0.105
H(19B)	0.5042	0.6527	0.3640	0.105
			Conti	nued on next page

Table S18. – continued from previous page

atom	X	У	X	U(eq)
H(19C)	0.4646	0.6622	0.3898	0.105
H(20A)	0.5385	0.8318	0.3716	0.105
H(20B)	0.5032	0.8794	0.3290	0.105
H(20C)	0.5236	0.7788	0.3257	0.105
H(23)	0.2582	0.6248	0.0541	0.028
H(25)	0.4025	0.6441	0.0999	0.035
H(26)	0.3987	0.6528	0.1702	0.034
H(28A)	0.3378	0.7765	0.0152	0.062
H(28B)	0.3639	0.7238	-0.0156	0.062
H(28C)	0.3902	0.7330	0.0359	0.062
H(29A)	0.2715	0.5692	-0.0085	0.067
H(29B)	0.2919	0.6255	-0.0424	0.067
H(29C)	0.2665	0.6781	-0.0110	0.067
H(31A)	0.1248	0.6070	0.2536	0.047
H(31B)	0.1385	0.6789	0.2213	0.047
H(31C)	0.1726	0.6675	0.2706	0.047
H(30A)	0.3995	0.5608	0.0395	0.087
H(30B)	0.3734	0.5584	-0.0122	0.087
H(30C)	0.3529	0.4980	0.0203	0.087
H(32A)	0.2134	0.4863	0.2981	0.049
H(32B)	0.2111	0.4076	0.2627	0.049
H(32C)	0.1627	0.4412	0.2725	0.049
H(33A)	0.1113	0.4734	0.1987	0.058
H(33B)	0.1490	0.4367	0.1746	0.058
H(33C)	0.1234	0.5337	0.1613	0.058
H(41)	0.2418	0.6364	0.3146	0.037
H(42)	0.2972	0.4713	0.3227	0.037
H(43A)	0.2383	0.7934	0.3119	0.052
H(43B)	0.2451	0.7569	0.2667	0.052
H(43C)	0.2900	0.7996	0.3034	0.052
H(44A)	0.2757	0.7044	0.3817	0.063
H(44B)	0.3278	0.7033	0.3739	0.063
H(44C)	0.3020	0.6091	0.3793	0.063
H(45A)	0.3645	0.5372	0.3733	0.067
H(45B)	0.3965	0.5205	0.3407	0.067
H(45C)	0.3772	0.4352	0.3622	0.067
H(46A)	0.3552	0.4494	0.2644	0.083
H(46B)	0.2998	0.4202	0.2538	0.083
H(46C)	0.3402	0.3673	0.2909	0.083
H(51)	0.1916	0.7218	0.0820	0.030
H(52)	0.1683	0.5061	0.1164	0.034
H(53A)	0.2218	0.8025	0.1676	0.050
× /			Co	ontinued on next page

Table S18. – continued from previous page

atom	X	У	X	U(eq)
H(53B)	0.2042	0.8576	0.1223	0.050
H(53C)	0.2539	0.8019	0.1343	0.050
H(54A)	0.1437	0.7106	0.1488	0.054
H(54B)	0.1260	0.6600	0.1023	0.054
H(54C)	0.1250	0.7692	0.1046	0.054
H(55A)	0.2429	0.4295	0.1469	0.076
H(55B)	0.2531	0.4374	0.1003	0.076
H(55C)	0.2083	0.3786	0.1049	0.076
H(56A)	0.1523	0.4786	0.0433	0.057
H(56B)	0.2005	0.5290	0.0409	0.057
H(56C)	0.1570	0.5873	0.0488	0.057
H(63)	0.6137	0.1614	0.3809	0.028
H(65)	0.5949	-0.0713	0.3109	0.027
H(66)	0.5365	-0.0034	0.2550	0.024
H(68A)	0.6826	-0.1351	0.4069	0.061
H(68B)	0.6693	-0.1135	0.3555	0.061
H(68C)	0.6279	-0.1433	0.3768	0.061
H(69A)	0.7234	0.0114	0.4196	0.078
H(69B)	0.6948	0.1053	0.4054	0.078
H(69C)	0.7062	0.0409	0.3690	0.078
H(70A)	0.6588	-0.0352	0.4561	0.085
H(70B)	0.6034	-0.0357	0.4274	0.085
H(70C)	0.6314	0.0592	0.4401	0.085
H(81)	0.5886	0.4242	0.3374	0.034
H(83A)	0.6576	0.3930	0.3207	0.066
H(83B)	0.6158	0.3403	0.2848	0.066
H(83C)	0.6511	0.2849	0.3247	0.066
H(84A)	0.6032	0.3602	0.4091	0.075
H(84B)	0.6498	0.4049	0.4000	0.075
H(84C)	0.6434	0.2962	0.3987	0.075
H(89)	0.5344	0.2643	0.3931	0.050
H(85A)	0.4491	0.2189	0.3240	0.075
H(85B)	0.4565	0.1980	0.3748	0.075
H(85C)	0.4892	0.1470	0.3493	0.075
H(86A)	0.4668	0.3910	0.3452	0.075
H(86B)	0.5146	0.4141	0.3840	0.075
H(86C)	0.4714	0.3591	0.3943	0.075
H(91A)	0.5309	0.6086	0.2763	0.044
H(91B)	0.5725	0.5337	0.2819	0.044
H(91C)	0.5399	0.5342	0.3147	0.044
H(92A)	0.4944	0.6024	0.1995	0.061
H(92B)	0.4747	0.5123	0.1716	0.061
				Continued on next page

Table S18. – continued from previous page
atom	X	У	X	U(eq)
H(92C)	0.5315	0.5288	0.1909	0.061
H(93A)	0.4329	0.4869	0.2772	0.049
H(93B)	0.4160	0.4971	0.2249	0.049
H(93C)	0.4415	0.5811	0.2550	0.049

 Table S18. – continued from previous page

, insouroph				<u></u>		
atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0160(1)	0.0270(1)	0.0149(1)	0.0022(1)	0.0048(1)	-0.0005(1)
C	0.0156(12)	0.0302(15)	0.0182(13)	0.0026(11)	0.0053(10)	0.0025(11)
P(1)	0.0194(3)	0.0300(4)	0.0153(3)	0.0034(3)	0.0057(3)	0.0034(3)
C(1)	0.0176(17)	0.0159(17)	0.0182(18)	0.000	0.0024(14)	0.000
Pd(1)	0.0171(1)	0.0132(1)	0.0207(2)	0.000	-0.0035(1)	0.000
P(2)	0.0154(3)	0.0269(4)	0.0157(3)	0.0013(3)	0.0031(3)	-0.0022(3)
P(3)	0.0210(3)	0.0317(4)	0.0236(4)	0.0023(3)	0.0089(3)	-0.0040(3)
P(4)	0.0168(3)	0.0228(3)	0.0176(3)	-0.0040(3)	-0.0006(3)	0.0034(3)
P(5)	0.0302(6)	0.0147(5)	0.0615(8)	0.000	0.0161(5)	0.000
C(11)	0.0156(12)	0.0261(14)	0.0187(13)	0.0017(11)	0.0045(10)	0.0061(10)
C(12)	0.0175(13)	0.0297(15)	0.0175(13)	0.0022(11)	0.0037(10)	0.0032(11)
C(13)	0.0205(13)	0.0401(17)	0.0167(13)	0.0025(12)	0.0037(11)	0.0044(12)
C(14)	0.0196(14)	0.0450(18)	0.0260(15)	-0.0007(13)	0.0030(12)	0.0036(13)
C(18)	0.0455(11)	0.1050(19)	0.0446(12)	-0.0024(11)	-0.0088(9)	-0.0157(12)
C(82)	0.030(2)	0.079(5)	0.045(3)	-0.005(3)	0.019(2)	0.002(2)
C(87)	0.0222(19)	0.065(4)	0.046(3)	-0.012(2)	0.0208(19)	0.002(2)
C(88)	0.0222(19)	0.065(4)	0.046(3)	-0.012(2)	0.0208(19)	0.002(2)
C(17)	0.0455(11)	0.1050(19)	0.0446(12)	-0.0024(11)	-0.0088(9)	-0.0157(12)
C(16)	0.0217(13)	0.0298(15)	0.0188(13)	0.0036(11)	0.0059(11)	0.0030(11)
C(15)	0.0202(14)	0.0356(16)	0.0297(15)	0.0014(13)	0.0052(12)	-0.0037(12)
C(19)	0.0455(11)	0.1050(19)	0.0446(12)	-0.0024(11)	-0.0088(9)	-0.0157(12)
C(20)	0.0455(11)	0.1050(19)	0.0446(12)	-0.0024(11)	-0.0088(9)	-0.0157(12)
C(21)	0.0183(13)	0.0290(15)	0.0188(13)	0.0013(11)	0.0038(11)	0.0000(11)
C(22)	0.0181(13)	0.0286(14)	0.0191(13)	0.0005(11)	0.0046(10)	-0.0015(11)
C(23)	0.0241(14)	0.0299(15)	0.0147(13)	-0.0020(11)	0.0020(11)	-0.0035(11)
C(24)	0.0277(14)	0.0304(15)	0.0175(13)	-0.0020(11)	0.0082(11)	-0.0025(12)
C(25)	0.0203(14)	0.0446(18)	0.0247(15)	-0.0016(13)	0.0104(12)	-0.0041(12)
C(26)	0.0148(13)	0.0489(18)	0.0206(14)	-0.0021(13)	0.0023(11)	-0.0003(12)
C(27)	0.0326(16)	0.0366(17)	0.0190(14)	-0.0003(12)	0.0107(12)	0.0002(13)
C(28)	0.0396(18)	0.058(2)	0.0262(16)	0.0087(15)	0.0091(14)	-0.0082(16)
C(29)	0.047(2)	0.070(2)	0.0171(15)	-0.0073(15)	0.0097(14)	-0.0198(18)
C(31)	0.0228(14)	0.0389(17)	0.0368(17)	0.0052(14)	0.0146(13)	0.0005(12)
C(30)	0.086(3)	0.065(3)	0.0330(19)	0.0023(18)	0.031(2)	0.026(2)
C(32)	0.0315(16)	0.0368(17)	0.0337(16)	0.0053(13)	0.0162(13)	-0.0037(13)
C(33)	0.0335(17)	0.050(2)	0.0328(17)	0.0007(15)	0.0105(14)	-0.0162(15)
C(41)	0.0279(15)	0.0415(18)	0.0252(15)	-0.0006(13)	0.0116(12)	0.0067(13)
C(42)	0.0283(15)	0.0353(16)	0.0297(15)	0.0110(13)	0.0101(12)	0.0071(13)
C(43)	0.0339(16)	0.0343(17)	0.0377(17)	-0.0069(14)	0.0136(14)	0.0032(13)
C(44)	0.0378(18)	0.057(2)	0.0337(18)	-0.0070(16)	0.0126(15)	0.0000(16)
C(45)	0.0306(17)	0.054(2)	0.044(2)	0.0250(17)	0.0032(15)	0.0090(15)
				. ,	Continue	d on next page

Table S19. Anisotropic displacement parameters (Å²) for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (**3**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(46)	0.075(3)	0.046(2)	0.052(2)	0.0114(18)	0.030(2)	0.031(2)
C(51)	0.0216(14)	0.0314(15)	0.0222(14)	0.0052(12)	0.0068(11)	0.0026(11)
C(52)	0.0274(14)	0.0329(16)	0.0215(14)	0.0000(12)	0.0038(12)	-0.0087(12)
C(53)	0.0361(17)	0.0294(16)	0.0358(17)	-0.0004(13)	0.0140(14)	0.0004(13)
C(54)	0.0235(15)	0.0400(18)	0.0465(19)	0.0069(15)	0.0122(14)	0.0050(13)
C(55)	0.065(2)	0.0312(18)	0.044(2)	-0.0004(15)	-0.0032(18)	0.0023(17)
C(56)	0.0432(18)	0.0401(18)	0.0237(15)	-0.0013(13)	-0.0029(14)	-0.0133(15)
C(61)	0.0144(12)	0.0175(12)	0.0204(13)	0.0020(10)	0.0057(10)	-0.0022(10)
C(62)	0.0158(12)	0.0197(13)	0.0196(13)	0.0028(10)	0.0042(10)	-0.0006(10)
C(63)	0.0206(13)	0.0249(14)	0.0218(14)	0.0032(11)	0.0001(11)	-0.0028(11)
C(64)	0.0192(13)	0.0253(14)	0.0284(15)	0.0114(12)	0.0025(11)	0.0011(11)
C(65)	0.0167(12)	0.0181(13)	0.0337(15)	0.0057(11)	0.0070(11)	-0.0008(10)
C(66)	0.0144(12)	0.0187(13)	0.0260(14)	0.0005(11)	0.0043(10)	-0.0013(10)
C(67)	0.0306(16)	0.0334(17)	0.0324(16)	0.0150(13)	-0.0021(13)	0.0064(13)
C(68)	0.0374(18)	0.0423(19)	0.0388(18)	0.0180(15)	0.0061(14)	0.0155(15)
C(69)	0.0326(18)	0.057(2)	0.052(2)	0.0164(18)	-0.0108(16)	0.0019(16)
C(70)	0.076(3)	0.058(2)	0.0311(18)	0.0150(17)	0.0085(18)	0.031(2)
C(81)	0.0253(14)	0.0224(14)	0.0288(15)	-0.0047(12)	-0.0049(12)	0.0006(11)
C(83)	0.0235(16)	0.046(2)	0.060(2)	-0.0124(17)	0.0091(15)	-0.0087(14)
C(84)	0.052(2)	0.041(2)	0.0386(19)	-0.0049(16)	-0.0167(16)	-0.0104(17)
C(89)	0.0222(19)	0.065(4)	0.046(3)	-0.012(2)	0.0208(19)	0.002(2)
C(85)	0.030(2)	0.079(5)	0.045(3)	-0.005(3)	0.019(2)	0.002(2)
C(86)	0.030(2)	0.079(5)	0.045(3)	-0.005(3)	0.019(2)	0.002(2)
C(91)	0.033(3)	0.017(3)	0.047(4)	-0.005(3)	-0.009(3)	-0.006(2)
C(92)	0.039(4)	0.037(4)	0.044(4)	0.016(3)	0.010(3)	-0.011(3)
C(93)	0.028(3)	0.024(3)	0.042(4)	-0.002(3)	0.004(3)	0.010(2)

Table S19. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.076(3)	Pd-P(2)	2.3099(7)
Pd-P(1)	2.3120(7)	Pd-P(3)	2.3701(7)
C - C(11)	1.433(4)	C - C(21)	1.436(4)
P(1) - C(12)	1.794(3)	P(1) - C(41)	1.846(3)
P(1) - C(42)	1.854(3)	C(1) - C(61)#1	1.434(3)
C(1) - C(61)	1.434(3)	C(1) - Pd(1)	2.074(3)
Pd(1) - P(4)#1	2.3063(7)	Pd(1) - P(4)	2.3063(7)
Pd(1) - P(5)	2.3463(11)	P(2) - C(22)	1.793(3)
P(2) - C(51)	1.844(3)	P(2) - C(52)	1.852(3)
P(3) - C(33)	1.825(3)	P(3) - C(31)	1.826(3)
P(3) - C(32)	1.827(3)	P(4) - C(82)	1.775(11)
P(4) - C(62)	1.797(3)	P(4) - C(81)	1.854(3)
P(4) - C(89)	1.925(9)	P(5) - C(91)	1.707(5)
P(5) - C(91)#1	1.707(5)	P(5) - C(93)#1	1.841(6)
P(5) - C(93)	1.841(6)	P(5) - C(92)#1	1.950(6)
P(5) - C(92)	1.950(6)	C(11) - C(12)	1.429(4)
C(11) - C(16)	1.432(4)	C(12) - C(13)	1.395(4)
C(13) - C(14)	1.387(4)	C(13) - H(13)	0.9500
C(14) - C(15)	1.405(4)	C(14) - C(17)	1.537(5)
C(18) - C(17)	1.510(7)	C(18) - H(18A)	0.9800
C(18) - H(18B)	0.9800	C(18) - H(18C)	0.9800
C(82) - C(87)	1.558(14)	C(82) - C(88)	1.594(17)
C(82) - H(82)	1.0000	C(87) - H(87A)	0.9800
C(87) - H(87B)	0.9800	C(87) - H(87C)	0.9800
C(88)-H(88A)	0.9800	C(88) - H(88B)	0.9800
C(88)-H(88C)	0.9800	C(17) - C(20)	1.464(6)
C(17) - C(19)	1.568(7)	C(16) - C(15)	1.382(4)
C(16) - H(16)	0.9500	C(15) - H(15)	0.9500
C(19)-H(19A)	0.9800	C(19) - H(19B)	0.9800
C(19) - H(19C)	0.9800	C(20) - H(20A)	0.9800
C(20) - H(20B)	0.9800	C(20) - H(20C)	0.9800
C(21) - C(22)	1.424(4)	C(21) - C(26)	1.430(4)
C(22) - C(23)	1.396(4)	C(23) - C(24)	1.380(4)
C(23)-H(23)	0.9500	C(24) - C(25)	1.407(4)
C(24) - C(27)	1.531(4)	C(25) - C(26)	1.370(4)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(27)-C(28)	1.529(4)	C(27) - C(29)	1.531(4)
C(27) - C(30)	1.532(5)	C(28) - H(28A)	0.9800
C(28)-H(28B)	0.9800	C(28) - H(28C)	0.9800
C(29)-H(29A)	0.9800	C(29) - H(29B)	0.9800
C(29)-H(29C)	0.9800	C(31) - H(31A)	0.9800
		Cont	tinued on next page

Table S20. Distances [Å] for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

atom – atom	distance	atom – atom	distance
C(31)-H(31B)	0.9800	C(31) – H(31C)	0.9800
C(30) - H(30A)	0.9800	C(30) - H(30B)	0.9800
C(30) - H(30C)	0.9800	C(32) - H(32A)	0.9800
C(32)-H(32B)	0.9800	C(32) - H(32C)	0.9800
C(33)-H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(41) - C(44)	1.512(4)
C(41) - C(43)	1.530(4)	C(41) - H(41)	1.0000
C(42) - C(45)	1.528(4)	C(42) - C(46)	1.535(5)
C(42) - H(42)	1.0000	C(43) - H(43A)	0.9800
C(43) - H(43B)	0.9800	C(43) - H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(45) - H(45A)	0.9800
C(45) - H(45B)	0.9800	C(45) - H(45C)	0.9800
C(46) - H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(51) - C(54)	1.529(4)
C(51) - C(53)	1.531(4)	C(51) - H(51)	1.0000
C(52) - C(55)	1.519(4)	C(52) - C(56)	1.527(4)
C(52) - H(52)	1.0000	C(53) - H(53A)	0.9800
C(53) - H(53B)	0.9800	C(53) - H(53C)	0.9800
C(54) - H(54A)	0.9800	C(54) - H(54B)	0.9800
C(54) - H(54C)	0.9800	C(55) - H(55A)	0.9800
C(55) - H(55B)	0.9800	C(55) - H(55C)	0.9800
C(56) - H(56A)	0.9800	C(56) - H(56B)	0.9800
C(56) - H(56C)	0.9800	C(61) - C(62)	1.421(3)
C(61) - C(66)	1.428(4)	C(62) - C(63)	1.387(4)
C(63) - C(64)	1.395(4)	C(63) - H(63)	0.9500
C(64) - C(65)	1.393(4)	C(64) - C(67)	1.535(4)
C(65) - C(66)	1.383(4)	C(65) - H(65)	0.9500
C(66) - H(66)	0.9500	C(67) - C(70)	1.508(5)
C(67) - C(68)	1.530(5)	C(67) - C(69)	1.546(5)
C(68) - H(68A)	0.9800	C(68) - H(68B)	0.9800
C(68) - H(68C)	0.9800	C(69) - H(69A)	0.9800
C(69) - H(69B)	0.9800	C(69) - H(69C)	0.9800
C(70) - H(70A)	0.9800	C(70) - H(70B)	0.9800
C(70) - H(70C)	0.9800	C(81) - C(83)	1.522(4)
C(81) - C(84)	1.524(4)	C(81) - H(81)	1.0000
C(83) - H(83A)	0.9800	C(83) - H(83B)	0.9800
C(83) - H(83C)	0.9800	C(84) - H(84A)	0.9800
C(84) - H(84B)	0.9800	C(84) - H(84C)	0.9800
C(89) - C(86)	1.464(15)	C(89) - C(85)	1.548(14)
C(89) - H(89)	1.0000	C(85) - H(85A)	0.9800
C(85)-H(85B)	0.9800	C(85) - H(85C)	0.9800
			Continued on next page

Table S20. – continued from previous page

atom – atom	distance	atom – atom	distance
C(86)-H(86A)	0.9800	C(86)-H(86B)	0.9800
C(86) - H(86C)	0.9800	C(91)-H(91A)	0.9800
C(91) - H(91B)	0.9800	C(91) - H(91C)	0.9800
C(92)-H(92A)	0.9800	C(92) - H(92B)	0.9800
C(92) - H(92C)	0.9800	C(93)-H(93A)	0.9800
C(93)-H(93B)	0.9800	C(93) – H(93C)	0.9800

