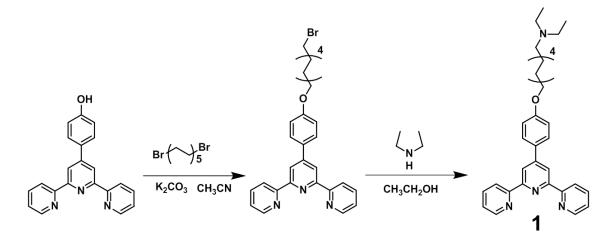
A Cu²⁺ specific metallohydrogel: preparation, multi-responsiveness and pillar[5]arene-induced morphology transformation

Kecheng Jie, Yujuan Zhou, Bingbing Shi and Yong Yao*

Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China Fax and Tel: +86-571-8795-3189; Email address: yaoyong@zju.edu.cn.

Electronic Supplementary Information (13 pages)

1.	Materials and methods	S 2
2.	Syntheses of compound 1 and model compound M2	S 3
3.	UV-Vis studies of l before and after slightly acidification in water	S 8
4.	TEM and SEM images of 1' in water	S 9
5.	Gelation study of the metallogel	S10
6.	Host–guest complexation between WP5 and model compounds M1H and M2H	S 11
7.	References	S13


1. Materials and methods

All reagents including model compound **M1** were commercially available and used as supplied without further purification. Solvents were either employed as purchased or dried according to procedures described in the literature. Water-soluble pillar[5]arene was prepared according to a published procedure.^{S1} ¹H NMR and ¹³C HMR spectra were recorded with a Bruker Avance DMX 400 spectrophotometer using the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with IonSpec 4.7 Tesla FTMS. Transmission electron microscopy investigations were carried out on a HITACHI HT-7700 instrument. Scanning electron microscopy investigations were carried out on a HITACHI SU-8010 instrument. UV-Vis spectra were taken on a PerkinElmer Lambda 35 UV-Vis spectrophotometer.

2. Syntheses of compound 1 and model compound M2

2.1 Synthesis of compound 1

Scheme S1. Synthetic route to 1.

4-([2,2':6',2"-terpyridin]-4'-yl)phenol (3.25 g, 10 mmol) and potassium carbonate (5.52 g, 40 mmol) was added to a solution of 1,10-dibromodecane (6.00 g, 20 mmol) in ethanol (350 mL) under vigorous stirring. The mixture was refluxed at 80 °C for 16 hours. After removal of the inorganic salt, the solvent was evaporated and the residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate, 10:1) to give the crude product as a white solid. A mixture of the crude product with excess diethylamine (30 equiv) were dissolved in ethanol and refluxed for 24 h. The solvent was evaporated, and the residue was poured into a NaOH solution (1.00 M, 400 mL) and stirred. The solution was extracted with ethyl acetate (3 \times 100 mL), and the organic phase was obtained. The oil yellow liquid was isolated after evaporation of the solution as the crude product, which was distilled in vacuo to give 1 as a solid. The yield of **1** was 87%. The ¹H NMR spectrum of **1** is shown in Fig. S1. ¹H NMR (400 MHz, chloroform-d, 293 K) δ (ppm): 1.04–1.08 (t, J = 8 Hz, 6H), 1.26–1.31 (m, 14H), 1.41–1.49 (m, 4H), 1.79-1.86 (m, 2H), 2.39-2.43 (t, J = 8 Hz, 2H), 2.50-2.55 (m, 4H), 4.01-