Table S20. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C - Pd - P(2)	81.08(7)	C - Pd - P(1)	81.43(7)
P(2) - Pd - P(1)	162.38(3)	C-Pd-P(3)	177.04(7)
P(2) - Pd - P(3)	101.73(3)	P(1) - Pd - P(3)	95.73(3)
C(11) - C - C(21)	122.7(2)	C(11) - C - Pd	118.51(18)
C(21) - C - Pd	118.79(18)	C(12) - P(1) - C(41)	108.12(14)
C(12) - P(1) - C(42)	108.88(13)	C(41) - P(1) - C(42)	106.72(14)
C(12) - P(1) - Pd	103.94(9)	C(41) - P(1) - Pd	111.80(10)
C(42) - P(1) - Pd	117.07(10)	C(61)#1 - C(1) - C(61)	123.0(3)
C(61)#1 - C(1) - Pd(1)	118.51(16)	C(61) - C(1) - Pd(1)	118.51(16)
C(1) - Pd(1) - P(4)#1	80.846(18)	C(1) - Pd(1) - P(4)	80.846(18)
P(4)#1 - Pd(1) - P(4)	161.69(4)	C(1) - Pd(1) - P(5)	180.0
P(4)#1 - Pd(1) - P(5)	99.154(18)	P(4) - Pd(1) - P(5)	99.154(18)
C(22) - P(2) - C(51)	104.26(12)	C(22) - P(2) - C(52)	107.71(13)
C(51) - P(2) - C(52)	105.45(13)	C(22) - P(2) - Pd	104.12(9)
C(51) - P(2) - Pd	117.33(9)	C(52) - P(2) - Pd	116.91(9)
C(33) - P(3) - C(31)	99.45(15)	C(33) - P(3) - C(32)	98.08(15)
C(31) - P(3) - C(32)	102.62(14)	C(33) - P(3) - Pd	122.11(10)
C(31) - P(3) - Pd	114.83(10)	C(32) - P(3) - Pd	116.43(10)
C(82) - P(4) - C(62)	107.7(5)	C(82) - P(4) - C(81)	102.5(5)
C(62) - P(4) - C(81)	108.59(12)	C(62) - P(4) - C(89)	100.7(4)
C(81) - P(4) - C(89)	108.8(4)	C(82) - P(4) - Pd(1)	117.3(5)
C(62) - P(4) - Pd(1)	103.44(9)	C(81) - P(4) - Pd(1)	117.02(10)
C(89) - P(4) - Pd(1)	116.6(4)	C(91) - P(5) - C(91)#1	103.9(4)
C(91) - P(5) - C(93)#1	49.6(3)	C(91)#1 - P(5) - C(93)#1	104.1(3)
C(91) - P(5) - C(93)	104.1(3)	C(91)#1 - P(5) - C(93)	49.6(3)
C(93)#1 - P(5) - C(93)	141.7(4)	C(91) - P(5) - C(92)#1	47.0(3)
C(91)#1 - P(5) - C(92)#1	95.2(3)	C(93)#1 - P(5) - C(92)#1	96.6(3)
C(93) - P(5) - C(92)#1	64.6(3)	C(91) - P(5) - C(92)	95.2(3)
C(91)#1 - P(5) - C(92)	47.0(3)	C(93)#1 - P(5) - C(92)	64.6(3)
C(93) - P(5) - C(92)	96.6(3)	C(92)#1 - P(5) - C(92)	122.7(4)
C(91) - P(5) - Pd(1)	128.0(2)	C(91)#1 - P(5) - Pd(1)	128.0(2)
C(93)#1 - P(5) - Pd(1)	109.13(19)	C(93) - P(5) - Pd(1)	109.13(19)
C(92)#1 - P(5) - Pd(1)	118.7(2)	C(92) - P(5) - Pd(1)	118.7(2)
C(12) - C(11) - C(16)	113.2(2)	C(12) - C(11) - C	120.9(2)
C(16) - C(11) - C	125.9(2)	C(13) - C(12) - C(11)	122.7(2)
C(13) - C(12) - P(1)	125.4(2)	C(11) - C(12) - P(1)	111.83(19)
C(14) - C(13) - C(12)	122.5(3)	C(14) - C(13) - H(13)	118.8
C(12) - C(13) - H(13)	118.8	C(13) - C(14) - C(15)	115.9(3)
C(13) - C(14) - C(17)	120.4(3)	C(15) - C(14) - C(17)	123.8(3)
C(17) - C(18) - H(18A)	109.5	C(17) - C(18) - H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5	C(17) - C(18) - H(18C)	109.5
		Continue	ed on next page

Table S21. Angles [°] for $[PC(sp^2)P]^{tBu}Pd(PMe_3)$ (3).

atom – atom – atom	angle	atom – atom – atom	angle
H(18A) - C(18) - H(18C)	109.5	H(18B) - C(18) - H(18C)	109.5
C(87) - C(82) - C(88)	106.4(9)	C(87) - C(82) - P(4)	108.4(9)
C(88) - C(82) - P(4)	112.3(7)	C(87) - C(82) - H(82)	109.9
C(88) - C(82) - H(82)	110.2	P(4) - C(82) - H(82)	109.5
C(82) - C(87) - H(87A)	109.5	C(82) - C(87) - H(87B)	110.0
H(87A) - C(87) - H(87B)	109.5	C(82) - C(87) - H(87C)	109.6
H(87A) - C(87) - H(87C)	109.5	H(87B) - C(87) - H(87C)	109.5
C(82) - C(88) - H(88A)	108.4	C(82) - C(88) - H(88B)	110.0
H(88A) - C(88) - H(88B)	109.5	C(82) - C(88) - H(88C)	109.0
H(88A) - C(88) - H(88C)	109.5	H(88B) - C(88) - H(88C)	109.5
C(20) - C(17) - C(18)	116.6(4)	C(20) - C(17) - C(14)	112.8(3)
C(18) - C(17) - C(14)	110.8(3)	C(20) - C(17) - C(19)	104.4(4)
C(18) - C(17) - C(19)	103.0(4)	C(14) - C(17) - C(19)	108.2(4)
C(15) - C(16) - C(11)	122.9(3)	C(15) - C(16) - H(16)	118.6
C(11) - C(16) - H(16)	118.6	C(16) - C(15) - C(14)	122.4(3)
C(16) - C(15) - H(15)	118.8	C(14) - C(15) - H(15)	118.8
C(17) - C(19) - H(19A)	109.5	C(17) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5	C(17) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5	H(19B) - C(19) - H(19C)	109.5
C(17) - C(20) - H(20A)	109.5	C(17) - C(20) - H(20B)	109.5
H(20A) - C(20) - H(20B)	109.5	C(17) - C(20) - H(20C)	109.5
H(20A) - C(20) - H(20C)	109.5	H(20B) - C(20) - H(20C)	109.5
C(22) - C(21) - C(26)	113.2(2)	C(22) - C(21) - C	120.9(2)
C(26) - C(21) - C	125.9(2)	C(23) - C(22) - C(21)	122.9(2)
C(23) - C(22) - P(2)	125.4(2)	C(21) - C(22) - P(2)	111.64(19)
C(24) - C(23) - C(22)	122.3(2)	C(24) - C(23) - H(23)	118.8
C(22) - C(23) - H(23)	118.8	C(23) - C(24) - C(25)	115.5(2)
C(23) - C(24) - C(27)	124.6(2)	C(25) - C(24) - C(27)	120.0(2)
C(26) - C(25) - C(24)	123.1(3)	C(26) - C(25) - H(25)	118.4
C(24) - C(25) - H(25)	118.4	C(25) - C(26) - C(21)	122.6(2)
C(25) - C(26) - H(26)	118.7	C(21) - C(26) - H(26)	118.7
C(28) - C(27) - C(24)	109.6(2)	C(28) - C(27) - C(29)	108.1(3)
C(24) - C(27) - C(29)	111.7(2)	C(28) - C(27) - C(30)	108.8(3)
C(24) - C(27) - C(30)	109.7(2)	C(29) - C(27) - C(30)	108.9(3)
C(27) - C(28) - H(28A)	109.5	C(27) - C(28) - H(28B)	109.5
H(28A) - C(28) - H(28B)	109.5	C(27) - C(28) - H(28C)	109.5
H(28A) - C(28) - H(28C)	109.5	H(28B) - C(28) - H(28C)	109.5
C(27) - C(29) - H(29A)	109.5	C(27) - C(29) - H(29B)	109.5
H(29A) - C(29) - H(29B)	109.5	C(27) - C(29) - H(29C)	109.5
H(29A) - C(29) - H(29C)	109.5	H(29B) - C(29) - H(29C)	109.5
P(3) - C(31) - H(31A)	109.5	P(3) - C(31) - H(31B)	109.5
H(31A) - C(31) - H(31B)	109.5	P(3) - C(31) - H(31C)	109.5
		Continue	d on next page

Table S21. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(31A) - C(31) - H(31C)	109.5	H(31B) - C(31) - H(31C)	109.5
C(27) - C(30) - H(30A)	109.5	C(27) - C(30) - H(30B)	109.5
H(30A) - C(30) - H(30B)	109.5	C(27) - C(30) - H(30C)	109.5
H(30A) - C(30) - H(30C)	109.5	H(30B) - C(30) - H(30C)	109.5
P(3) - C(32) - H(32A)	109.5	P(3) - C(32) - H(32B)	109.5
H(32A) - C(32) - H(32B)	109.5	P(3) - C(32) - H(32C)	109.5
H(32A) - C(32) - H(32C)	109.5	H(32B) - C(32) - H(32C)	109.5
P(3) - C(33) - H(33A)	109.5	P(3) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	P(3) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(44) - C(41) - C(43)	112.9(3)	C(44) - C(41) - P(1)	119.2(2)
C(43) - C(41) - P(1)	107.2(2)	C(44) - C(41) - H(41)	105.5
C(43) - C(41) - H(41)	105.5	P(1) - C(41) - H(41)	105.5
C(45) - C(42) - C(46)	109.6(3)	C(45) - C(42) - P(1)	116.5(2)
C(46) - C(42) - P(1)	108.2(2)	C(45) - C(42) - H(42)	107.4
C(46) - C(42) - H(42)	107.4	P(1) - C(42) - H(42)	107.4
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(54) - C(51) - C(53)	111.4(2)	C(54) - C(51) - P(2)	113.3(2)
C(53) - C(51) - P(2)	108.97(19)	C(54) - C(51) - H(51)	107.6
C(53) - C(51) - H(51)	107.6	P(2) - C(51) - H(51)	107.6
C(55) - C(52) - C(56)	110.9(3)	C(55) - C(52) - P(2)	108.2(2)
C(56) - C(52) - P(2)	118.1(2)	C(55) - C(52) - H(52)	106.3
C(56) - C(52) - H(52)	106.3	P(2) - C(52) - H(52)	106.3
C(51) - C(53) - H(53A)	109.5	C(51) - C(53) - H(53B)	109.5
H(53A) - C(53) - H(53B)	109.5	C(51) - C(53) - H(53C)	109.5
H(53A) - C(53) - H(53C)	109.5	H(53B) - C(53) - H(53C)	109.5
C(51) - C(54) - H(54A)	109.5	C(51) - C(54) - H(54B)	109.5
H(54A) - C(54) - H(54B)	109.5	C(51) - C(54) - H(54C)	109.5
H(54A) - C(54) - H(54C)	109.5	H(54B) - C(54) - H(54C)	109.5
C(52) - C(55) - H(55A)	109.5	C(52) - C(55) - H(55B)	109.5
H(55A) - C(55) - H(55B)	109.5	C(52) - C(55) - H(55C)	109.5
		Continue	ed on next page

Table S21. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(55A) - C(55) - H(55C)	109.5	H(55B) - C(55) - H(55C)	109.5
C(52) - C(56) - H(56A)	109.5	C(52) - C(56) - H(56B)	109.5
H(56A) - C(56) - H(56B)	109.5	C(52) - C(56) - H(56C)	109.5
H(56A) - C(56) - H(56C)	109.5	H(56B) - C(56) - H(56C)	109.5
C(62) - C(61) - C(66)	113.7(2)	C(62) - C(61) - C(1)	120.6(2)
C(66) - C(61) - C(1)	125.7(2)	C(63) - C(62) - C(61)	122.9(2)
C(63) - C(62) - P(4)	125.3(2)	C(61) - C(62) - P(4)	111.65(18)
C(62) - C(63) - C(64)	122.3(3)	C(62) - C(63) - H(63)	118.8
C(64) - C(63) - H(63)	118.8	C(65) - C(64) - C(63)	115.5(2)
C(65) - C(64) - C(67)	123.8(3)	C(63) - C(64) - C(67)	120.7(3)
C(66) - C(65) - C(64)	123.2(3)	C(66) - C(65) - H(65)	118.4
C(64) - C(65) - H(65)	118.4	C(65) - C(66) - C(61)	122.1(2)
C(65) - C(66) - H(66)	118.9	C(61) - C(66) - H(66)	118.9
C(70) - C(67) - C(68)	107.9(3)	C(70) - C(67) - C(64)	109.8(3)
C(68) - C(67) - C(64)	112.4(3)	C(70) - C(67) - C(69)	111.0(3)
C(68) - C(67) - C(69)	107.1(3)	C(64) - C(67) - C(69)	108.7(2)
C(67) - C(68) - H(68A)	109.5	C(67) - C(68) - H(68B)	109.5
H(68A) - C(68) - H(68B)	109.5	C(67) - C(68) - H(68C)	109.5
H(68A) - C(68) - H(68C)	109.5	H(68B) - C(68) - H(68C)	109.5
C(67) - C(69) - H(69A)	109.5	C(67) - C(69) - H(69B)	109.5
H(69A) - C(69) - H(69B)	109.5	C(67) - C(69) - H(69C)	109.5
H(69A) - C(69) - H(69C)	109.5	H(69B) - C(69) - H(69C)	109.5
C(67) - C(70) - H(70A)	109.5	C(67) - C(70) - H(70B)	109.5
H(70A) - C(70) - H(70B)	109.5	C(67) - C(70) - H(70C)	109.5
H(70A) - C(70) - H(70C)	109.5	H(70B) - C(70) - H(70C)	109.5
C(83) - C(81) - C(84)	110.8(3)	C(83) - C(81) - P(4)	109.0(2)
C(84) - C(81) - P(4)	118.5(2)	C(83) - C(81) - H(81)	105.9
C(84) - C(81) - H(81)	105.9	P(4) - C(81) - H(81)	105.9
C(81) - C(83) - H(83A)	109.5	C(81) - C(83) - H(83B)	109.5
H(83A) - C(83) - H(83B)	109.5	C(81) - C(83) - H(83C)	109.5
H(83A) - C(83) - H(83C)	109.5	H(83B) - C(83) - H(83C)	109.5
C(81) - C(84) - H(84A)	109.5	C(81) - C(84) - H(84B)	109.5
H(84A) - C(84) - H(84B)	109.5	C(81) - C(84) - H(84C)	109.5
H(84A) - C(84) - H(84C)	109.5	H(84B) - C(84) - H(84C)	109.5
C(86) - C(89) - C(85)	112.2(8)	C(86) - C(89) - P(4)	115.3(7)
C(85) - C(89) - P(4)	108.5(8)	C(86) - C(89) - H(89)	106.4
C(85) - C(89) - H(89)	106.8	P(4) - C(89) - H(89)	107.2
P(5) - C(91) - H(91A)	109.5	P(5) - C(91) - H(91B)	109.5
P(5) - C(91) - H(91C)	109.5	P(5) - C(92) - H(92A)	109.5
P(5) - C(92) - H(92B)	109.5	P(5) - C(92) - H(92C)	109.5
P(5) - C(93) - H(93A)	109.5	P(5) - C(93) - H(93B)	109.5
P(5) - C(93) - H(93C)	109.5		

Table S21. – continued from previous page

4.4 Crystal data for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5)

Figure S62. Thermal-ellipsoid representation of $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5) at 50% probability. Hydrogen atoms were omitted for clarity.

(•).		
Identification code:	pc26	
Empirical formula:	$C_{54}H_{61}BF_{15}P_3Pd$	
Formula weight:	1205.15	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 14.7706(10) Å	$\alpha = 90^{\circ}$
	b = 13.9199(9) Å	$\beta = 93.208(2)^{\circ}$
	c = 28.5994(19) Å	$\gamma = 90^{\circ}$
Volume:	$5871.0(7) \text{ Å}^3$	•
Z:	4	
Density (calculated):	$1.363 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.479 mm^{-1}	
F(000):	2464	
Crystal size:	$0.09 \times 0.08 \times 0.08 \text{ mm}^3$	
θ range for data collection:	1.38 to 25.00°	
Index ranges:	$-17 \le h \le 17, -13 \le k \le 16, -33 \le l \le 34$	
Reflections collected:	92881	
Independent reflections:	$10345 [R_{int} = 0.0419]$	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.9876 and 0.9029	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	10345 / 0 / 685	
Goodness-of-fit on F ² :	1.066	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0379, wR_2 = 0.0880$	
R indices (all data):	$R_1 = 0.0481, wR_2 = 0.0917$	
Largest diff. peak and hole:	0.600 and $-0.364 \text{ e}^{-1} \text{Å}^{-3}$	

Table S22. Crystal data and structure refinement for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{/Bu}Pd(PMe_3)$ (5).

atom	<u> </u>	y	Z	U(eq)
Pd	0.91902(1)	0.21635(2)	0.33807(1)	0.019(1)
C(1)	1.3489(2)	-0.0048(2)	0.38490(12)	0.035(1)
P(1)	1.06856(5)	0.21494(5)	0.31722(2)	0.021(1)
C(2)	0.9218(2)	0.3319(2)	0.56875(10)	0.029(1)
P(2)	0.80699(5)	0.23980(5)	0.39204(2)	0.020(1)
P(3)	0.84292(6)	0.28242(6)	0.27057(3)	0.032(1)
C(11)	1.06663(18)	0.0860(2)	0.38726(9)	0.020(1)
C(12)	1.12250(18)	0.12541(19)	0.35525(9)	0.021(1)
C(14)	1.24891(19)	0.0257(2)	0.38403(11)	0.027(1)
C(13)	1.21361(19)	0.0970(2)	0.35460(10)	0.026(1)
C(15)	1.1909(2)	-0.0165(2)	0.41451(10)	0.027(1)
C(17)	1.3547(2)	-0.1137(3)	0.37983(15)	0.048(1)
C(16)	1.10166(19)	0.0125(2)	0.41624(9)	0.024(1)
C(18)	1.3983(2)	0.0381(3)	0.34469(16)	0.056(1)
C(19)	1.3947(3)	0.0268(3)	0.43096(16)	0.065(1)
C(21)	0.96488(17)	0.18424(19)	0.43736(9)	0.018(1)
C(22)	0.88289(17)	0.23096(19)	0.44420(9)	0.020(1)
C(23)	0.86761(18)	0.2740(2)	0.48690(9)	0.022(1)
C(24)	0.93541(19)	0.2795(2)	0.52236(9)	0.023(1)
C(25)	1.01896(19)	0.2403(2)	0.51382(10)	0.024(1)
C(26)	1.03356(18)	0.1922(2)	0.47251(9)	0.022(1)
C(27)	0.8241(2)	0.3610(3)	0.57379(13)	0.053(1)
C(28)	0.9499(3)	0.2665(3)	0.60927(12)	0.055(1)
C(29)	0.9823(3)	0.4199(3)	0.57145(13)	0.049(1)
C(31)	0.7811(3)	0.1822(3)	0.24294(13)	0.052(1)
C(32)	0.7537(3)	0.3726(3)	0.27134(12)	0.051(1)
C(33)	0.9051(3)	0.3286(3)	0.22246(11)	0.043(1)
С	0.97156(17)	0.12453(19)	0.39355(9)	0.018(1)
C(41)	1.0973(2)	0.1894(2)	0.25628(10)	0.027(1)
C(42)	1.13049(19)	0.3265(2)	0.33325(10)	0.026(1)
C(43)	1.0447(2)	0.1030(2)	0.23742(11)	0.039(1)
C(44)	1.1971(2)	0.1778(3)	0.24702(12)	0.040(1)
C(46)	1.0945(2)	0.4125(2)	0.30521(11)	0.036(1)
C(45)	1.1285(2)	0.3449(2)	0.38545(11)	0.034(1)
C(51)	0.70997(19)	0.1560(2)	0.39591(10)	0.028(1)
C(52)	0.76229(19)	0.3637(2)	0.39032(11)	0.027(1)
F	0.80846(11)	-0.30447(12)	0.37846(6)	0.030(1)
C(54)	0.6320(2)	0.1848(3)	0.36193(13)	0.045(1)
C(53)	0.6797(2)	0.1387(3)	0.44539(11)	0.037(1)
			Conti	inued on next page

Table S23. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	y	X	U(eq)
C(55)	0.6972(2)	0.3948(2)	0.42761(12)	0.038(1)
C(56)	0.8416(2)	0.4344(2)	0.38884(12)	0.033(1)
C(61)	0.79361(18)	-0.1326(2)	0.39081(9)	0.021(1)
C(62)	0.83480(19)	-0.0947(2)	0.35208(9)	0.023(1)
F(62)	0.82115(12)	-0.13894(12)	0.30996(5)	0.032(1)
C(63)	0.88822(18)	-0.0148(2)	0.35324(9)	0.022(1)
F(63)	0.92340(11)	0.01303(11)	0.31246(5)	0.028(1)
C(64)	0.90893(17)	0.03786(19)	0.39369(9)	0.018(1)
C(65)	0.87157(18)	-0.00149(19)	0.43291(9)	0.020(1)
F(65)	0.89045(11)	0.03528(12)	0.47611(5)	0.026(1)
C(66)	0.81544(18)	-0.0807(2)	0.43078(9)	0.020(1)
F(66)	0.78335(11)	-0.10797(11)	0.47231(5)	0.026(1)
C(71)	0.68901(19)	-0.2617(2)	0.43495(10)	0.025(1)
C(72)	0.6145(2)	-0.2084(2)	0.44731(10)	0.033(1)
F(72)	0.58987(12)	-0.13048(14)	0.42161(7)	0.043(1)
C(73)	0.5643(2)	-0.2279(3)	0.48451(13)	0.046(1)
F(73)	0.49189(14)	-0.1735(2)	0.49371(8)	0.070(1)
C(74)	0.5874(3)	-0.3042(3)	0.51284(13)	0.055(1)
F(74)	0.5382(2)	-0.3251(2)	0.54954(9)	0.095(1)
C(76)	0.7112(2)	-0.3363(2)	0.46510(11)	0.033(1)
F(76)	0.78388(14)	-0.39240(13)	0.45911(7)	0.044(1)
C(81)	0.66178(19)	-0.2414(2)	0.34423(10)	0.025(1)
C(82)	0.6336(2)	-0.3305(2)	0.32751(11)	0.033(1)
F(82)	0.67027(13)	-0.41134(13)	0.34649(7)	0.043(1)
C(83)	0.5698(2)	-0.3439(3)	0.29162(13)	0.047(1)
F(83)	0.54889(17)	-0.43279(19)	0.27609(8)	0.072(1)
C(84)	0.5265(3)	-0.2665(4)	0.27186(13)	0.056(1)
F(84)	0.46127(18)	-0.2781(2)	0.23774(9)	0.095(1)
C(85)	0.5492(2)	-0.1773(3)	0.28725(13)	0.050(1)
F(85)	0.50709(18)	-0.1000(2)	0.26799(9)	0.080(1)
C(86)	0.6166(2)	-0.1655(2)	0.32225(11)	0.033(1)
F(86)	0.63713(13)	-0.07388(13)	0.33447(7)	0.043(1)
C(75)	0.6615(3)	-0.3584(3)	0.50347(12)	0.048(1)
F(75)	0.68666(19)	-0.43324(19)	0.53107(9)	0.079(1)
В	0.7405(2)	-0.2355(2)	0.38736(11)	0.023(1)
H(13)	1.2519	0.1274	0.3335	0.031
H(15)	1.2130	-0.0665	0.4347	0.033
H(17A)	1.4184	-0.1328	0.3784	0.071
H(17B)	1.3209	-0.1337	0.3510	0.071
H(17C)	1.3287	-0.1445	0.4068	0.071
H(16)	1.0636	-0.0180	0.4374	0.029
H(18A)	1.4002	0.1081	0.3479	0.085
			Continue	ed on next page

Table S23. – continued from previous page

atom	X	y	X	U(eq)
H(18B)	1.3662	0.0209	0.3149	0.085
H(18C)	1.4603	0.0128	0.3453	0.085
H(19A)	1.3917	0.0969	0.4335	0.097
H(19B)	1.4583	0.0063	0.4324	0.097
H(19C)	1.3637	-0.0024	0.4569	0.097
H(23)	0.8096	0.3003	0.4919	0.027
H(25)	1.0675	0.2464	0.5369	0.028
H(26)	1.0912	0.1642	0.4681	0.026
H(27A)	0.7851	0.3041	0.5707	0.079
H(27B)	0.8059	0.4075	0.5493	0.079
H(27C)	0.8180	0.3902	0.6046	0.079
H(28A)	0.9433	0.3006	0.6389	0.082
H(28B)	1.0133	0.2473	0.6069	0.082
H(28C)	0.9113	0.2092	0.6083	0.082
H(29A)	0.9777	0.4511	0.6019	0.074
H(29B)	0.9630	0.4649	0.5465	0.074
H(29C)	1.0453	0.4006	0.5677	0.074
H(31A)	0.8239	0.1312	0.2357	0.078
H(31B)	0.7492	0.2042	0.2139	0.078
H(31C)	0.7371	0.1573	0.2643	0.078
H(32A)	0.7028	0.3472	0.2881	0.076
H(32B)	0.7329	0.3885	0.2391	0.076
H(32C)	0.7774	0.4305	0.2872	0.076
H(33A)	0.9416	0.3839	0.2332	0.065
H(33B)	0.8623	0.3485	0.1969	0.065
H(33C)	0.9450	0.2783	0.2113	0.065
H(41)	1.0750	0.2456	0.2371	0.033
H(42)	1.1953	0.3170	0.3258	0.032
H(43A)	1.0659	0.0452	0.2542	0.058
H(43B)	1.0540	0.0956	0.2040	0.058
H(43C)	0.9799	0.1123	0.2419	0.058
H(44A)	1.2316	0.2317	0.2611	0.060
H(44B)	1.2044	0.1769	0.2132	0.060
H(44C)	1.2198	0.1174	0.2608	0.060
H(46A)	1.0309	0.4236	0.3118	0.053
H(46B)	1.0990	0.3999	0.2717	0.053
H(46C)	1.1303	0.4696	0.3141	0.053
H(45A)	1.1549	0.2899	0.4027	0.051
H(45B)	1.0656	0.3539	0.3938	0.051
H(45C)	1.1636	0.4029	0.3936	0.051
H(51)	0.7317	0.0924	0.3847	0.034
H(52)	0.7274	0.3702	0.3595	0.032
<u> </u>			Continue	ed on next page

Table S23. – continued from previous page

	F	1.0		
atom	X	У	X	U(eq)
H(54A)	0.5864	0.1336	0.3602	0.067
H(54B)	0.6548	0.1953	0.3308	0.067
H(54C)	0.6044	0.2442	0.3728	0.067
H(53A)	0.7323	0.1205	0.4659	0.055
H(53B)	0.6347	0.0869	0.4448	0.055
H(53C)	0.6528	0.1977	0.4572	0.055
H(55A)	0.7313	0.4036	0.4577	0.057
H(55B)	0.6509	0.3451	0.4308	0.057
H(55C)	0.6678	0.4554	0.4181	0.057
H(56A)	0.8182	0.4990	0.3819	0.050
H(56B)	0.8817	0.4147	0.3644	0.050
H(56C)	0.8757	0.4346	0.4192	0.050

	1	C	•	
Table S23. –	continued	from	previous	page

$-2\pi^2[h^2a^*]$	$-2\pi^2 [h^2 a^{*2} U_{11} + + 2hka^* b^* U_{12}].$					
atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0193(1)	0.0212(1)	0.0150(1)	0.0020(1)	0.0001(1)	0.0011(1)
C(1)	0.0225(16)	0.0330(18)	0.050(2)	-0.0021(15)	-0.0005(14)	0.0041(14)
P(1)	0.0230(4)	0.0199(4)	0.0204(4)	0.0022(3)	0.0054(3)	0.0004(3)
C(2)	0.0322(16)	0.0349(18)	0.0209(15)	-0.0086(13)	0.0053(12)	-0.0014(14)
P(2)	0.0156(3)	0.0245(4)	0.0202(4)	0.0004(3)	-0.0002(3)	0.0016(3)
P(3)	0.0384(5)	0.0366(5)	0.0212(4)	0.0039(3)	-0.0062(3)	0.0063(4)
C(11)	0.0202(14)	0.0234(14)	0.0174(14)	-0.0024(11)	-0.0002(11)	0.0024(11)
C(12)	0.0231(14)	0.0191(14)	0.0220(14)	-0.0001(11)	0.0021(11)	0.0000(11)
C(14)	0.0208(14)	0.0267(16)	0.0338(17)	-0.0076(13)	0.0015(12)	0.0040(12)
C(13)	0.0218(14)	0.0253(16)	0.0307(16)	0.0007(13)	0.0052(12)	0.0009(12)
C(15)	0.0300(16)	0.0260(16)	0.0253(15)	0.0020(12)	-0.0010(12)	0.0071(13)
C(17)	0.0287(18)	0.041(2)	0.074(3)	-0.0024(19)	0.0033(17)	0.0099(15)
C(16)	0.0252(15)	0.0295(16)	0.0185(14)	0.0028(12)	0.0022(11)	0.0042(12)
C(18)	0.0245(18)	0.053(2)	0.093(3)	0.002(2)	0.0123(19)	0.0072(17)
C(19)	0.035(2)	0.081(3)	0.076(3)	-0.029(2)	-0.018(2)	0.014(2)
C(21)	0.0211(14)	0.0191(13)	0.0152(13)	0.0023(11)	0.0023(11)	-0.0010(11)
C(22)	0.0177(13)	0.0230(15)	0.0180(13)	0.0010(11)	0.0008(10)	-0.0012(11)
C(23)	0.0208(14)	0.0229(15)	0.0234(14)	-0.0017(12)	0.0042(11)	0.0009(12)
C(24)	0.0286(15)	0.0216(14)	0.0200(14)	-0.0005(12)	0.0031(12)	-0.0009(12)
C(25)	0.0237(14)	0.0258(15)	0.0208(14)	0.0001(12)	-0.0033(11)	-0.0016(12)
C(26)	0.0200(14)	0.0244(15)	0.0217(14)	0.0001(12)	0.0002(11)	0.0024(11)
C(27)	0.038(2)	0.082(3)	0.039(2)	-0.029(2)	0.0094(16)	0.003(2)
C(28)	0.088(3)	0.054(2)	0.0234(18)	-0.0067(17)	0.0096(18)	0.008(2)
C(29)	0.056(2)	0.045(2)	0.048(2)	-0.0230(18)	0.0157(18)	-0.0085(18)
C(31)	0.054(2)	0.061(2)	0.038(2)	-0.0024(18)	-0.0154(17)	-0.003(2)
C(32)	0.057(2)	0.063(3)	0.0318(19)	0.0106(18)	-0.0076(17)	0.025(2)
C(33)	0.059(2)	0.047(2)	0.0226(17)	0.0089(15)	-0.0047(15)	0.0054(18)
С	0.0178(13)	0.0220(14)	0.0147(13)	0.0025(11)	0.0027(10)	0.0020(11)
C(41)	0.0368(17)	0.0256(16)	0.0203(15)	0.0024(12)	0.0105(12)	0.0013(13)
C(42)	0.0243(15)	0.0224(15)	0.0327(17)	0.0011(13)	0.0066(12)	-0.0018(12)
C(43)	0.058(2)	0.0351(19)	0.0244(16)	-0.0042(14)	0.0142(15)	-0.0068(16)
C(44)	0.045(2)	0.0425(19)	0.0331(18)	0.0052(15)	0.0195(15)	0.0051(16)
C(46)	0.049(2)	0.0239(16)	0.0342(18)	0.0023(14)	0.0064(15)	-0.0041(15)
C(45)	0.0418(18)	0.0248(17)	0.0347(18)	-0.0015(13)	-0.0043(14)	-0.0074(14)
C(51)	0.0208(14)	0.0313(17)	0.0321(16)	0.0029(13)	-0.0013(12)	-0.0015(13)
C(52)	0.0233(15)	0.0257(16)	0.0312(16)	0.0018(13)	-0.0015(12)	0.0065(12)
F	0.0278(9)	0.0280(9)	0.0362(10)	0.0027(7)	0.0079(7)	0.0058(7)
C(54)	0.0272(17)	0.050(2)	0.054(2)	0.0071(18)	-0.0130(16)	-0.0078(16)
C(53)	0.0262(16)	0.044(2)	0.0407(19)	0.0036(16)	0.0106(14)	-0.0048(15)
					Continue	d on next page

Table S24. Anisotropic displacement parameters $(Å^2)$ for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(55)	0.0319(17)	0.0376(19)	0.046(2)	0.0008(16)	0.0105(15)	0.0103(15)
C(56)	0.0309(17)	0.0270(17)	0.0421(19)	0.0005(14)	0.0039(14)	0.0039(13)
C(61)	0.0188(13)	0.0242(15)	0.0200(14)	0.0027(11)	0.0022(11)	0.0024(11)
C(62)	0.0281(15)	0.0246(15)	0.0151(14)	-0.0036(11)	0.0013(11)	-0.0002(12)
F(62)	0.0475(11)	0.0312(9)	0.0181(8)	-0.0085(7)	0.0086(7)	-0.0118(8)
C(63)	0.0255(14)	0.0247(15)	0.0169(14)	0.0045(12)	0.0061(11)	-0.0007(12)
F(63)	0.0406(10)	0.0284(9)	0.0167(8)	-0.0029(7)	0.0115(7)	-0.0087(8)
C(64)	0.0179(13)	0.0194(14)	0.0165(13)	0.0009(11)	0.0033(10)	0.0030(11)
C(65)	0.0222(14)	0.0225(14)	0.0155(13)	-0.0020(11)	0.0008(11)	0.0025(12)
F(65)	0.0346(9)	0.0328(9)	0.0118(8)	0.0004(7)	-0.0002(7)	-0.0066(7)
C(66)	0.0203(14)	0.0268(15)	0.0137(13)	0.0049(11)	0.0043(11)	0.0052(12)
F(66)	0.0311(9)	0.0321(9)	0.0144(8)	0.0045(7)	0.0053(7)	-0.0058(7)
C(71)	0.0242(15)	0.0264(16)	0.0237(15)	-0.0025(12)	0.0023(12)	-0.0043(12)
C(72)	0.0277(16)	0.045(2)	0.0255(16)	-0.0023(15)	0.0043(13)	0.0009(15)
F(72)	0.0351(10)	0.0559(12)	0.0398(11)	0.0027(10)	0.0076(8)	0.0206(9)
C(73)	0.0306(18)	0.068(3)	0.040(2)	-0.0051(19)	0.0115(15)	0.0047(18)
F(73)	0.0382(12)	0.119(2)	0.0552(14)	-0.0090(14)	0.0227(10)	0.0180(13)
C(74)	0.048(2)	0.081(3)	0.038(2)	0.010(2)	0.0237(18)	-0.007(2)
F(74)	0.0871(19)	0.140(3)	0.0634(17)	0.0263(18)	0.0499(15)	-0.0043(19)
C(76)	0.0354(17)	0.0325(18)	0.0316(17)	0.0009(14)	0.0059(14)	0.0013(14)
F(76)	0.0563(12)	0.0344(11)	0.0422(11)	0.0115(9)	0.0105(9)	0.0140(9)
C(81)	0.0213(14)	0.0328(17)	0.0215(15)	-0.0015(12)	0.0045(12)	-0.0021(12)
C(82)	0.0294(16)	0.0406(19)	0.0289(17)	-0.0022(15)	0.0065(13)	-0.0046(15)
F(82)	0.0533(12)	0.0271(10)	0.0499(12)	-0.0018(9)	0.0042(10)	-0.0097(9)
C(83)	0.043(2)	0.057(2)	0.040(2)	-0.0153(18)	0.0014(17)	-0.0208(19)
F(83)	0.0768(17)	0.0761(17)	0.0638(15)	-0.0282(13)	0.0006(13)	-0.0405(14)
C(84)	0.039(2)	0.089(3)	0.036(2)	-0.011(2)	-0.0152(17)	-0.009(2)
F(84)	0.0652(17)	0.154(3)	0.0620(17)	-0.0151(18)	-0.0391(14)	-0.0090(18)
C(85)	0.043(2)	0.068(3)	0.038(2)	0.0025(19)	-0.0126(16)	0.021(2)
F(85)	0.0777(17)	0.101(2)	0.0583(15)	0.0085(14)	-0.0277(13)	0.0424(16)
C(86)	0.0314(17)	0.0380(19)	0.0287(17)	-0.0024(14)	-0.0015(13)	0.0041(14)
F(86)	0.0507(12)	0.0350(11)	0.0428(11)	0.0035(9)	-0.0065(9)	0.0153(9)
C(75)	0.063(2)	0.049(2)	0.0339(19)	0.0155(17)	0.0106(17)	-0.0064(19)
F(75)	0.107(2)	0.0742(17)	0.0588(16)	0.0387(13)	0.0268(15)	0.0038(15)
В	0.0238(16)	0.0238(17)	0.0214(16)	0.0017(13)	0.0029(13)	0.0039(13)

Table S24. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.148(3)	Pd-P(1)	2.3200(7)
Pd-P(2)	2.3478(7)	Pd-P(3)	2.3651(8)
C(1) - C(19)	1.512(5)	C(1) - C(18)	1.518(5)
C(1) - C(17)	1.525(5)	C(1) - C(14)	1.536(4)
P(1) - C(12)	1.809(3)	P(1) - C(42)	1.847(3)
P(1) - C(41)	1.851(3)	C(2) - C(28)	1.514(5)
C(2) - C(27)	1.514(4)	C(2) - C(29)	1.516(5)
C(2) - C(24)	1.537(4)	P(2) - C(22)	1.819(3)
P(2) - C(52)	1.846(3)	P(2) - C(51)	1.856(3)
P(3) - C(33)	1.814(3)	P(3) - C(32)	1.821(4)
P(3) - C(31)	1.823(4)	C(11) - C(12)	1.380(4)
C(11) - C(16)	1.398(4)	C(11)-C	1.523(4)
C(12) - C(13)	1.404(4)	C(14) - C(13)	1.384(4)
C(14) - C(15)	1.387(4)	C(13) - H(13)	0.9500
C(15) - C(16)	1.382(4)	C(15) - H(15)	0.9500
C(17) - H(17A)	0.9800	C(17) - H(17B)	0.9800
C(17) - H(17C)	0.9800	C(16) - H(16)	0.9500
C(18) - H(18A)	0.9800	C(18)-H(18B)	0.9800
C(18) - H(18C)	0.9800	C(19) - H(19A)	0.9800
C(19) - H(19B)	0.9800	C(19)-H(19C)	0.9800
C(21) - C(26)	1.392(4)	C(21) - C(22)	1.398(4)
C(21)-C	1.512(4)	C(22) - C(23)	1.390(4)
C(23) - C(24)	1.387(4)	C(23) - H(23)	0.9500
C(24) - C(25)	1.384(4)	C(25) - C(26)	1.385(4)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(27) - H(27A)	0.9800	C(27)-H(27B)	0.9800
C(27) - H(27C)	0.9800	C(28) – H(28A)	0.9800
C(28) - H(28B)	0.9800	C(28) – H(28C)	0.9800
C(29)-H(29A)	0.9800	C(29)-H(29B)	0.9800
C(29) - H(29C)	0.9800	C(31)-H(31A)	0.9800
C(31) - H(31B)	0.9800	C(31)-H(31C)	0.9800
C(32) - H(32A)	0.9800	C(32) - H(32B)	0.9800
C(32) - H(32C)	0.9800	C(33)-H(33A)	0.9800
C(33) - H(33B)	0.9800	C(33)-H(33C)	0.9800
C - C(64)	1.520(4)	C(41) - C(43)	1.515(4)
C(41) - C(44)	1.521(4)	C(41) - H(41)	1.0000
C(42) - C(45)	1.517(4)	C(42) - C(46)	1.520(4)
C(42) - H(42)	1.0000	C(43) - H(43A)	0.9800
C(43) - H(43B)	0.9800	C(43) - H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(46) - H(46A)	0.9800
			Continued on next page

Table S25. Distances [Å] for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

atom – atom	distance	atom – atom	distance
C(46)-H(46B)	0.9800	C(46)-H(46C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(51) - C(54)	1.519(4)
C(51) - C(53)	1.527(4)	C(51) - H(51)	1.0000
C(52) - C(56)	1.532(4)	C(52) - C(55)	1.538(4)
C(52) - H(52)	1.0000	F-B	1.422(4)
C(54) - H(54A)	0.9800	C(54) - H(54B)	0.9800
C(54) - H(54C)	0.9800	C(53)-H(53A)	0.9800
C(53)-H(53B)	0.9800	C(53) - H(53C)	0.9800
C(55)-H(55A)	0.9800	C(55) - H(55B)	0.9800
C(55)-H(55C)	0.9800	C(56) - H(56A)	0.9800
C(56)-H(56B)	0.9800	C(56) - H(56C)	0.9800
C(61) - C(66)	1.375(4)	C(61) - C(62)	1.397(4)
C(61)-B	1.633(4)	C(62) - F(62)	1.358(3)
C(62) - C(63)	1.363(4)	C(63) - F(63)	1.360(3)
C(63) - C(64)	1.389(4)	C(64) - C(65)	1.390(4)
C(65) - F(65)	1.352(3)	C(65) - C(66)	1.379(4)
C(66) - F(66)	1.357(3)	C(71) - C(76)	1.377(4)
C(71) - C(72)	1.389(4)	C(71)-B	1.637(4)
C(72) - F(72)	1.349(4)	C(72) - C(73)	1.358(5)
C(73) - F(73)	1.348(4)	C(73) - C(74)	1.368(5)
C(74) - F(74)	1.341(4)	C(74) - C(75)	1.368(5)
C(76) - F(76)	1.346(4)	C(76) - C(75)	1.388(5)
C(81) - C(86)	1.381(4)	C(81) - C(82)	1.385(4)
C(81)-B	1.649(4)	C(82) - F(82)	1.349(4)
C(82) - C(83)	1.367(5)	C(83) - F(83)	1.345(4)
C(83) - C(84)	1.360(6)	C(84) - F(84)	1.342(4)
C(84) - C(85)	1.353(6)	C(85) - F(85)	1.346(4)
C(85) - C(86)	1.381(5)	C(86) - F(86)	1.353(4)
C(75) – F(75)	1.347(4)		

 Table S25. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-P(1)	82.82(7)	C-Pd-P(2)	80.56(7)
P(1) - Pd - P(2)	152.41(3)	C-Pd-P(3)	165.87(8)
P(1) - Pd - P(3)	102.08(3)	P(2) - Pd - P(3)	99.34(3)
C(19) - C(1) - C(18)	109.6(3)	C(19) - C(1) - C(17)	110.3(3)
C(18) - C(1) - C(17)	106.7(3)	C(19) - C(1) - C(14)	108.4(3)
C(18) - C(1) - C(14)	112.4(3)	C(17) - C(1) - C(14)	109.4(3)
C(12) - P(1) - C(42)	103.57(13)	C(12) - P(1) - C(41)	108.48(13)
C(42) - P(1) - C(41)	105.01(13)	C(12) - P(1) - Pd	104.18(9)
C(42) - P(1) - Pd	113.23(9)	C(41) - P(1) - Pd	121.02(10)
C(28) - C(2) - C(27)	108.1(3)	C(28) - C(2) - C(29)	108.2(3)
C(27) - C(2) - C(29)	109.9(3)	C(28) - C(2) - C(24)	109.4(3)
C(27) - C(2) - C(24)	112.4(2)	C(29) - C(2) - C(24)	108.8(2)
C(22) - P(2) - C(52)	106.74(13)	C(22) - P(2) - C(51)	110.54(13)
C(52) - P(2) - C(51)	108.22(13)	C(22) - P(2) - Pd	96.03(9)
C(52) - P(2) - Pd	112.12(10)	C(51) - P(2) - Pd	121.78(10)
C(33) - P(3) - C(32)	99.34(17)	C(33) - P(3) - C(31)	101.82(18)
C(32) - P(3) - C(31)	100.82(19)	C(33) - P(3) - Pd	121.29(12)
C(32) - P(3) - Pd	124.70(12)	C(31) - P(3) - Pd	105.06(13)
C(12) - C(11) - C(16)	118.0(2)	C(12) - C(11) - C	121.8(2)
C(16) - C(11) - C	120.1(2)	C(11) - C(12) - C(13)	120.4(3)
C(11) - C(12) - P(1)	114.4(2)	C(13) - C(12) - P(1)	125.2(2)
C(13) - C(14) - C(15)	117.4(3)	C(13) - C(14) - C(1)	122.5(3)
C(15) - C(14) - C(1)	120.0(3)	C(14) - C(13) - C(12)	121.5(3)
C(14) - C(13) - H(13)	119.2	C(12) - C(13) - H(13)	119.2
C(16) - C(15) - C(14)	121.6(3)	C(16) - C(15) - H(15)	119.2
C(14) - C(15) - H(15)	119.2	C(1) - C(17) - H(17A)	109.5
C(1) - C(17) - H(17B)	109.5	H(17A) - C(17) - H(17B)	109.5
C(1) - C(17) - H(17C)	109.5	H(17A) - C(17) - H(17C)	109.5
H(17B) - C(17) - H(17C)	109.5	C(15) - C(16) - C(11)	121.0(3)
C(15) - C(16) - H(16)	119.5	C(11) - C(16) - H(16)	119.5
C(1) - C(18) - H(18A)	109.5	C(1) - C(18) - H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5	C(1) - C(18) - H(18C)	109.5
H(18A) - C(18) - H(18C)	109.5	H(18B) - C(18) - H(18C)	109.5
C(1) - C(19) - H(19A)	109.5	C(1) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5	C(1) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5	H(19B) - C(19) - H(19C)	109.5
C(26) - C(21) - C(22)	117.7(2)	C(26) - C(21) - C	124.3(2)
C(22) - C(21) - C	118.0(2)	C(23) - C(22) - C(21)	120.5(2)
C(23) - C(22) - P(2)	124.6(2)	C(21) - C(22) - P(2)	114.55(19)
C(24) - C(23) - C(22)	121.3(3)	C(24) - C(23) - H(23)	119.3
C(22) - C(23) - H(23)	119.3	C(25) - C(24) - C(23)	117.7(2)
		Continue	d on next page

Table S26. Angles [°] for $[(C_6F_5)_2BF(C_6F_4)-PC(sp^3)P]^{tBu}Pd(PMe_3)$ (5).

atom – atom – atom	angle	atom – atom – atom	angle
C(25) - C(24) - C(2)	120.0(2)	C(23) - C(24) - C(2)	122.2(2)
C(24) - C(25) - C(26)	121.6(3)	C(24) - C(25) - H(25)	119.2
C(26) - C(25) - H(25)	119.2	C(25) - C(26) - C(21)	120.8(3)
C(25) - C(26) - H(26)	119.6	C(21) - C(26) - H(26)	119.6
C(2) - C(27) - H(27A)	109.5	C(2) - C(27) - H(27B)	109.5
H(27A) - C(27) - H(27B)	109.5	C(2) - C(27) - H(27C)	109.5
H(27A) - C(27) - H(27C)	109.5	H(27B) - C(27) - H(27C)	109.5
C(2) - C(28) - H(28A)	109.5	C(2) - C(28) - H(28B)	109.5
H(28A) - C(28) - H(28B)	109.5	C(2) - C(28) - H(28C)	109.5
H(28A) - C(28) - H(28C)	109.5	H(28B) - C(28) - H(28C)	109.5
C(2) - C(29) - H(29A)	109.5	C(2) - C(29) - H(29B)	109.5
H(29A) - C(29) - H(29B)	109.5	C(2) - C(29) - H(29C)	109.5
H(29A) - C(29) - H(29C)	109.5	H(29B) - C(29) - H(29C)	109.5
P(3) - C(31) - H(31A)	109.5	P(3) - C(31) - H(31B)	109.5
H(31A) - C(31) - H(31B)	109.5	P(3) - C(31) - H(31C)	109.5
H(31A) - C(31) - H(31C)	109.5	H(31B) - C(31) - H(31C)	109.5
P(3) - C(32) - H(32A)	109.5	P(3) - C(32) - H(32B)	109.5
H(32A) - C(32) - H(32B)	109.5	P(3) - C(32) - H(32C)	109.5
H(32A) - C(32) - H(32C)	109.5	H(32B) - C(32) - H(32C)	109.5
P(3) - C(33) - H(33A)	109.5	P(3) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	P(3) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(21) - C - C(64)	111.5(2)	C(21) - C - C(11)	113.3(2)
C(64) - C - C(11)	106.6(2)	C(21) - C - Pd	104.32(17)
C(64) - C - Pd	106.22(16)	C(11)-C-Pd	114.82(17)
C(43) - C(41) - C(44)	109.7(3)	C(43) - C(41) - P(1)	110.3(2)
C(44) - C(41) - P(1)	117.4(2)	C(43) - C(41) - H(41)	106.2
C(44) - C(41) - H(41)	106.2	P(1) - C(41) - H(41)	106.2
C(45) - C(42) - C(46)	111.1(3)	C(45) - C(42) - P(1)	110.5(2)
C(46) - C(42) - P(1)	112.2(2)	C(45) - C(42) - H(42)	107.6
C(46) - C(42) - H(42)	107.6	P(1) - C(42) - H(42)	107.6
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
		Continue	d on next page

Table S26. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(54) - C(51) - C(53)	112.6(3)	C(54) - C(51) - P(2)	110.9(2)
C(53) - C(51) - P(2)	114.9(2)	C(54) - C(51) - H(51)	105.9
C(53) - C(51) - H(51)	105.9	P(2) - C(51) - H(51)	105.9
C(56) - C(52) - C(55)	110.3(3)	C(56) - C(52) - P(2)	109.11(19)
C(55) - C(52) - P(2)	118.8(2)	C(56) - C(52) - H(52)	105.9
C(55) - C(52) - H(52)	105.9	P(2) - C(52) - H(52)	105.9
C(51) - C(54) - H(54A)	109.5	C(51) - C(54) - H(54B)	109.5
H(54A) - C(54) - H(54B)	109.5	C(51) - C(54) - H(54C)	109.5
H(54A) - C(54) - H(54C)	109.5	H(54B) - C(54) - H(54C)	109.5
C(51) - C(53) - H(53A)	109.5	C(51) - C(53) - H(53B)	109.5
H(53A) - C(53) - H(53B)	109.5	C(51) - C(53) - H(53C)	109.5
H(53A) - C(53) - H(53C)	109.5	H(53B) - C(53) - H(53C)	109.5
C(52) - C(55) - H(55A)	109.5	C(52) - C(55) - H(55B)	109.5
H(55A) - C(55) - H(55B)	109.5	C(52) - C(55) - H(55C)	109.5
H(55A) - C(55) - H(55C)	109.5	H(55B) - C(55) - H(55C)	109.5
C(52) - C(56) - H(56A)	109.5	C(52) - C(56) - H(56B)	109.5
H(56A) - C(56) - H(56B)	109.5	C(52) - C(56) - H(56C)	109.5
H(56A) - C(56) - H(56C)	109.5	H(56B) - C(56) - H(56C)	109.5
C(66) - C(61) - C(62)	111.6(2)	C(66) - C(61) - B	126.9(2)
C(62) - C(61) - B	120.8(2)	F(62) - C(62) - C(63)	116.7(2)
F(62) - C(62) - C(61)	118.8(2)	C(63) - C(62) - C(61)	124.5(3)
F(63) - C(63) - C(62)	117.4(2)	F(63) - C(63) - C(64)	119.1(2)
C(62) - C(63) - C(64)	123.4(2)	C(63) - C(64) - C(65)	112.7(2)
C(63) - C(64) - C	121.5(2)	C(65) - C(64) - C	125.7(2)
F(65) - C(65) - C(66)	115.9(2)	F(65) - C(65) - C(64)	121.2(2)
C(66) - C(65) - C(64)	123.0(2)	F(66) - C(66) - C(61)	120.2(2)
F(66) - C(66) - C(65)	115.0(2)	C(61) - C(66) - C(65)	124.7(2)
C(76) - C(71) - C(72)	114.0(3)	C(76) - C(71) - B	125.7(3)
C(72) - C(71) - B	120.3(3)	F(72) - C(72) - C(73)	116.4(3)
F(72) - C(72) - C(71)	118.9(3)	C(73) - C(72) - C(71)	124.6(3)
F(73) - C(73) - C(72)	121.0(3)	F(73) - C(73) - C(74)	119.7(3)
C(72) - C(73) - C(74)	119.3(3)	F(74) - C(74) - C(73)	120.2(4)
F(74) - C(74) - C(75)	120.6(4)	C(73) - C(74) - C(75)	119.2(3)
F(76) - C(76) - C(71)	121.4(3)	F(76) - C(76) - C(75)	115.6(3)
C(71) - C(76) - C(75)	122.9(3)	C(86) - C(81) - C(82)	113.5(3)
C(86) - C(81) - B	127.2(3)	C(82) - C(81) - B	119.2(3)
F(82) - C(82) - C(83)	115.6(3)	F(82) - C(82) - C(81)	120.1(3)
C(83) - C(82) - C(81)	124.2(3)	F(83) - C(83) - C(84)	119.8(3)
F(83) - C(83) - C(82)	120.6(4)	C(84) - C(83) - C(82)	119.6(3)
F(84) - C(84) - C(85)	120.2(4)	F(84) - C(84) - C(83)	120.6(4)
C(85) - C(84) - C(83)	119.2(3)	F(85) - C(85) - C(84)	120.0(3)
		Continue	d on next page

Table S26. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
F(85) - C(85) - C(86)	120.0(4)	C(84) - C(85) - C(86)	120.0(3)
F(86) - C(86) - C(85)	116.2(3)	F(86) - C(86) - C(81)	120.5(3)
C(85) - C(86) - C(81)	123.3(3)	F(75) - C(75) - C(74)	120.6(3)
F(75) - C(75) - C(76)	119.6(3)	C(74) - C(75) - C(76)	119.8(3)
F - B - C(61)	105.1(2)	F - B - C(71)	111.3(2)
C(61) - B - C(71)	112.9(2)	F - B - C(81)	107.9(2)
C(61) - B - C(81)	113.9(2)	C(71) - B - C(81)	105.7(2)

 Table S26. – continued from previous page

4.5 Crystal data for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F] ([8][BAr_4^F])$

Figure S63. Thermal-ellipsoid representation of $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]$ ([8][BAr_4^F]) at 50% probability. Most hydrogen atoms were omitted for clarity.

Table 527. Crystal data and su	ructure refinement for $[{PC(sp^2)HP}PdPMe_3]$	$[BAF_4] ([\delta][BAF_4]).$
Identification code:	cc273	
Empirical formula:	$C_{60}H_{58}BF_{24}P_{3}Pd$	
Formula weight:	1445.18	
Temperature:	120(2) K	
Wavelength:	1.54178 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/n$	
Unit cell dimensions:	a = 13.1862(3) Å	$\alpha = 90^{\circ}$
	b = 12.7167(3) Å	$\beta = 94.9670(9)^{\circ}$
	c = 37.1231(8) Å	$\gamma = 90^{\circ}$
Volume:	6201.6(2) Å ³	
Z:	4	
Density (calculated):	$1.548 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	4.145 mm^{-1}	
F(000):	2920	
Crystal size:	$0.09 \times 0.08 \times 0.07 \text{ mm}^3$	
θ range for data collection:	2.39 to 68.29°	
Index ranges:	$-15 \le h \le 15, -15 \le k \le 14, -44 \le l \le 44$	
Reflections collected:	112788	
Independent reflections:	11345 [$\mathbf{R}_{int} = 0.0404$]	
Completeness to $\theta = 68.29^{\circ}$:	99.8 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7531 and 0.5916	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	11345 / 0 / 817	
Goodness-of-fit on F ² :	1.036	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0453, wR_2 = 0.1137$	
R indices (all data):	$R_1 = 0.0465, wR_2 = 0.1146$	
Largest diff. peak and hole:	$1.245 \text{ and } -1.122 \text{ e}^{-1} \text{Å}^{-3}$	

 Table S27. Crystal data and structure refinement for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]$ ([8][BAr_4^F]).

atom	X	у	Z	U(eq)
Pd	0.65220(2)	0.73636(2)	0.35881(1)	0.019(1)
P(1)	0.77598(6)	0.68631(7)	0.40521(2)	0.024(1)
P(2)	0.57053(6)	0.84993(6)	0.31740(2)	0.020(1)
P(3)	0.51565(6)	0.63384(7)	0.37675(2)	0.028(1)
С	0.7827(2)	0.7939(2)	0.33625(8)	0.019(1)
C(11)	0.8595(2)	0.8379(2)	0.36505(8)	0.020(1)
C(12)	0.8741(2)	0.7825(2)	0.39790(8)	0.021(1)
C(13)	0.9560(2)	0.8057(3)	0.42295(9)	0.025(1)
C(14)	1.0198(2)	0.8896(3)	0.41693(9)	0.028(1)
C(15)	1.0008(3)	0.9494(3)	0.38595(9)	0.029(1)
C(16)	0.9223(2)	0.9239(3)	0.36017(9)	0.024(1)
В	0.1839(2)	0.2770(3)	0.38313(9)	0.016(1)
C(21)	0.7656(2)	0.8614(2)	0.30260(8)	0.020(1)
C(22)	0.6709(2)	0.9076(2)	0.29360(8)	0.021(1)
C(23)	0.6576(3)	0.9810(3)	0.26550(8)	0.026(1)
C(25)	0.8297(3)	0.9504(3)	0.25172(9)	0.030(1)
C(24)	0.7378(3)	1.0028(3)	0.24496(9)	0.031(1)
C(26)	0.8444(2)	0.8810(3)	0.28053(9)	0.026(1)
C(31)	0.4004(3)	0.6188(4)	0.34651(15)	0.060(1)
C(32)	0.4624(5)	0.6516(6)	0.41932(15)	0.090(2)
C(33)	0.5543(4)	0.4968(4)	0.37934(19)	0.070(2)
C(41)	0.8490(3)	0.5626(3)	0.41062(13)	0.046(1)
C(42)	0.7317(3)	0.7164(4)	0.44991(10)	0.045(1)
C(43)	0.8788(3)	0.5285(3)	0.37371(16)	0.057(1)
C(44)	0.7997(5)	0.4740(5)	0.43064(19)	0.086(2)
C(45)	0.8072(4)	0.7128(6)	0.48308(13)	0.079(2)
C(46)	0.6800(3)	0.8236(4)	0.44827(12)	0.054(1)
C(51)	0.5016(3)	0.9608(3)	0.33539(9)	0.033(1)
C(52)	0.4859(2)	0.7868(3)	0.28137(9)	0.028(1)
C(53)	0.5741(4)	1.0248(3)	0.36147(11)	0.049(1)
C(54)	0.4082(3)	0.9250(4)	0.35372(12)	0.052(1)
C(55)	0.5440(3)	0.6951(3)	0.26628(11)	0.041(1)
C(56)	0.4414(3)	0.8583(3)	0.25063(10)	0.036(1)
F(611)	-0.0858(11)	0.2122(9)	0.4875(3)	0.076(3)
F(621)	-0.0160(10)	0.0823(9)	0.4803(2)	0.076(3)
F(631)	-0.1700(11)	0.0675(10)	0.4580(3)	0.076(3)
C(61)	0.0678(2)	0.2399(2)	0.38942(8)	0.017(1)
F(61)	-0.0298(3)	0.1598(4)	0.48986(10)	0.057(1)
C(62)	0.0364(2)	0.2063(2)	0.42262(8)	0.020(1)
			Conti	nued on next page

Table S28. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]$ ([8][BAr_4^F]). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	y y	X	U(eq)
F(62)	-0.1283(3)	0.0468(4)	0.46197(12)	0.057(1)
C(63)	-0.0654(2)	0.1832(3)	0.42707(9)	0.025(1)
F(63)	-0.1809(3)	0.2008(3)	0.47207(9)	0.057(1)
C(64)	-0.1401(2)	0.1946(3)	0.39857(9)	0.026(1)
F(64)	-0.27750(18)	0.2811(3)	0.34500(7)	0.061(1)
C(65)	-0.1111(2)	0.2297(2)	0.36567(9)	0.022(1)
F(65)	-0.2134(2)	0.1537(2)	0.31778(8)	0.065(1)
C(66)	-0.0094(2)	0.2516(2)	0.36122(8)	0.019(1)
F(66)	-0.16277(18)	0.3097(2)	0.30970(7)	0.057(1)
C(67)	-0.0969(3)	0.1463(3)	0.46244(9)	0.036(1)
C(68)	-0.1907(3)	0.2429(3)	0.33454(10)	0.031(1)
C(71)	0.1779(2)	0.4052(2)	0.38444(8)	0.017(1)
F(71)	0.0521(3)	0.5855(2)	0.29773(7)	0.076(1)
C(72)	0.1547(2)	0.4678(2)	0.35374(8)	0.017(1)
F(72)	0.0607(3)	0.7243(2)	0.32814(7)	0.080(1)
C(73)	0.1374(2)	0.5754(2)	0.35628(8)	0.018(1)
F(73)	0.18936(19)	0.6641(3)	0.30560(7)	0.078(1)
C(74)	0.1455(2)	0.6266(2)	0.38945(8)	0.020(1)
F(74)	0.09431(18)	0.59984(19)	0.47444(6)	0.046(1)
C(75)	0.1693(2)	0.5657(2)	0.42024(8)	0.021(1)
F(75)	0.25531(19)	0.57664(18)	0.47838(6)	0.045(1)
C(76)	0.1835(2)	0.4583(2)	0.41766(8)	0.020(1)
F(76)	0.1913(2)	0.71926(16)	0.45573(6)	0.044(1)
C(77)	0.1104(2)	0.6383(2)	0.32256(8)	0.022(1)
C(78)	0.1777(3)	0.6157(3)	0.45691(9)	0.028(1)
C(81)	0.2707(2)	0.2287(2)	0.41309(8)	0.018(1)
F(81)	0.5984(2)	0.3035(3)	0.44070(11)	0.096(1)
C(82)	0.3564(2)	0.2859(2)	0.42704(8)	0.022(1)
F(82)	0.5692(3)	0.2706(3)	0.49392(10)	0.089(1)
C(83)	0.4356(3)	0.2397(3)	0.44897(9)	0.027(1)
F(83)	0.5050(2)	0.4047(2)	0.46703(11)	0.086(1)
C(84)	0.4330(2)	0.1340(3)	0.45758(9)	0.025(1)
F(84)	0.43564(17)	-0.08526(17)	0.45441(7)	0.045(1)
C(85)	0.3491(2)	0.0754(2)	0.44411(8)	0.022(1)
F(85)	0.3145(3)	-0.0527(2)	0.48655(8)	0.076(1)
C(86)	0.2702(2)	0.1218(2)	0.42240(8)	0.019(1)
F(86)	0.28394(17)	-0.09428(16)	0.43020(7)	0.048(1)
C(87)	0.5255(3)	0.3046(3)	0.46308(12)	0.041(1)
C(88)	0.3446(3)	-0.0382(3)	0.45395(9)	0.030(1)
C(91)	0.2214(2)	0.2326(2)	0.34490(8)	0.017(1)
F(91)	0.52615(17)	0.2104(2)	0.29716(9)	0.065(1)
C(92)	0.3092(2)	0.2742(2)	0.33145(8)	0.019(1)
			Conti	nued on next page

Table S28. – continued from previous page

atom	X	<u>y</u>	X	U(eq)
F(92)	0.47323(19)	0.3676(2)	0.30276(7)	0.055(1)
C(93)	0.3513(2)	0.2306(2)	0.30167(8)	0.020(1)
F(93)	0.44215(18)	0.2868(2)	0.25328(6)	0.047(1)
C(94)	0.3063(2)	0.1440(2)	0.28381(8)	0.021(1)
F(94)	0.1712(2)	0.0121(3)	0.24266(6)	0.072(1)
C(95)	0.2195(2)	0.1018(2)	0.29659(8)	0.020(1)
F(95)	0.22314(19)	-0.08127(19)	0.28753(9)	0.069(1)
C(96)	0.1783(2)	0.1450(2)	0.32665(8)	0.019(1)
F(96)	0.07758(15)	-0.00963(17)	0.28567(6)	0.041(1)
C(97)	0.4481(2)	0.2734(3)	0.28921(9)	0.025(1)
C(98)	0.1723(2)	0.0062(3)	0.27844(9)	0.028(1)
Н	0.8163	0.7292	0.3277	0.023
H(13)	0.9682	0.7640	0.4441	0.031
H(14)	1.0757	0.9058	0.4339	0.034
H(15)	1.0423	1.0088	0.3823	0.035
H(16)	0.9111	0.9655	0.3389	0.029
H(23)	0.5941	1.0157	0.2606	0.031
H(25)	0.8830	0.9621	0.2365	0.036
H(24)	0.7299	1.0537	0.2262	0.037
H(26)	0.9081	0.8466	0.2853	0.031
H(31A)	0.4186	0.5992	0.3224	0.090
H(31B)	0.3629	0.6854	0.3451	0.090
H(31C)	0.3576	0.5637	0.3558	0.090
H(32A)	0.4311	0.7214	0.4200	0.134
H(32B)	0.5164	0.6454	0.4391	0.134
H(32C)	0.4106	0.5976	0.4221	0.134
H(33A)	0.4949	0.4526	0.3824	0.105
H(33B)	0.6049	0.4870	0.4000	0.105
H(33C)	0.5842	0.4770	0.3570	0.105
H(41)	0.9139	0.5803	0.4253	0.056
H(42)	0.6776	0.6637	0.4540	0.054
H(43A)	0.8177	0.5083	0.3584	0.086
H(43B)	0.9253	0.4684	0.3766	0.086
H(43C)	0.9128	0.5869	0.3624	0.086
H(44A)	0.7478	0.4394	0.4142	0.130
H(44B)	0.7678	0.5031	0.4514	0.130
H(44C)	0.8518	0.4227	0.4392	0.130
H(45A)	0.8519	0.6517	0.4816	0.118
H(45B)	0.7704	0.7074	0.5048	0.118
H(45C)	0.8483	0.7772	0.4843	0.118
H(46A)	0.7300	0.8780	0.4438	0.082
H(46B)	0.6516	0.8378	0.4713	0.082
			Con	tinued on next page

Table S28. – continued from previous page

atom	X	y	X	U(eq)
H(46C)	0.6252	0.8240	0.4287	0.082
H(51)	0.4779	1.0074	0.3147	0.040
H(52)	0.4272	0.7561	0.2931	0.034
H(53A)	0.6330	1.0474	0.3490	0.074
H(53B)	0.5972	0.9812	0.3823	0.074
H(53C)	0.5384	1.0867	0.3697	0.074
H(54A)	0.3642	0.8826	0.3368	0.078
H(54B)	0.3705	0.9867	0.3611	0.078
H(54C)	0.4299	0.8827	0.3751	0.078
H(55A)	0.5001	0.6589	0.2476	0.062
H(55B)	0.5647	0.6457	0.2858	0.062
H(55C)	0.6046	0.7219	0.2558	0.062
H(56A)	0.4950	0.8769	0.2350	0.054
H(56B)	0.4144	0.9224	0.2609	0.054
H(56C)	0.3865	0.8212	0.2364	0.054
H(62)	0.0857	0.1989	0.4427	0.024
H(64)	-0.2092	0.1788	0.4016	0.031
H(66)	0.0083	0.2752	0.3383	0.023
H(72)	0.1506	0.4359	0.3305	0.021
H(74)	0.1354	0.7004	0.3911	0.024
H(76)	0.1976	0.4189	0.4393	0.023
H(82)	0.3607	0.3585	0.4214	0.027
H(84)	0.4870	0.1023	0.4723	0.030
H(86)	0.2140	0.0796	0.4136	0.023
H(92)	0.3410	0.3338	0.3430	0.022
H(94)	0.3344	0.1145	0.2634	0.025
H(96)	0.1192	0.1140	0.3350	0.022

Table S28. – continued from previous page

Table S29. Anisotropic displacement parameters (Å²) for [{PC(*sp*³)HP}PdPMe₃][BAr₄^F] ([8][BAr₄^F]). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ...+ 2hka^*b^*U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0137(1)	0.0213(1)	0.0219(1)	0.0057(1)	0.0024(1)	-0.0004(1)
P(1)	0.0154(3)	0.0306(4)	0.0257(4)	0.0121(3)	0.0027(3)	0.0008(3)
P(2)	0.0168(3)	0.0226(4)	0.0197(4)	0.0028(3)	0.0018(3)	0.0029(3)
P(3)	0.0208(4)	0.0333(5)	0.0310(4)	0.0075(3)	0.0025(3)	-0.0079(3)
С	0.0160(14)	0.0196(14)	0.0225(15)	0.0018(12)	0.0040(11)	0.0006(11)
C(11)	0.0156(13)	0.0202(15)	0.0238(15)	0.0015(12)	0.0052(11)	0.0031(11)
C(12)	0.0157(14)	0.0220(15)	0.0245(15)	0.0024(12)	0.0045(12)	0.0018(11)
C(13)	0.0236(15)	0.0299(17)	0.0233(15)	0.0013(13)	0.0035(12)	0.0037(13)
C(14)	0.0244(16)	0.0325(18)	0.0270(16)	-0.0067(14)	-0.0006(13)	-0.0023(13)
C(15)	0.0309(17)	0.0237(16)	0.0328(17)	-0.0041(13)	0.0061(14)	-0.0059(13)
C(16)	0.0263(16)	0.0217(15)	0.0261(16)	0.0014(12)	0.0050(12)	-0.0007(12)
В	0.0171(15)	0.0156(15)	0.0168(15)	0.0015(12)	0.0007(12)	-0.0015(12)
C(21)	0.0221(15)	0.0193(15)	0.0201(14)	0.0000(11)	0.0033(11)	-0.0027(12)
C(22)	0.0231(15)	0.0216(15)	0.0187(14)	-0.0008(12)	0.0012(11)	-0.0024(12)
C(23)	0.0285(16)	0.0257(16)	0.0221(15)	0.0021(12)	-0.0021(12)	-0.0019(13)
C(25)	0.0333(18)	0.0353(19)	0.0229(16)	0.0022(14)	0.0082(13)	-0.0091(15)
C(24)	0.0395(19)	0.0304(18)	0.0213(15)	0.0052(13)	-0.0002(14)	-0.0085(15)
C(26)	0.0244(16)	0.0299(17)	0.0246(15)	0.0001(13)	0.0053(12)	-0.0030(13)
C(31)	0.029(2)	0.070(3)	0.078(3)	0.030(3)	-0.009(2)	-0.020(2)
C(32)	0.105(5)	0.111(5)	0.060(3)	-0.031(3)	0.053(3)	-0.078(4)
C(33)	0.043(3)	0.032(2)	0.133(5)	0.005(3)	-0.005(3)	-0.0121(19)
C(41)	0.033(2)	0.033(2)	0.072(3)	0.026(2)	0.0005(19)	0.0017(16)
C(42)	0.0294(19)	0.080(3)	0.0258(18)	0.0117(19)	0.0054(15)	-0.0110(19)
C(43)	0.042(2)	0.025(2)	0.107(4)	0.002(2)	0.019(2)	0.0063(17)
C(44)	0.081(4)	0.064(4)	0.108(5)	0.052(3)	-0.028(4)	-0.028(3)
C(45)	0.044(3)	0.160(6)	0.033(2)	0.019(3)	0.002(2)	0.000(3)
C(46)	0.047(2)	0.082(3)	0.037(2)	-0.019(2)	0.0203(19)	-0.008(2)
C(51)	0.042(2)	0.0361(19)	0.0233(16)	0.0035(14)	0.0081(14)	0.0190(16)
C(52)	0.0215(16)	0.0321(18)	0.0300(17)	0.0014(14)	-0.0025(13)	-0.0026(13)
C(53)	0.075(3)	0.037(2)	0.035(2)	-0.0107(17)	0.003(2)	0.015(2)
C(54)	0.046(2)	0.069(3)	0.045(2)	0.010(2)	0.0228(19)	0.028(2)
C(55)	0.047(2)	0.035(2)	0.040(2)	-0.0103(17)	-0.0071(17)	-0.0012(17)
C(56)	0.0276(17)	0.047(2)	0.0324(18)	0.0053(16)	-0.0094(14)	-0.0020(16)
F(611)	0.129(7)	0.060(4)	0.043(3)	0.019(3)	0.038(4)	0.006(4)
F(621)	0.129(7)	0.060(4)	0.043(3)	0.019(3)	0.038(4)	0.006(4)
F(631)	0.129(7)	0.060(4)	0.043(3)	0.019(3)	0.038(4)	0.006(4)
C(61)	0.0203(14)	0.0118(13)	0.0196(14)	-0.0009(10)	0.0026(11)	-0.0006(10)
F(61)	0.0616(16)	0.076(2)	0.0365(12)	0.0102(11)	0.0239(11)	-0.0029(13)
C(62)	0.0223(15)	0.0193(14)	0.0194(14)	-0.0009(11)	0.0014(11)	-0.0006(12)
					Continue	d on next page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F(62)	0.0616(16)	0.076(2)	0.0365(12)	0.0102(11)	0.0239(11)	-0.0029(13)
C(63)	0.0264(16)	0.0264(17)	0.0241(16)	-0.0037(13)	0.0073(13)	-0.0053(13)
F(63)	0.0616(16)	0.076(2)	0.0365(12)	0.0102(11)	0.0239(11)	-0.0029(13)
C(64)	0.0202(15)	0.0281(17)	0.0292(16)	-0.0041(13)	0.0056(12)	-0.0045(13)
F(64)	0.0260(12)	0.105(2)	0.0511(15)	-0.0062(15)	-0.0051(10)	0.0219(13)
C(65)	0.0200(15)	0.0195(15)	0.0269(16)	-0.0015(12)	0.0006(12)	0.0002(11)
F(65)	0.0787(19)	0.0459(15)	0.0623(16)	-0.0150(13)	-0.0405(15)	-0.0025(13)
C(66)	0.0210(15)	0.0168(14)	0.0195(14)	-0.0001(11)	0.0036(12)	0.0003(11)
F(66)	0.0376(13)	0.0817(19)	0.0472(14)	0.0320(13)	-0.0156(10)	-0.0103(12)
C(67)	0.039(2)	0.048(2)	0.0225(17)	-0.0024(15)	0.0094(15)	-0.0151(17)
C(68)	0.0228(17)	0.0356(19)	0.0333(18)	0.0004(14)	-0.0022(14)	-0.0013(14)
C(71)	0.0139(13)	0.0177(14)	0.0187(13)	0.0014(11)	0.0017(10)	-0.0017(10)
F(71)	0.113(2)	0.0526(16)	0.0519(15)	0.0257(13)	-0.0507(16)	-0.0328(16)
C(72)	0.0146(13)	0.0200(15)	0.0173(13)	-0.0001(11)	0.0018(10)	0.0000(11)
F(72)	0.151(3)	0.0610(18)	0.0312(13)	0.0150(12)	0.0162(16)	0.070(2)
C(73)	0.0149(13)	0.0208(15)	0.0193(14)	0.0028(11)	0.0032(11)	0.0000(11)
F(73)	0.0376(13)	0.144(3)	0.0541(16)	0.0651(19)	0.0105(12)	0.0097(16)
C(74)	0.0227(15)	0.0162(14)	0.0223(15)	0.0011(11)	0.0050(12)	-0.0003(11)
F(74)	0.0583(14)	0.0544(14)	0.0271(10)	-0.0111(10)	0.0188(10)	-0.0108(11)
C(75)	0.0238(15)	0.0193(15)	0.0187(14)	-0.0010(11)	0.0031(11)	-0.0020(12)
F(75)	0.0608(15)	0.0432(13)	0.0271(10)	-0.0092(9)	-0.0153(10)	0.0046(11)
C(76)	0.0223(14)	0.0202(15)	0.0160(13)	0.0035(11)	0.0005(11)	-0.0016(12)
F(76)	0.0851(18)	0.0202(10)	0.0275(10)	-0.0061(8)	0.0056(11)	-0.0072(10)
C(77)	0.0240(15)	0.0200(15)	0.0217(15)	0.0023(12)	0.0028(12)	0.0030(12)
C(78)	0.0422(19)	0.0204(16)	0.0212(15)	-0.0005(12)	0.0007(14)	-0.0010(14)
C(81)	0.0196(14)	0.0190(15)	0.0156(13)	0.0014(11)	0.0042(11)	0.0007(11)
F(81)	0.0538(18)	0.127(3)	0.109(3)	0.001(2)	0.0153(18)	-0.053(2)
C(82)	0.0233(15)	0.0197(15)	0.0232(15)	0.0069(12)	0.0004(12)	-0.0024(12)
F(82)	0.086(2)	0.074(2)	0.094(2)	0.0457(18)	-0.066(2)	-0.0465(17)
C(83)	0.0227(16)	0.0285(17)	0.0281(17)	0.0073(13)	-0.0021(13)	-0.0037(13)
F(83)	0.0656(19)	0.0435(16)	0.139(3)	-0.0098(18)	-0.054(2)	-0.0113(14)
C(84)	0.0216(15)	0.0292(17)	0.0246(15)	0.0087(13)	-0.0007(12)	0.0032(13)
F(84)	0.0373(12)	0.0280(11)	0.0668(15)	0.0065(10)	-0.0053(11)	0.0126(9)
C(85)	0.0236(15)	0.0202(15)	0.0222(15)	0.0038(12)	0.0064(12)	0.0037(12)
F(85)	0.140(3)	0.0344(13)	0.0644(17)	0.0246(12)	0.0658(19)	0.0170(16)
C(86)	0.0199(14)	0.0204(15)	0.0182(14)	0.0006(11)	0.0038(11)	-0.0003(11)
F(86)	0.0407(12)	0.0223(11)	0.0775(17)	0.0116(11)	-0.0148(11)	-0.0051(9)
C(87)	0.0304(19)	0.036(2)	0.055(2)	0.0210(18)	-0.0160(17)	-0.0106(16)
C(88)	0.0311(17)	0.0256(17)	0.0336(18)	0.0082(14)	0.0049(14)	0.0049(14)
C(91)	0.0175(14)	0.0162(14)	0.0169(14)	0.0039(11)	-0.0004(11)	0.0022(11)
F(91)	0.0227(11)	0.0606(16)	0.114(2)	0.0470(17)	0.0155(13)	0.0077(11)
C(92)	0.0199(14)	0.0173(14)	0.0186(14)	0.0011(11)	0.0007(11)	-0.0003(11)
					Continue	d on next page

Table S29. – continued from previous page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F(92)	0.0543(15)	0.0474(14)	0.0686(16)	-0.0212(12)	0.0356(13)	-0.0283(12)
C(93)	0.0203(15)	0.0188(15)	0.0207(14)	0.0042(11)	0.0013(12)	0.0019(11)
F(93)	0.0474(13)	0.0638(16)	0.0326(11)	0.0056(11)	0.0149(10)	-0.0167(12)
C(94)	0.0199(14)	0.0240(15)	0.0187(14)	0.0001(12)	0.0017(11)	0.0045(12)
F(94)	0.097(2)	0.092(2)	0.0303(12)	-0.0263(13)	0.0131(13)	-0.0574(18)
C(95)	0.0198(14)	0.0197(15)	0.0209(14)	-0.0013(12)	-0.0009(11)	0.0013(11)
F(95)	0.0436(14)	0.0292(12)	0.129(3)	-0.0284(15)	-0.0278(15)	0.0075(10)
C(96)	0.0170(13)	0.0197(14)	0.0189(14)	0.0021(11)	0.0018(11)	-0.0009(11)
F(96)	0.0278(10)	0.0398(12)	0.0582(14)	-0.0228(10)	0.0108(9)	-0.0115(9)
C(97)	0.0247(16)	0.0233(16)	0.0271(16)	0.0021(12)	0.0074(13)	-0.0006(12)
C(98)	0.0235(16)	0.0305(17)	0.0296(17)	-0.0107(14)	0.0034(13)	-0.0006(13)

Table S29. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.109(3)	Pd-P(2)	2.3070(8)
Pd-P(1)	2.3557(8)	Pd-P(3)	2.3648(8)
P(1) - C(12)	1.818(3)	P(1) - C(42)	1.847(4)
P(1) - C(41)	1.847(4)	P(2) - C(22)	1.809(3)
P(2) - C(51)	1.834(3)	P(2) - C(52)	1.850(3)
P(3) - C(32)	1.798(5)	P(3) - C(33)	1.816(5)
P(3) - C(31)	1.820(4)	C - C(11)	1.515(4)
C - C(21)	1.517(4)	C-H	1.0000
C(11) - C(16)	1.393(4)	C(11) - C(12)	1.407(4)
C(12) - C(13)	1.394(4)	C(13) - C(14)	1.389(5)
C(13) - H(13)	0.9500	C(14) - C(15)	1.383(5)
C(14) - H(14)	0.9500	C(15) - C(16)	1.387(5)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
B - C(71)	1.634(4)	B - C(61)	1.639(4)
B - C(91)	1.642(4)	B - C(81)	1.644(4)
C(21) - C(22)	1.395(4)	C(21) - C(26)	1.400(4)
C(22) - C(23)	1.400(4)	C(23) - C(24)	1.384(5)
C(23) - H(23)	0.9500	C(25) - C(24)	1.387(5)
C(25) - C(26)	1.387(5)	C(25) - H(25)	0.9500
C(24) - H(24)	0.9500	C(26) - H(26)	0.9500
C(31) - H(31A)	0.9800	C(31) - H(31B)	0.9800
C(31) - H(31C)	0.9800	C(32) - H(32A)	0.9800
C(32) - H(32B)	0.9800	C(32) - H(32C)	0.9800
C(33) - H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(41) - C(43)	1.521(7)
C(41) - C(44)	1.525(6)	C(41) - H(41)	1.0000
C(42) - C(45)	1.516(6)	C(42) - C(46)	1.523(7)
C(42) - H(42)	1.0000	C(43) - H(43A)	0.9800
C(43) - H(43B)	0.9800	C(43) - H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(45) - H(45A)	0.9800
C(45) - H(45B)	0.9800	C(45) - H(45C)	0.9800
C(46) - H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(51) - C(54)	1.528(6)
C(51) - C(53)	1.534(6)	C(51) - H(51)	1.0000
C(52) - C(55)	1.528(5)	C(52) - C(56)	1.536(5)
C(52) - H(52)	1.0000	C(53) - H(53A)	0.9800
C(53)-H(53B)	0.9800	C(53) - H(53C)	0.9800
C(54)-H(54A)	0.9800	C(54) - H(54B)	0.9800
C(54)-H(54C)	0.9800	C(55) - H(55A)	0.9800
C(55) - H(55B)	0.9800	C(55) - H(55C)	0.9800
		Con	tinued on next page

Table S30. Distances [Å] for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]$ ([8][BAr_4^F]).

atom – atom	distance	atom – atom	distance
C(56)-H(56A)	0.9800	C(56)-H(56B)	0.9800
C(56) - H(56C)	0.9800	F(611) - F(61)	0.993(12)
F(611) - C(67)	1.250(12)	F(611) - F(63)	1.341(14)
F(621) - F(61)	1.069(11)	F(621) - C(67)	1.455(12)
F(621) - F(62)	1.638(13)	F(631) - F(62)	0.616(13)
F(631) - C(67)	1.390(15)	C(61) - C(62)	1.400(4)
C(61) - C(66)	1.403(4)	F(61) - C(67)	1.301(6)
C(62) - C(63)	1.398(4)	C(62) - H(62)	0.9500
F(62) - C(67)	1.332(7)	C(63) - C(64)	1.389(5)
C(63) - C(67)	1.487(4)	F(63) - C(67)	1.379(6)
C(64) - C(65)	1.385(5)	C(64) - H(64)	0.9500
F(64) - C(68)	1.332(4)	C(65) - C(66)	1.392(4)
C(65) - C(68)	1.502(5)	F(65) - C(68)	1.316(4)
C(66) - H(66)	0.9500	F(66) - C(68)	1.329(4)
C(71) - C(76)	1.402(4)	C(71) - C(72)	1.402(4)
F(71) - C(77)	1.330(4)	C(72) - C(73)	1.392(4)
C(72) - H(72)	0.9500	F(72) - C(77)	1.300(4)
C(73) - C(74)	1.389(4)	C(73) - C(77)	1.502(4)
F(73) - C(77)	1.305(4)	C(74) - C(75)	1.394(4)
C(74) - H(74)	0.9500	F(74) - C(78)	1.341(4)
C(75) - C(76)	1.383(4)	C(75) - C(78)	1.498(4)
F(75) - C(78)	1.337(4)	C(76) - H(76)	0.9500
F(76) - C(78)	1.330(4)	C(81) - C(86)	1.403(4)
C(81) - C(82)	1.404(4)	F(81) - C(87)	1.325(6)
C(82) - C(83)	1.396(4)	C(82) - H(82)	0.9500
F(82) - C(87)	1.310(5)	C(83) - C(84)	1.383(5)
C(83) - C(87)	1.500(5)	F(83) - C(87)	1.312(5)
C(84) - C(85)	1.390(5)	C(84) - H(84)	0.9500
F(84) - C(88)	1.341(4)	C(85) - C(86)	1.391(4)
C(85) - C(88)	1.493(4)	F(85) - C(88)	1.319(4)
C(86) - H(86)	0.9500	F(86) - C(88)	1.343(4)
C(91) - C(96)	1.397(4)	C(91) - C(92)	1.404(4)
F(91) - C(97)	1.317(4)	C(92) - C(93)	1.394(4)
C(92) - H(92)	0.9500	F(92) - C(97)	1.329(4)
C(93) - C(94)	1.392(4)	C(93) - C(97)	1.498(4)
F(93) - C(97)	1.340(4)	C(94) - C(95)	1.384(4)
C(94) – H(94)	0.9500	F(94) - C(98)	1.329(4)
C(95) - C(96)	1.395(4)	C(95) - C(98)	1.499(4)
F(95) - C(98)	1.327(4)	C(96) - H(96)	0.9500
F(96) - C(98)	1.316(4)		

Table S30. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C - Pd - P(2)	82.42(8)	C-Pd-P(1)	81.17(8)
P(2) - Pd - P(1)	155.55(3)	C-Pd-P(3)	166.01(9)
P(2) - Pd - P(3)	102.12(3)	P(1) - Pd - P(3)	98.13(3)
C(12) - P(1) - C(42)	106.23(18)	C(12) - P(1) - C(41)	102.63(16)
C(42) - P(1) - C(41)	106.3(2)	C(12) - P(1) - Pd	99.56(10)
C(42) - P(1) - Pd	110.36(13)	C(41) - P(1) - Pd	129.16(16)
C(22) - P(2) - C(51)	105.82(16)	C(22) - P(2) - C(52)	104.13(15)
C(51) - P(2) - C(52)	108.08(16)	C(22) - P(2) - Pd	105.08(10)
C(51) - P(2) - Pd	117.12(11)	C(52) - P(2) - Pd	115.31(11)
C(32) - P(3) - C(33)	101.7(3)	C(32) - P(3) - C(31)	100.7(3)
C(33) - P(3) - C(31)	98.5(2)	C(32) - P(3) - Pd	122.90(17)
C(33) - P(3) - Pd	109.06(17)	C(31) - P(3) - Pd	119.99(15)
C(11) - C - C(21)	114.5(2)	C(11)-C-Pd	111.49(19)
C(21) - C - Pd	117.1(2)	С(11)-С-Н	104.0
С(21)-С-Н	104.0	Pd-C-H	104.0
C(16) - C(11) - C(12)	117.9(3)	C(16) - C(11) - C	124.5(3)
C(12) - C(11) - C	117.4(3)	C(13) - C(12) - C(11)	120.9(3)
C(13) - C(12) - P(1)	124.2(2)	C(11) - C(12) - P(1)	114.8(2)
C(14) - C(13) - C(12)	120.0(3)	C(14) - C(13) - H(13)	120.0
C(12) - C(13) - H(13)	120.0	C(15) - C(14) - C(13)	119.2(3)
C(15) - C(14) - H(14)	120.4	C(13) - C(14) - H(14)	120.4
C(14) - C(15) - C(16)	121.0(3)	C(14) - C(15) - H(15)	119.5
C(16) - C(15) - H(15)	119.5	C(15) - C(16) - C(11)	120.7(3)
C(15) - C(16) - H(16)	119.7	C(11) - C(16) - H(16)	119.6
C(71) - B - C(61)	103.6(2)	C(71) - B - C(91)	112.8(2)
C(61) - B - C(91)	112.3(2)	C(71) - B - C(81)	112.6(2)
C(61) - B - C(81)	113.6(2)	C(91) - B - C(81)	102.3(2)
C(22) - C(21) - C(26)	118.6(3)	C(22) - C(21) - C	120.1(3)
C(26) - C(21) - C	121.2(3)	C(21) - C(22) - C(23)	120.7(3)
C(21) - C(22) - P(2)	113.0(2)	C(23) - C(22) - P(2)	125.8(2)
C(24) - C(23) - C(22)	119.4(3)	C(24) - C(23) - H(23)	120.3
C(22) - C(23) - H(23)	120.3	C(24) - C(25) - C(26)	120.4(3)
C(24) - C(25) - H(25)	119.8	C(26) - C(25) - H(25)	119.8
C(23) - C(24) - C(25)	120.1(3)	C(23) - C(24) - H(24)	119.9
C(25) - C(24) - H(24)	119.9	C(25) - C(26) - C(21)	120.2(3)
C(25) - C(26) - H(26)	119.9	C(21) - C(26) - H(26)	119.9
P(3) - C(31) - H(31A)	109.5	P(3)-C(31)-H(31B)	109.5
H(31A) - C(31) - H(31B)	109.5	P(3)-C(31)-H(31C)	109.5
H(31A) - C(31) - H(31C)	109.5	H(31B) - C(31) - H(31C)	109.5
P(3) - C(32) - H(32A)	109.5	P(3)-C(32)-H(32B)	109.5
H(32A) - C(32) - H(32B)	109.5	P(3) - C(32) - H(32C)	109.5
		Continue	ed on next page

Table S31. Angles [°] for $[{PC(sp^3)HP}PdPMe_3][BAr_4^F]$ ([8][BAr_4^F]).
atom – atom – atom	angle	atom – atom – atom	angle
H(32A) - C(32) - H(32C)	109.5	H(32B) - C(32) - H(32C)	109.5
P(3) - C(33) - H(33A)	109.5	P(3) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	P(3) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(43) - C(41) - C(44)	112.5(5)	C(43) - C(41) - P(1)	108.5(3)
C(44) - C(41) - P(1)	116.2(4)	C(43) - C(41) - H(41)	106.3
C(44) - C(41) - H(41)	106.3	P(1) - C(41) - H(41)	106.3
C(45) - C(42) - C(46)	108.6(5)	C(45) - C(42) - P(1)	119.1(3)
C(46) - C(42) - P(1)	108.9(3)	C(45) - C(42) - H(42)	106.5
C(46) - C(42) - H(42)	106.5	P(1) - C(42) - H(42)	106.5
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(54) - C(51) - C(53)	111.1(3)	C(54) - C(51) - P(2)	112.2(3)
C(53) - C(51) - P(2)	109.7(3)	C(54) - C(51) - H(51)	107.9
C(53) - C(51) - H(51)	107.9	P(2) - C(51) - H(51)	107.9
C(55) - C(52) - C(56)	110.6(3)	C(55) - C(52) - P(2)	107.8(2)
C(56) - C(52) - P(2)	116.6(3)	C(55) - C(52) - H(52)	107.2
C(56) - C(52) - H(52)	107.2	P(2) - C(52) - H(52)	107.2
C(51) - C(53) - H(53A)	109.5	C(51) - C(53) - H(53B)	109.5
H(53A) - C(53) - H(53B)	109.5	C(51) - C(53) - H(53C)	109.5
H(53A) - C(53) - H(53C)	109.5	H(53B) - C(53) - H(53C)	109.5
C(51) - C(54) - H(54A)	109.5	C(51) - C(54) - H(54B)	109.5
H(54A) - C(54) - H(54B)	109.5	C(51) - C(54) - H(54C)	109.5
H(54A) - C(54) - H(54C)	109.5	H(54B) - C(54) - H(54C)	109.5
C(52) - C(55) - H(55A)	109.5	C(52) - C(55) - H(55B)	109.5
H(55A) - C(55) - H(55B)	109.5	C(52) - C(55) - H(55C)	109.5
H(55A) - C(55) - H(55C)	109.5	H(55B) - C(55) - H(55C)	109.5
C(52) - C(56) - H(56A)	109.5	C(52) - C(56) - H(56B)	109.5
H(56A) - C(56) - H(56B)	109.5	C(52) - C(56) - H(56C)	109.5
H(56A) - C(56) - H(56C)	109.5	H(56B) - C(56) - H(56C)	109.5
F(61) - F(611) - C(67)	69.8(8)	F(61) - F(611) - F(63)	128.8(12)
C(67) - F(611) - F(63)	64.2(7)	F(61) - F(621) - C(67)	59.7(6)
		Continue	ed on next page

 Table S31. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
F(61) - F(621) - F(62)	102.6(9)	C(67) - F(621) - F(62)	50.6(5)
F(62) - F(631) - C(67)	71.7(17)	C(62) - C(61) - C(66)	116.0(3)
C(62) - C(61) - B	124.3(3)	C(66) - C(61) - B	119.3(3)
F(611) - F(61) - F(621)	137.4(12)	F(611) - F(61) - C(67)	64.4(8)
F(621) - F(61) - C(67)	75.1(7)	C(63) - C(62) - C(61)	121.8(3)
C(63) - C(62) - H(62)	119.1	C(61) - C(62) - H(62)	119.1
F(631) - F(62) - C(67)	82.3(17)	F(631) - F(62) - F(621)	137.4(19)
C(67) - F(62) - F(621)	57.6(5)	C(64) - C(63) - C(62)	120.9(3)
C(64) - C(63) - C(67)	118.2(3)	C(62) - C(63) - C(67)	121.0(3)
F(611) - F(63) - C(67)	54.7(5)	C(65) - C(64) - C(63)	118.3(3)
C(65) - C(64) - H(64)	120.9	C(63) - C(64) - H(64)	120.9
C(64) - C(65) - C(66)	120.7(3)	C(64) - C(65) - C(68)	119.1(3)
C(66) - C(65) - C(68)	120.1(3)	C(65) - C(66) - C(61)	122.2(3)
C(65) - C(66) - H(66)	118.9	C(61) - C(66) - H(66)	118.9
F(611) - C(67) - F(61)	45.7(6)	F(611) - C(67) - F(62)	131.5(5)
F(61) - C(67) - F(62)	109.0(4)	F(611) - C(67) - F(63)	61.1(7)
F(61) - C(67) - F(63)	103.8(4)	F(62) - C(67) - F(63)	103.0(4)
F(611) - C(67) - F(631)	127.3(8)	F(61) - C(67) - F(631)	127.2(6)
F(63) - C(67) - F(631)	80.1(6)	F(611) - C(67) - F(621)	90.1(8)
F(61) - C(67) - F(621)	45.2(5)	F(62) - C(67) - F(621)	71.8(5)
F(63) - C(67) - F(621)	137.5(5)	F(631) - C(67) - F(621)	97.1(7)
F(611) - C(67) - C(63)	114.9(5)	F(61) - C(67) - C(63)	115.3(3)
F(62) - C(67) - C(63)	113.5(3)	F(63) - C(67) - C(63)	111.2(3)
F(631) - C(67) - C(63)	111.6(5)	F(621) - C(67) - C(63)	109.2(4)
F(65) - C(68) - F(66)	106.8(3)	F(65) - C(68) - F(64)	106.6(3)
F(66) - C(68) - F(64)	105.4(3)	F(65) - C(68) - C(65)	112.5(3)
F(66) - C(68) - C(65)	112.8(3)	F(64) - C(68) - C(65)	112.2(3)
C(76) - C(71) - C(72)	115.7(3)	C(76) - C(71) - B	120.5(3)
C(72) - C(71) - B	123.4(3)	C(73) - C(72) - C(71)	121.9(3)
C(73) - C(72) - H(72)	119.0	C(71) - C(72) - H(72)	119.0
C(74) - C(73) - C(72)	121.4(3)	C(74) - C(73) - C(77)	119.0(3)
C(72) - C(73) - C(77)	119.7(3)	C(73) - C(74) - C(75)	117.4(3)
C(73) - C(74) - H(74)	121.3	C(75) - C(74) - H(74)	121.3
C(76) - C(75) - C(74)	121.0(3)	C(76) - C(75) - C(78)	118.9(3)
C(74) - C(75) - C(78)	120.2(3)	C(75) - C(76) - C(71)	122.6(3)
C(75) - C(76) - H(76)	118.7	C(71) - C(76) - H(76)	118.7
F(72) - C(77) - F(73)	107.4(3)	F(72) - C(77) - F(71)	105.5(3)
F(73) - C(77) - F(71)	103.3(3)	F(72) - C(77) - C(73)	113.6(3)
F(73) - C(77) - C(73)	113.3(3)	F(71) - C(77) - C(73)	112.9(3)
F(76) - C(78) - F(75)	106.8(3)	F(76) - C(78) - F(74)	106.4(3)
F(75) - C(78) - F(74)	105.8(3)	F(76) - C(78) - C(75)	113.0(3)
F(75) - C(78) - C(75)	112.1(3)	F(74) - C(78) - C(75)	112.2(3)
		Continue	d on next page

Table S31. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(86) - C(81) - C(82)	115.6(3)	C(86) - C(81) - B	120.7(3)
C(82) - C(81) - B	123.2(3)	C(83) - C(82) - C(81)	122.3(3)
C(83) - C(82) - H(82)	118.8	C(81) - C(82) - H(82)	118.8
C(84) - C(83) - C(82)	120.7(3)	C(84) - C(83) - C(87)	119.2(3)
C(82) - C(83) - C(87)	120.0(3)	C(83) - C(84) - C(85)	118.2(3)
C(83) - C(84) - H(84)	120.9	C(85) - C(84) - H(84)	120.9
C(84) - C(85) - C(86)	120.9(3)	C(84) - C(85) - C(88)	118.6(3)
C(86) - C(85) - C(88)	120.5(3)	C(85) - C(86) - C(81)	122.3(3)
C(85) - C(86) - H(86)	118.9	C(81) - C(86) - H(86)	118.9
F(82) - C(87) - F(83)	107.5(4)	F(82) - C(87) - F(81)	104.9(4)
F(83) - C(87) - F(81)	104.4(4)	F(82) - C(87) - C(83)	113.5(3)
F(83) - C(87) - C(83)	114.1(3)	F(81) - C(87) - C(83)	111.7(4)
F(85) - C(88) - F(84)	105.4(3)	F(85) - C(88) - F(86)	108.6(3)
F(84) - C(88) - F(86)	104.7(3)	F(85) - C(88) - C(85)	112.4(3)
F(84) - C(88) - C(85)	112.4(3)	F(86) - C(88) - C(85)	112.8(3)
C(96) - C(91) - C(92)	116.1(3)	C(96) - C(91) - B	123.6(3)
C(92) - C(91) - B	119.8(3)	C(93) - C(92) - C(91)	122.0(3)
C(93) - C(92) - H(92)	119.0	C(91) - C(92) - H(92)	119.0
C(94) - C(93) - C(92)	120.6(3)	C(94) - C(93) - C(97)	118.7(3)
C(92) - C(93) - C(97)	120.6(3)	C(95) - C(94) - C(93)	118.3(3)
C(95) - C(94) - H(94)	120.8	C(93) - C(94) - H(94)	120.8
C(94) - C(95) - C(96)	120.8(3)	C(94) - C(95) - C(98)	118.9(3)
C(96) - C(95) - C(98)	120.2(3)	C(95) - C(96) - C(91)	122.1(3)
C(95) - C(96) - H(96)	118.9	C(91) - C(96) - H(96)	118.9
F(91) - C(97) - F(92)	107.4(3)	F(91) - C(97) - F(93)	106.1(3)
F(92) - C(97) - F(93)	104.7(3)	F(91) - C(97) - C(93)	112.3(3)
F(92) - C(97) - C(93)	113.7(3)	F(93) - C(97) - C(93)	112.0(3)
F(96) - C(98) - F(95)	106.7(3)	F(96) - C(98) - F(94)	106.5(3)
F(95) - C(98) - F(94)	105.2(3)	F(96) - C(98) - C(95)	113.4(3)
F(95) - C(98) - C(95)	112.6(3)	F(94) - C(98) - C(95)	111.9(3)

 Table S31. – continued from previous page

4.6 Crystal data for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]([9][BAr_4^F])$

Figure S64. Thermal-ellipsoid representation of $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]$ ([9][BAr_4^F]) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	pc41	
Empirical formula:	$C_{68}H_{74}BF_{24}P_3Pd$	
Formula weight:	1557.39	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Triclinic	
Space group:	PĪ	
Unit cell dimensions:	a = 13.7002(14) Å	$\alpha = 65.531(3)^{\circ}$
	b = 17.7228(18) Å	$\beta = 74.700(3)^{\circ}$
	c = 18.5200(19) Å	$\gamma = 88.259(3)^{\circ}$
Volume:	3931.8(7) Å ³	
Z:	2	
Density (calculated):	$1.315 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (µ):	0.390 mm^{-1}	
F(000):	1588	
Crystal size:	$0.09 \times 0.08 \times 0.05 \text{ mm}^3$	
θ range for data collection:	1.55 to 25.00°	
Index ranges:	$-16 \le h \le 16, -21 \le k \le 21, -22 \le l \le 22$	
Reflections collected:	71970	
Independent reflections:	13848 [$R_{int} = 0.0347$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7454 and 0.7138	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	13848 / 0 / 891	
Goodness-of-fit on F ² :	1.065	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0492, wR_2 = 0.1270$	
R indices (all data):	$R_1 = 0.0575, wR_2 = 0.1325$	
Largest diff. peak and hole:	2.142 and $-1.161 e^{-1.3}$	

Table S32.Crystal data and structure refinement for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]$ ([9][BAr_4^F]).

atom	X	У	Z	U(eq)
Pd	0.32223(2)	0.73427(1)	0.20636(2)	0.024(1)
P(1)	0.19690(6)	0.78475(5)	0.28063(5)	0.024(1)
P(2)	0.48672(6)	0.72477(5)	0.13234(5)	0.023(1)
P(3)	0.25908(7)	0.59265(5)	0.26444(6)	0.034(1)
C(10)	0.1232(3)	1.1026(2)	0.2240(2)	0.038(1)
C(11)	0.3060(2)	0.9231(2)	0.1573(2)	0.027(1)
C(12)	0.2242(2)	0.89670(19)	0.2281(2)	0.026(1)
C(13)	0.1658(2)	0.9537(2)	0.2505(2)	0.027(1)
C(14)	0.1846(3)	1.0383(2)	0.2012(2)	0.029(1)
C(16)	0.3231(2)	1.0084(2)	0.1061(2)	0.030(1)
C(15)	0.2639(3)	1.0640(2)	0.1282(2)	0.031(1)
C(17)	0.1907(4)	1.1515(3)	0.2466(3)	0.063(1)
C(18)	0.0878(3)	1.1621(3)	0.1505(2)	0.049(1)
C(19)	0.0291(4)	1.0624(3)	0.2960(3)	0.060(1)
С	0.3735(2)	0.86201(19)	0.1368(2)	0.026(1)
C(20)	0.8106(2)	0.9245(2)	0.0834(2)	0.031(1)
C(21)	0.4836(2)	0.87618(19)	0.13309(19)	0.025(1)
C(22)	0.5499(2)	0.81959(18)	0.11919(18)	0.022(1)
C(23)	0.6542(2)	0.83606(19)	0.10059(18)	0.023(1)
C(24)	0.6965(2)	0.90492(19)	0.1023(2)	0.026(1)
C(26)	0.5249(2)	0.9442(2)	0.1369(2)	0.029(1)
C(25)	0.6287(3)	0.9577(2)	0.1229(2)	0.031(1)
C(27)	0.8438(3)	1.0095(2)	0.0101(3)	0.045(1)
C(28)	0.8710(3)	0.8592(2)	0.0621(3)	0.038(1)
В	0.1409(3)	0.6337(2)	0.7333(2)	0.023(1)
C(29)	0.8342(3)	0.9267(3)	0.1584(3)	0.045(1)
C(31)	0.1252(3)	0.5621(3)	0.3107(3)	0.063(1)
C(32)	0.3075(4)	0.5197(3)	0.3505(3)	0.060(1)
C(33)	0.2894(4)	0.5429(3)	0.1958(4)	0.068(1)
C(41)	0.0670(2)	0.7640(2)	0.2790(2)	0.028(1)
C(42)	0.1934(3)	0.7601(2)	0.3880(2)	0.034(1)
C(43)	0.0667(3)	0.7877(3)	0.1903(2)	0.041(1)
C(44)	-0.0166(3)	0.8036(3)	0.3206(3)	0.044(1)
C(45)	0.1477(4)	0.6722(2)	0.4478(2)	0.049(1)
C(46)	0.3003(3)	0.7769(3)	0.3912(3)	0.049(1)
C(51)	0.5460(2)	0.6380(2)	0.1976(2)	0.029(1)
C(52)	0.5289(3)	0.7272(2)	0.0270(2)	0.038(1)
C(53)	0.5364(3)	0.6449(2)	0.2783(2)	0.040(1)
C(54)	0.6555(3)	0.6246(2)	0.1613(3)	0.047(1)
			Continue	ed on next page

Table S33. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]$ ([9][BAr_4^F]). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	y	X	U(eq)
C(55)	0.5033(4)	0.6463(3)	0.0237(3)	0.054(1)
C(56)	0.4872(3)	0.8000(3)	-0.0325(2)	0.043(1)
C(61)	0.2163(2)	0.66688(19)	0.77129(18)	0.024(1)
F(61)	0.1621(3)	0.8666(2)	0.8337(3)	0.120(2)
C(62)	0.1973(3)	0.7335(2)	0.7928(2)	0.030(1)
F(62)	0.2164(3)	0.8018(3)	0.9352(2)	0.109(1)
C(63)	0.2613(3)	0.7597(2)	0.8269(2)	0.038(1)
F(63)	0.3180(2)	0.88257(19)	0.8271(2)	0.086(1)
C(64)	0.3481(3)	0.7212(3)	0.8392(2)	0.042(1)
F(64)	0.4911(3)	0.5697(3)	0.7852(3)	0.115(2)
C(65)	0.3692(3)	0.6546(2)	0.8188(2)	0.037(1)
F(65)	0.4541(2)	0.55803(19)	0.9074(2)	0.089(1)
C(66)	0.3032(3)	0.6277(2)	0.7873(2)	0.030(1)
F(66)	0.54190(19)	0.66495(17)	0.81275(18)	0.064(1)
C(67)	0.2389(3)	0.8303(3)	0.8500(3)	0.060(1)
C(68)	0.4640(4)	0.6124(3)	0.8298(3)	0.052(1)
C(71)	0.2055(2)	0.58918(18)	0.67571(18)	0.021(1)
F(71)	0.1055(2)	0.4334(2)	0.5748(2)	0.081(1)
C(72)	0.1669(2)	0.52097(19)	0.66945(19)	0.025(1)
F(72)	0.1294(3)	0.35684(17)	0.68936(18)	0.084(1)
C(73)	0.2233(2)	0.4870(2)	0.6178(2)	0.027(1)
F(73)	0.2427(2)	0.37655(18)	0.5776(2)	0.078(1)
C(74)	0.3205(2)	0.5198(2)	0.56993(19)	0.027(1)
F(74)	0.4958(2)	0.6131(2)	0.45610(18)	0.078(1)
C(75)	0.3598(2)	0.58872(19)	0.57346(19)	0.025(1)
F(75)	0.53193(19)	0.5867(2)	0.56473(19)	0.097(1)
C(76)	0.3033(2)	0.62270(19)	0.62443(18)	0.023(1)
F(76)	0.4809(2)	0.70366(16)	0.5009(2)	0.082(1)
C(77)	0.1775(3)	0.4136(3)	0.6151(3)	0.045(1)
C(78)	0.4661(3)	0.6237(2)	0.5254(2)	0.033(1)
C(81)	0.0927(2)	0.70870(19)	0.66894(19)	0.025(1)
F(81)	-0.1699(3)	0.7981(2)	0.5336(3)	0.116(2)
C(82)	0.0019(3)	0.6947(2)	0.6541(2)	0.029(1)
F(82)	-0.2058(2)	0.6982(3)	0.65340(19)	0.094(1)
C(83)	-0.0368(3)	0.7550(2)	0.5946(2)	0.034(1)
F(83)	-0.1267(2)	0.6795(2)	0.5514(2)	0.088(1)
C(84)	0.0164(3)	0.8322(2)	0.5457(2)	0.036(1)
F(84)	0.1138(3)	0.99323(15)	0.5027(2)	0.089(1)
C(85)	0.1076(3)	0.8476(2)	0.5580(2)	0.033(1)
F(85)	0.1995(3)	0.94222(17)	0.42645(16)	0.084(1)
C(86)	0.1448(3)	0.7872(2)	0.61815(19)	0.028(1)
F(86)	0.2470(3)	0.94029(19)	0.5245(2)	0.118(2)
			Continue	ed on next page

Table S33. – continued from previous page

atom	X	y y	X	U(eq)
C(87)	-0.1344(3)	0.7346(3)	0.5837(3)	0.047(1)
C(88)	0.1661(3)	0.9297(2)	0.5047(2)	0.042(1)
C(91)	0.0531(2)	0.56927(19)	0.81305(18)	0.023(1)
F(91)	-0.2117(2)	0.64889(16)	0.92039(19)	0.081(1)
C(92)	-0.0395(2)	0.59400(19)	0.84575(19)	0.026(1)
F(92)	-0.2844(2)	0.5427(2)	0.9243(2)	0.086(1)
C(93)	-0.1118(3)	0.5397(2)	0.9153(2)	0.028(1)
F(93)	-0.24317(19)	0.53668(16)	1.02806(14)	0.057(1)
C(94)	-0.0943(3)	0.4575(2)	0.9561(2)	0.028(1)
F(94)	-0.02709(18)	0.30677(13)	1.04507(12)	0.050(1)
C(95)	-0.0024(3)	0.4317(2)	0.92510(19)	0.027(1)
F(95)	-0.0209(2)	0.29727(14)	0.93323(16)	0.063(1)
C(96)	0.0691(2)	0.48643(19)	0.85575(19)	0.024(1)
F(96)	0.11392(17)	0.32980(13)	0.95314(15)	0.056(1)
C(97)	-0.2120(3)	0.5675(2)	0.9458(2)	0.037(1)
C(98)	0.0159(3)	0.3421(2)	0.9639(2)	0.034(1)
H(13)	0.1124	0.9340	0.3003	0.033
H(16)	0.3758	1.0282	0.0558	0.036
H(15)	0.2775	1.1217	0.0927	0.037
H(17A)	0.2502	1.1792	0.1996	0.095
H(17B)	0.2129	1.1133	0.2941	0.095
H(17C)	0.1522	1.1934	0.2607	0.095
H(18A)	0.1470	1.1915	0.1038	0.074
H(18B)	0.0472	1.2026	0.1656	0.074
H(18C)	0.0463	1.1305	0.1350	0.074
H(19A)	-0.0083	1.1057	0.3082	0.090
H(19B)	0.0495	1.0245	0.3447	0.090
H(19C)	-0.0144	1.0312	0.2817	0.090
Η	0.3745	0.8736	0.0790	0.031
H(23)	0.6979	0.7988	0.0862	0.027
H(26)	0.4813	0.9825	0.1494	0.035
H(25)	0.6543	1.0043	0.1274	0.037
H(27A)	0.8325	1.0072	-0.0391	0.067
H(27B)	0.9161	1.0239	0.0000	0.067
H(27C)	0.8040	1.0517	0.0224	0.067
H(28A)	0.8568	0.8573	0.0137	0.057
H(28B)	0.8513	0.8046	0.1090	0.057
H(28C)	0.9438	0.8738	0.0499	0.057
H(29A)	0.9068	0.9425	0.1452	0.068
H(29B)	0.8162	0.8716	0.2047	0.068
H(29C)	0.7947	0.9676	0.1736	0.068
H(31A)	0.0875	0.5958	0.2719	0.094
			Cont	tinued on next page

Table S33. – continued from previous page

atom	X	У	X	U(eq)
H(31B)	0.1033	0.5706	0.3613	0.094
H(31C)	0.1118	0.5032	0.3239	0.094
H(32A)	0.2738	0.4638	0.3716	0.091
H(32B)	0.2934	0.5384	0.3948	0.091
H(32C)	0.3810	0.5185	0.3304	0.091
H(33A)	0.2617	0.5723	0.1487	0.101
H(33B)	0.2597	0.4850	0.2250	0.101
H(33C)	0.3633	0.5442	0.1760	0.101
H(41)	0.0500	0.7024	0.3091	0.033
H(42)	0.1496	0.7994	0.4049	0.041
H(43A)	0.0796	0.8483	0.1591	0.062
H(43B)	0.0004	0.7696	0.1893	0.062
H(43C)	0.1199	0.7607	0.1653	0.062
H(44A)	-0.0082	0.8641	0.2884	0.066
H(44B)	-0.0122	0.7904	0.3764	0.066
H(44C)	-0.0831	0.7817	0.3236	0.066
H(45A)	0.0785	0.6646	0.4451	0.074
H(45B)	0.1460	0.6633	0.5041	0.074
H(45C)	0.1893	0.6321	0.4330	0.074
H(46A)	0.3451	0.7389	0.3754	0.073
H(46B)	0.2984	0.7682	0.4474	0.073
H(46C)	0.3261	0.8345	0.3530	0.073
H(51)	0.5037	0.5860	0.2121	0.034
H(52)	0.6047	0.7379	0.0081	0.045
H(53A)	0.5794	0.6937	0.2676	0.060
H(53B)	0.5581	0.5946	0.3167	0.060
H(53C)	0.4654	0.6510	0.3025	0.060
H(54A)	0.6623	0.6241	0.1075	0.070
H(54B)	0.6729	0.5712	0.1987	0.070
H(54C)	0.7015	0.6698	0.1546	0.070
H(55A)	0.5380	0.6489	-0.0309	0.080
H(55B)	0.4297	0.6378	0.0338	0.080
H(55C)	0.5257	0.6000	0.0660	0.080
H(56A)	0.5154	0.8047	-0.0887	0.065
H(56B)	0.5064	0.8515	-0.0300	0.065
H(56C)	0.4130	0.7908	-0.0170	0.065
H(62)	0.1387	0.7620	0.7840	0.036
H(64)	0.3925	0.7401	0.8612	0.051
H(66)	0.3177	0.5802	0.7761	0.036
H(72)	0.0999	0.4969	0.7015	0.030
H(74)	0.3594	0.4958	0.5355	0.033
H(76)	0.3320	0.6707	0.6247	0.028
				Continued on next page

Table S33. – continued from previous page

atom	X	y	X	U(eq)
H(82)	-0.0353	0.6417	0.6860	0.035
H(84)	-0.0092	0.8738	0.5047	0.044
H(86)	0.2078	0.7996	0.6250	0.034
H(92)	-0.0536	0.6502	0.8194	0.031
H(94)	-0.1436	0.4199	1.0036	0.034
H(96)	0.1315	0.4668	0.8365	0.029

Table S33. – continued from previous page

+ 2пка*	b^*U_{12}].						
atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
P (1)	0.0237(4)	0.0199(4)	0.0317(4)	-0.0117(3)	-0.0108(3)	0.0086(3)	
P(2)	0.0229(4)	0.0204(4)	0.0288(4)	-0.0113(3)	-0.0086(3)	0.0051(3)	
P(3)	0.0283(5)	0.0208(4)	0.0485(6)	-0.0162(4)	-0.0016(4)	0.0009(3)	
C(10)	0.050(2)	0.0264(18)	0.036(2)	-0.0155(16)	-0.0107(17)	0.0199(16)	
C(11)	0.0229(16)	0.0241(16)	0.0346(18)	-0.0129(14)	-0.0097(14)	0.0073(13)	
C(12)	0.0250(16)	0.0220(16)	0.0366(18)	-0.0151(14)	-0.0132(14)	0.0080(13)	
C(13)	0.0280(17)	0.0261(17)	0.0321(18)	-0.0153(14)	-0.0108(14)	0.0109(13)	
C(14)	0.0337(18)	0.0228(16)	0.0364(19)	-0.0153(15)	-0.0151(15)	0.0127(14)	
C(16)	0.0252(17)	0.0245(17)	0.0349(19)	-0.0088(14)	-0.0068(14)	0.0052(13)	
C(15)	0.0315(18)	0.0204(16)	0.0367(19)	-0.0094(14)	-0.0095(15)	0.0081(13)	
C(17)	0.103(4)	0.038(2)	0.072(3)	-0.037(2)	-0.040(3)	0.029(2)	
C(18)	0.059(3)	0.041(2)	0.043(2)	-0.0154(18)	-0.011(2)	0.033(2)	
C(19)	0.080(3)	0.042(2)	0.044(2)	-0.016(2)	0.000(2)	0.035(2)	
С	0.0258(16)	0.0241(16)	0.0254(16)	-0.0090(13)	-0.0069(13)	0.0064(13)	
C(20)	0.0229(17)	0.0272(17)	0.048(2)	-0.0169(16)	-0.0140(15)	0.0063(13)	
C(21)	0.0254(16)	0.0213(15)	0.0251(16)	-0.0085(13)	-0.0063(13)	0.0066(13)	
C(22)	0.0221(15)	0.0197(15)	0.0225(15)	-0.0085(12)	-0.0056(12)	0.0041(12)	
C(23)	0.0234(16)	0.0208(15)	0.0244(16)	-0.0098(13)	-0.0071(13)	0.0078(12)	
C(24)	0.0237(16)	0.0226(16)	0.0316(17)	-0.0116(14)	-0.0095(13)	0.0052(13)	
C(26)	0.0286(17)	0.0235(16)	0.0379(19)	-0.0173(15)	-0.0088(14)	0.0092(13)	
C(25)	0.0320(18)	0.0249(17)	0.044(2)	-0.0199(15)	-0.0149(16)	0.0069(14)	
C(27)	0.030(2)	0.034(2)	0.063(3)	-0.0103(19)	-0.0156(18)	-0.0017(16)	
C(28)	0.0203(17)	0.038(2)	0.059(2)	-0.0247(18)	-0.0096(16)	0.0054(15)	
В	0.0277(18)	0.0187(17)	0.0201(17)	-0.0080(14)	-0.0030(14)	0.0045(14)	
C(29)	0.040(2)	0.049(2)	0.067(3)	-0.035(2)	-0.030(2)	0.0141(18)	
C(31)	0.039(2)	0.038(2)	0.099(4)	-0.029(2)	0.001(2)	-0.0045(19)	
C(32)	0.054(3)	0.041(2)	0.071(3)	-0.009(2)	-0.016(2)	0.008(2)	
C(33)	0.062(3)	0.055(3)	0.094(4)	-0.052(3)	0.001(3)	-0.009(2)	
C(41)	0.0233(16)	0.0213(16)	0.0349(18)	-0.0096(14)	-0.0063(14)	0.0042(13)	
C(42)	0.047(2)	0.0307(18)	0.0302(18)	-0.0148(15)	-0.0159(16)	0.0156(16)	
C(43)	0.034(2)	0.048(2)	0.040(2)	-0.0131(18)	-0.0170(17)	0.0058(17)	
C(44)	0.0231(18)	0.046(2)	0.063(3)	-0.028(2)	-0.0062(17)	0.0075(16)	
C(45)	0.073(3)	0.035(2)	0.029(2)	-0.0066(17)	-0.0103(19)	0.012(2)	
C(46)	0.059(3)	0.057(3)	0.050(2)	-0.029(2)	-0.036(2)	0.022(2)	
C(51)	0.0256(17)	0.0200(15)	0.0405(19)	-0.0129(14)	-0.0101(14)	0.0079(13)	
C(52)	0.041(2)	0.040(2)	0.039(2)	-0.0227(17)	-0.0126(17)	0.0048(16)	
C(53)	0.047(2)	0.035(2)	0.040(2)	-0.0117(17)	-0.0236(18)	0.0140(17)	
C(54)	0.033(2)	0.037(2)	0.066(3)	-0.022(2)	-0.0082(19)	0.0162(17)	
C(55)	0.069(3)	0.054(3)	0.050(3)	-0.035(2)	-0.014(2)	0.002(2)	
	Continued on next page						

Table S34. Anisotropic displacement parameters (Å²) for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]$ (**[9][BAr_4^F]**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(56)	0.052(2)	0.048(2)	0.031(2)	-0.0168(18)	-0.0096(17)	-0.0031(19)
C(61)	0.0307(17)	0.0189(15)	0.0181(15)	-0.0064(12)	-0.0013(13)	-0.0007(13)
F(61)	0.099(3)	0.107(3)	0.264(5)	-0.155(4)	-0.100(3)	0.066(2)
C(62)	0.0291(17)	0.0283(17)	0.0320(18)	-0.0166(15)	-0.0009(14)	0.0024(14)
F(62)	0.122(3)	0.131(3)	0.105(3)	-0.098(3)	0.001(2)	0.001(2)
C(63)	0.040(2)	0.038(2)	0.043(2)	-0.0284(18)	-0.0026(17)	-0.0010(16)
F(63)	0.0641(18)	0.0714(19)	0.143(3)	-0.083(2)	0.0011(18)	-0.0094(15)
C(64)	0.043(2)	0.050(2)	0.047(2)	-0.032(2)	-0.0141(18)	0.0000(18)
F(64)	0.105(3)	0.153(3)	0.210(4)	-0.154(4)	-0.120(3)	0.097(3)
C(65)	0.043(2)	0.0339(19)	0.041(2)	-0.0187(17)	-0.0163(17)	0.0050(16)
F(65)	0.080(2)	0.0600(18)	0.108(3)	0.0019(17)	-0.059(2)	0.0038(15)
C(66)	0.041(2)	0.0203(16)	0.0292(18)	-0.0098(14)	-0.0126(15)	0.0052(14)
F(66)	0.0464(15)	0.0614(16)	0.0841(19)	-0.0266(15)	-0.0273(14)	0.0086(13)
C(67)	0.042(2)	0.073(3)	0.093(4)	-0.069(3)	-0.005(2)	0.001(2)
C(68)	0.057(3)	0.051(3)	0.069(3)	-0.033(2)	-0.040(2)	0.015(2)
C(71)	0.0226(15)	0.0194(15)	0.0186(15)	-0.0060(12)	-0.0069(12)	0.0072(12)
F(71)	0.0620(18)	0.094(2)	0.130(3)	-0.079(2)	-0.0445(19)	0.0050(16)
C(72)	0.0221(16)	0.0258(16)	0.0260(16)	-0.0109(13)	-0.0058(13)	0.0045(13)
F(72)	0.121(3)	0.0493(16)	0.0699(19)	-0.0328(15)	0.0089(18)	-0.0379(17)
C(73)	0.0292(17)	0.0264(17)	0.0298(17)	-0.0148(14)	-0.0087(14)	0.0056(13)
F(73)	0.0523(16)	0.0758(19)	0.133(3)	-0.087(2)	0.0047(16)	-0.0018(14)
C(74)	0.0304(18)	0.0291(17)	0.0237(16)	-0.0132(14)	-0.0067(14)	0.0115(14)
F(74)	0.0541(16)	0.115(3)	0.0637(18)	-0.0570(18)	0.0216(14)	-0.0171(16)
C(75)	0.0248(16)	0.0246(16)	0.0223(16)	-0.0081(13)	-0.0063(13)	0.0078(13)
F(75)	0.0275(13)	0.138(3)	0.0666(19)	0.0150(19)	-0.0151(13)	0.0013(16)
C(76)	0.0266(16)	0.0208(15)	0.0226(16)	-0.0091(13)	-0.0077(13)	0.0052(12)
F(76)	0.0435(15)	0.0462(15)	0.125(3)	-0.0378(16)	0.0323(16)	-0.0113(12)
C(77)	0.042(2)	0.044(2)	0.055(3)	-0.034(2)	-0.0012(19)	-0.0019(18)
C(78)	0.0292(18)	0.036(2)	0.0339(19)	-0.0180(16)	-0.0042(15)	0.0084(15)
C(81)	0.0321(17)	0.0207(15)	0.0202(15)	-0.0102(13)	-0.0015(13)	0.0086(13)
F(81)	0.097(3)	0.065(2)	0.174(4)	0.001(2)	-0.103(3)	0.0099(18)
C(82)	0.0339(18)	0.0261(17)	0.0255(17)	-0.0102(14)	-0.0056(14)	0.0076(14)
F(82)	0.0390(15)	0.166(4)	0.0644(19)	-0.036(2)	-0.0114(14)	-0.0120(18)
C(83)	0.039(2)	0.0324(19)	0.0341(19)	-0.0162(16)	-0.0118(16)	0.0139(16)
F(83)	0.0675(19)	0.114(3)	0.120(3)	-0.078(2)	-0.0404(19)	0.0084(18)
C(84)	0.048(2)	0.0299(18)	0.0282(18)	-0.0096(15)	-0.0127(16)	0.0184(16)
F(84)	0.103(2)	0.0222(12)	0.098(2)	-0.0133(13)	0.0199(19)	0.0112(14)
C(85)	0.044(2)	0.0226(17)	0.0247(17)	-0.0082(14)	-0.0037(15)	0.0109(15)
F(85)	0.132(3)	0.0451(15)	0.0418(15)	-0.0103(12)	0.0173(16)	-0.0190(16)
C(86)	0.0333(18)	0.0244(16)	0.0251(17)	-0.0122(14)	-0.0025(14)	0.0097(14)
F(86)	0.124(3)	0.0535(18)	0.124(3)	0.0423(19)	-0.077(3)	-0.0453(19)
C(87)	0.047(2)	0.046(2)	0.049(2)	-0.015(2)	-0.023(2)	0.0110(19)
-					Continue	d on next page

Table S34. – continued from previous page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(88)	0.053(2)	0.0265(19)	0.038(2)	-0.0044(16)	-0.0151(18)	0.0066(17)
C(91)	0.0285(16)	0.0220(15)	0.0203(15)	-0.0112(13)	-0.0060(13)	0.0056(13)
F(91)	0.0613(17)	0.0414(14)	0.094(2)	-0.0125(14)	0.0239(15)	0.0253(13)
C(92)	0.0322(17)	0.0209(15)	0.0213(16)	-0.0088(13)	-0.0043(13)	0.0075(13)
F(92)	0.0383(15)	0.157(3)	0.112(3)	-0.101(3)	-0.0289(16)	0.0403(18)
C(93)	0.0291(17)	0.0273(17)	0.0267(17)	-0.0131(14)	-0.0021(14)	0.0073(14)
F(93)	0.0532(15)	0.0651(16)	0.0410(13)	-0.0242(12)	0.0058(11)	0.0205(12)
C(94)	0.0294(17)	0.0258(17)	0.0220(16)	-0.0086(13)	0.0020(13)	0.0006(13)
F(94)	0.0631(15)	0.0338(11)	0.0262(11)	0.0022(9)	0.0036(10)	0.0163(11)
C(95)	0.0322(18)	0.0249(16)	0.0232(16)	-0.0115(13)	-0.0054(14)	0.0078(14)
F(95)	0.106(2)	0.0289(12)	0.0650(17)	-0.0219(12)	-0.0374(16)	0.0136(13)
C(96)	0.0264(16)	0.0243(16)	0.0225(16)	-0.0117(13)	-0.0036(13)	0.0069(13)
F(96)	0.0416(13)	0.0308(12)	0.0629(15)	0.0010(11)	0.0028(11)	0.0157(10)
C(97)	0.034(2)	0.035(2)	0.034(2)	-0.0133(16)	0.0004(16)	0.0095(16)
C(98)	0.040(2)	0.0259(17)	0.0257(18)	-0.0066(14)	-0.0010(15)	0.0068(15)

Table S34. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.117(3)	Pd-P(1)	2.3067(8)
Pd - P(2)	2.3501(9)	Pd-P(3)	2.3684(9)
P(1) - C(12)	1.810(3)	P(1) - C(42)	1.838(3)
P(1) - C(41)	1.839(3)	P(2) - C(22)	1.808(3)
P(2) - C(51)	1.840(3)	P(2) - C(52)	1.865(4)
P(3) - C(33)	1.787(5)	P(3) - C(31)	1.800(4)
P(3) - C(32)	1.857(5)	C(10) - C(19)	1.520(6)
C(10) - C(18)	1.525(5)	C(10) - C(14)	1.528(4)
C(10) - C(17)	1.528(6)	C(11) - C(12)	1.393(5)
C(11) - C(16)	1.399(5)	C(11)-C	1.505(4)
C(12) - C(13)	1.398(4)	C(13) - C(14)	1.384(5)
C(13) - H(13)	0.9500	C(14) - C(15)	1.400(5)
C(16) - C(15)	1.381(5)	C(16) - H(16)	0.9500
C(15) - H(15)	0.9500	C(17) - H(17A)	0.9800
C(17) - H(17B)	0.9800	C(17) - H(17C)	0.9800
C(18) - H(18A)	0.9800	C(18) - H(18B)	0.9800
C(18)-H(18C)	0.9800	C(19) - H(19A)	0.9800
C(19) - H(19B)	0.9800	C(19) - H(19C)	0.9800
C - C(21)	1.515(4)	С-Н	1.0000
C(20) - C(29)	1.522(5)	C(20) - C(28)	1.525(5)
C(20) - C(24)	1.527(4)	C(20) - C(27)	1.530(5)
C(21) - C(26)	1.384(5)	C(21) - C(22)	1.390(4)
C(22) - C(23)	1.389(4)	C(23) - C(24)	1.382(4)
C(23) - H(23)	0.9500	C(24) - C(25)	1.392(4)
C(26) - C(25)	1.385(5)	C(26) - H(26)	0.9500
C(25)-H(25)	0.9500	C(27) - H(27A)	0.9800
C(27) - H(27B)	0.9800	C(27) - H(27C)	0.9800
C(28)-H(28A)	0.9800	C(28) - H(28B)	0.9800
C(28)-H(28C)	0.9800	B - C(61)	1.634(5)
B - C(81)	1.635(4)	B - C(91)	1.637(5)
B - C(71)	1.644(4)	C(29) - H(29A)	0.9800
C(29)-H(29B)	0.9800	C(29) - H(29C)	0.9800
C(31)-H(31A)	0.9800	C(31) - H(31B)	0.9800
C(31)-H(31C)	0.9800	C(32) - H(32A)	0.9800
C(32) - H(32B)	0.9800	C(32) - H(32C)	0.9800
C(33)-H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33)-H(33C)	0.9800	C(41) - C(43)	1.518(5)
C(41) - C(44)	1.527(5)	C(41) - H(41)	1.0000
C(42) - C(45)	1.520(5)	C(42) - C(46)	1.525(6)
C(42)-H(42)	1.0000	C(43) - H(43A)	0.9800
C(43)-H(43B)	0.9800	C(43) - H(43C)	0.9800
		Contir	nued on next page

Table S35. Distances [Å] for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]([9][BAr_4^F]).$

atom – atom	distance	atom – atom	distance
C(44)-H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(45) - H(45A)	0.9800
C(45) - H(45B)	0.9800	C(45) - H(45C)	0.9800
C(46) - H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(51) - C(53)	1.521(5)
C(51) - C(54)	1.529(5)	C(51) - H(51)	1.0000
C(52) - C(55)	1.515(5)	C(52) - C(56)	1.522(5)
C(52) - H(52)	1.0000	C(53) - H(53A)	0.9800
C(53) - H(53B)	0.9800	C(53) - H(53C)	0.9800
C(54) - H(54A)	0.9800	C(54) - H(54B)	0.9800
C(54) - H(54C)	0.9800	C(55) - H(55A)	0.9800
C(55) - H(55B)	0.9800	C(55) - H(55C)	0.9800
C(56) - H(56A)	0.9800	C(56) - H(56B)	0.9800
C(56) - H(56C)	0.9800	C(61) - C(62)	1.391(4)
C(61) - C(66)	1.397(5)	F(61) - C(67)	1.255(6)
C(62) - C(63)	1.393(5)	C(62) - H(62)	0.9500
F(62) - C(67)	1.390(6)	C(63) - C(64)	1.377(6)
C(63) - C(67)	1.483(5)	F(63) - C(67)	1.306(5)
C(64) - C(65)	1.383(5)	C(64) - H(64)	0.9500
F(64) - C(68)	1.317(5)	C(65) - C(66)	1.386(5)
C(65) - C(68)	1.498(6)	F(65) - C(68)	1.330(5)
C(66) - H(66)	0.9500	F(66) - C(68)	1.321(5)
C(71) - C(72)	1.393(4)	C(71) - C(76)	1.401(4)
F(71) - C(77)	1.342(5)	C(72) - C(73)	1.389(4)
C(72) - H(72)	0.9500	F(72) - C(77)	1.324(5)
C(73) - C(74)	1.377(5)	C(73) - C(77)	1.487(5)
F(73) - C(77)	1.315(4)	C(74) - C(75)	1.382(5)
C(74) - H(74)	0.9500	F(74) - C(78)	1.330(4)
C(75) - C(76)	1.382(4)	C(75) - C(78)	1.486(5)
F(75) - C(78)	1.300(4)	C(76) - H(76)	0.9500
F(76) - C(78)	1.300(4)	C(81) - C(82)	1.393(5)
C(81) - C(86)	1.397(5)	F(81) - C(87)	1.305(5)
C(82) - C(83)	1.392(5)	C(82) - H(82)	0.9500
F(82) - C(87)	1.313(5)	C(83) - C(84)	1.382(5)
C(83) - C(87)	1.480(6)	F(83) - C(87)	1.328(5)
C(84) - C(85)	1.382(5)	C(84) - H(84)	0.9500
F(84) - C(88)	1.309(5)	C(85) - C(86)	1.387(5)
C(85) - C(88)	1.484(5)	F(85) - C(88)	1.322(5)
C(86) - H(86)	0.9500	F(86) - C(88)	1.296(5)
C(91) - C(96)	1.392(4)	C(91) - C(92)	1.397(4)
F(91) - C(97)	1.320(4)	C(92) - C(93)	1.387(5)
C(92) - H(92)	0.9500	F(92) - C(97)	1.308(5)
			Continued on next page

 Table S35. – continued from previous page

atom – atom	distance	atom – atom	distance
C(93) - C(94)	1.383(5)	C(93)-C(97)	1.492(5)
F(93) - C(97)	1.336(4)	C(94) - C(95)	1.387(5)
C(94) - H(94)	0.9500	F(94) - C(98)	1.331(4)
C(95) - C(96)	1.382(5)	C(95) - C(98)	1.493(4)
F(95) - C(98)	1.327(4)	C(96) - H(96)	0.9500
F(96) – C(98)	1.329(4)		

Table S35. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-P(1)	82.93(9)	C-Pd-P(2)	79.55(9)
P(1) - Pd - P(2)	157.28(3)	C-Pd-P(3)	170.68(9)
P(1) - Pd - P(3)	100.61(3)	P(2) - Pd - P(3)	98.96(3)
C(12) - P(1) - C(42)	104.04(16)	C(12) - P(1) - C(41)	105.73(14)
C(42) - P(1) - C(41)	107.59(16)	C(12) - P(1) - Pd	104.53(11)
C(42) - P(1) - Pd	118.42(12)	C(41) - P(1) - Pd	115.14(11)
C(22) - P(2) - C(51)	106.69(15)	C(22) - P(2) - C(52)	103.14(16)
C(51) - P(2) - C(52)	106.04(16)	C(22) - P(2) - Pd	99.71(10)
C(51) - P(2) - Pd	110.81(11)	C(52) - P(2) - Pd	128.23(13)
C(33) - P(3) - C(31)	101.6(2)	C(33) - P(3) - C(32)	100.3(3)
C(31) - P(3) - C(32)	99.1(2)	C(33) - P(3) - Pd	115.37(17)
C(31) - P(3) - Pd	120.67(15)	C(32) - P(3) - Pd	116.44(16)
C(19) - C(10) - C(18)	107.4(3)	C(19) - C(10) - C(14)	112.1(3)
C(18) - C(10) - C(14)	109.6(3)	C(19) - C(10) - C(17)	109.2(4)
C(18) - C(10) - C(17)	109.6(3)	C(14) - C(10) - C(17)	108.9(3)
C(12) - C(11) - C(16)	117.6(3)	C(12) - C(11) - C	121.2(3)
C(16) - C(11) - C	121.3(3)	C(11) - C(12) - C(13)	121.3(3)
C(11) - C(12) - P(1)	113.7(2)	C(13) - C(12) - P(1)	124.8(3)
C(14) - C(13) - C(12)	121.1(3)	C(14) - C(13) - H(13)	119.4
C(12) - C(13) - H(13)	119.4	C(13) - C(14) - C(15)	117.1(3)
C(13) - C(14) - C(10)	122.7(3)	C(15) - C(14) - C(10)	120.2(3)
C(15) - C(16) - C(11)	120.5(3)	C(15) - C(16) - H(16)	119.8
C(11) - C(16) - H(16)	119.8	C(16) - C(15) - C(14)	122.3(3)
C(16) - C(15) - H(15)	118.9	C(14) - C(15) - H(15)	118.9
C(10) - C(17) - H(17A)	109.5	C(10) - C(17) - H(17B)	109.5
H(17A) - C(17) - H(17B)	109.5	C(10) - C(17) - H(17C)	109.5
H(17A) - C(17) - H(17C)	109.5	H(17B) - C(17) - H(17C)	109.5
C(10) - C(18) - H(18A)	109.5	C(10) - C(18) - H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5	C(10) - C(18) - H(18C)	109.5
H(18A) - C(18) - H(18C)	109.5	H(18B) - C(18) - H(18C)	109.5
C(10) - C(19) - H(19A)	109.5	C(10) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5	C(10) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5	H(19B) - C(19) - H(19C)	109.5
C(11) - C - C(21)	114.1(3)	C(11)-C-Pd	116.8(2)
C(21) - C - Pd	110.1(2)	C(11) - C - H	104.9
C(21) - C - H	104.9	Pd-C-H	104.9
C(29) - C(20) - C(28)	108.6(3)	C(29) - C(20) - C(24)	109.5(3)
C(28) - C(20) - C(24)	111.6(3)	C(29) - C(20) - C(27)	109.3(3)
C(28) - C(20) - C(27)	108.7(3)	C(24) - C(20) - C(27)	109.2(3)
C(26) - C(21) - C(22)	117.1(3)	C(26) - C(21) - C	125.0(3)
C(22) - C(21) - C	117.7(3)	C(23) - C(22) - C(21)	120.9(3)
Continued on next page			

Table S36. Angles [°] for $[{PC(sp^3)HP}^{tBu}PdPMe_3][BAr_4^F]$ ([9][BAr_4^F]).

atom – atom – atom	angle	atom – atom – atom	angle
C(23) - C(22) - P(2)	125.3(2)	C(21) - C(22) - P(2)	113.7(2)
C(24) - C(23) - C(22)	122.1(3)	C(24) - C(23) - H(23)	118.9
C(22) - C(23) - H(23)	118.9	C(23) - C(24) - C(25)	116.3(3)
C(23) - C(24) - C(20)	123.7(3)	C(25) - C(24) - C(20)	120.0(3)
C(21) - C(26) - C(25)	121.3(3)	C(21) - C(26) - H(26)	119.4
C(25) - C(26) - H(26)	119.4	C(26) - C(25) - C(24)	121.9(3)
C(26) - C(25) - H(25)	119.0	C(24) - C(25) - H(25)	119.0
C(20) - C(27) - H(27A)	109.5	C(20) - C(27) - H(27B)	109.5
H(27A) - C(27) - H(27B)	109.5	C(20) - C(27) - H(27C)	109.5
H(27A) - C(27) - H(27C)	109.5	H(27B) - C(27) - H(27C)	109.5
C(20) - C(28) - H(28A)	109.5	C(20) - C(28) - H(28B)	109.5
H(28A) - C(28) - H(28B)	109.5	C(20) - C(28) - H(28C)	109.5
H(28A) - C(28) - H(28C)	109.5	H(28B) - C(28) - H(28C)	109.5
C(61) - B - C(81)	113.4(3)	C(61) - B - C(91)	105.8(2)
C(81) - B - C(91)	112.2(3)	C(61) - B - C(71)	110.1(3)
C(81) - B - C(71)	102.9(2)	C(91) - B - C(71)	112.6(2)
C(20) - C(29) - H(29A)	109.5	C(20) - C(29) - H(29B)	109.5
H(29A) - C(29) - H(29B)	109.5	C(20) - C(29) - H(29C)	109.5
H(29A) - C(29) - H(29C)	109.5	H(29B) - C(29) - H(29C)	109.5
P(3) - C(31) - H(31A)	109.5	P(3) - C(31) - H(31B)	109.5
H(31A) - C(31) - H(31B)	109.5	P(3) - C(31) - H(31C)	109.5
H(31A) - C(31) - H(31C)	109.5	H(31B) - C(31) - H(31C)	109.5
P(3) - C(32) - H(32A)	109.5	P(3) - C(32) - H(32B)	109.5
H(32A) - C(32) - H(32B)	109.5	P(3) - C(32) - H(32C)	109.5
H(32A) - C(32) - H(32C)	109.5	H(32B) - C(32) - H(32C)	109.5
P(3) - C(33) - H(33A)	109.5	P(3) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	P(3) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(43) - C(41) - C(44)	110.9(3)	C(43) - C(41) - P(1)	108.7(2)
C(44) - C(41) - P(1)	116.5(2)	C(43) - C(41) - H(41)	106.7
C(44) - C(41) - H(41)	106.7	P(1) - C(41) - H(41)	106.7
C(45) - C(42) - C(46)	112.1(3)	C(45) - C(42) - P(1)	113.2(3)
C(46) - C(42) - P(1)	108.8(3)	C(45) - C(42) - H(42)	107.5
C(46) - C(42) - H(42)	107.5	P(1) - C(42) - H(42)	107.5
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
Continued on next page			

Table S36. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(53) - C(51) - C(54)	109.9(3)	C(53) - C(51) - P(2)	108.9(2)
C(54) - C(51) - P(2)	118.4(3)	C(53) - C(51) - H(51)	106.3
C(54) - C(51) - H(51)	106.3	P(2) - C(51) - H(51)	106.3
C(55) - C(52) - C(56)	111.3(3)	C(55) - C(52) - P(2)	114.2(3)
C(56) - C(52) - P(2)	109.7(3)	C(55) - C(52) - H(52)	107.1
C(56) - C(52) - H(52)	107.1	P(2) - C(52) - H(52)	107.1
C(51) - C(53) - H(53A)	109.5	C(51) - C(53) - H(53B)	109.5
H(53A) - C(53) - H(53B)	109.5	C(51) - C(53) - H(53C)	109.5
H(53A) - C(53) - H(53C)	109.5	H(53B) - C(53) - H(53C)	109.5
C(51) - C(54) - H(54A)	109.5	C(51) - C(54) - H(54B)	109.5
H(54A) - C(54) - H(54B)	109.5	C(51) - C(54) - H(54C)	109.5
H(54A) - C(54) - H(54C)	109.5	H(54B) - C(54) - H(54C)	109.5
C(52) - C(55) - H(55A)	109.5	C(52) - C(55) - H(55B)	109.5
H(55A) - C(55) - H(55B)	109.5	C(52) - C(55) - H(55C)	109.5
H(55A) - C(55) - H(55C)	109.5	H(55B) - C(55) - H(55C)	109.5
C(52) - C(56) - H(56A)	109.5	C(52) - C(56) - H(56B)	109.5
H(56A) - C(56) - H(56B)	109.5	C(52) - C(56) - H(56C)	109.5
H(56A) - C(56) - H(56C)	109.5	H(56B) - C(56) - H(56C)	109.5
C(62) - C(61) - C(66)	115.2(3)	C(62) - C(61) - B	123.0(3)
C(66) - C(61) - B	121.7(3)	C(61) - C(62) - C(63)	122.2(3)
C(61) - C(62) - H(62)	118.9	C(63) - C(62) - H(62)	118.9
C(64) - C(63) - C(62)	120.9(3)	C(64) - C(63) - C(67)	117.9(4)
C(62) - C(63) - C(67)	121.2(4)	C(63) - C(64) - C(65)	118.4(3)
C(63) - C(64) - H(64)	120.8	C(65) - C(64) - H(64)	120.8
C(64) - C(65) - C(66)	120.0(3)	C(64) - C(65) - C(68)	119.9(3)
C(66) - C(65) - C(68)	120.2(3)	C(65) - C(66) - C(61)	123.2(3)
C(65) - C(66) - H(66)	118.4	C(61) - C(66) - H(66)	118.4
F(61) - C(67) - F(63)	112.3(5)	F(61) - C(67) - F(62)	103.2(4)
F(63) - C(67) - F(62)	100.1(4)	F(61) - C(67) - C(63)	116.0(4)
F(63) - C(67) - C(63)	113.7(4)	F(62) - C(67) - C(63)	109.8(4)
F(64) - C(68) - F(66)	108.2(4)	F(64) - C(68) - F(65)	105.5(4)
F(66) - C(68) - F(65)	104.3(3)	F(64) - C(68) - C(65)	113.0(3)
F(66) - C(68) - C(65)	112.7(4)	F(65) - C(68) - C(65)	112.5(4)
C(72) - C(71) - C(76)	115.4(3)	C(72) - C(71) - B	124.1(3)
C(76) - C(71) - B	120.4(3)	C(73) - C(72) - C(71)	122.1(3)
C(73) - C(72) - H(72)	119.0	C(71) - C(72) - H(72)	119.0
C(74) - C(73) - C(72)	121.2(3)	C(74) - C(73) - C(77)	119.8(3)
C(72) - C(73) - C(77)	119.0(3)	C(73) - C(74) - C(75)	118.0(3)
		Continue	d on next page

Table S36. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(73) - C(74) - H(74)	121.0	C(75) - C(74) - H(74)	121.0
C(74) - C(75) - C(76)	120.7(3)	C(74) - C(75) - C(78)	119.5(3)
C(76) - C(75) - C(78)	119.7(3)	C(75) - C(76) - C(71)	122.6(3)
C(75) - C(76) - H(76)	118.7	C(71) - C(76) - H(76)	118.7
F(73) - C(77) - F(72)	108.0(4)	F(73) - C(77) - F(71)	105.0(3)
F(72) - C(77) - F(71)	103.8(4)	F(73) - C(77) - C(73)	114.1(3)
F(72) - C(77) - C(73)	112.7(3)	F(71) - C(77) - C(73)	112.5(3)
F(76) - C(78) - F(75)	109.4(4)	F(76) - C(78) - F(74)	104.1(3)
F(75) - C(78) - F(74)	103.1(3)	F(76) - C(78) - C(75)	113.9(3)
F(75) - C(78) - C(75)	112.6(3)	F(74) - C(78) - C(75)	112.9(3)
C(82) - C(81) - C(86)	115.5(3)	C(82) - C(81) - B	121.4(3)
C(86) - C(81) - B	122.7(3)	C(83) - C(82) - C(81)	122.9(3)
C(83) - C(82) - H(82)	118.5	C(81) - C(82) - H(82)	118.5
C(84) - C(83) - C(82)	120.1(3)	C(84) - C(83) - C(87)	120.9(3)
C(82) - C(83) - C(87)	119.0(3)	C(85) - C(84) - C(83)	118.4(3)
C(85) - C(84) - H(84)	120.8	C(83) - C(84) - H(84)	120.8
C(84) - C(85) - C(86)	120.9(3)	C(84) - C(85) - C(88)	118.7(3)
C(86) - C(85) - C(88)	120.4(3)	C(85) - C(86) - C(81)	122.2(3)
C(85) - C(86) - H(86)	118.9	C(81) - C(86) - H(86)	118.9
F(81) - C(87) - F(82)	108.6(4)	F(81) - C(87) - F(83)	104.5(4)
F(82) - C(87) - F(83)	103.0(4)	F(81) - C(87) - C(83)	114.0(4)
F(82) - C(87) - C(83)	113.5(3)	F(83) - C(87) - C(83)	112.3(3)
F(86) - C(88) - F(84)	106.3(4)	F(86) - C(88) - F(85)	104.6(4)
F(84) - C(88) - F(85)	104.2(3)	F(86) - C(88) - C(85)	114.1(3)
F(84) - C(88) - C(85)	114.1(3)	F(85) - C(88) - C(85)	112.6(3)
C(96) - C(91) - C(92)	115.5(3)	C(96) - C(91) - B	121.5(3)
C(92) - C(91) - B	122.9(3)	C(93) - C(92) - C(91)	122.5(3)
C(93) - C(92) - H(92)	118.7	C(91) - C(92) - H(92)	118.7
C(94) - C(93) - C(92)	120.7(3)	C(94) - C(93) - C(97)	118.3(3)
C(92) - C(93) - C(97)	120.9(3)	C(93) - C(94) - C(95)	117.7(3)
C(93) - C(94) - H(94)	121.1	C(95) - C(94) - H(94)	121.1
C(96) - C(95) - C(94)	121.0(3)	C(96) - C(95) - C(98)	119.7(3)
C(94) - C(95) - C(98)	119.1(3)	C(95) - C(96) - C(91)	122.5(3)
C(95) - C(96) - H(96)	118.8	C(91) - C(96) - H(96)	118.8
F(92) - C(97) - F(91)	107.7(4)	F(92) - C(97) - F(93)	105.3(3)
F(91) - C(97) - F(93)	104.9(3)	F(92) - C(97) - C(93)	112.2(3)
F(91) - C(97) - C(93)	113.7(3)	F(93) - C(97) - C(93)	112.5(3)
F(95) - C(98) - F(96)	105.7(3)	F(95) - C(98) - F(94)	106.2(3)
F(96) - C(98) - F(94)	106.3(3)	F(95) - C(98) - C(95)	112.2(3)
F(96) - C(98) - C(95)	113.2(3)	F(94) - C(98) - C(95)	112.6(3)

Table S36. – continued from previous page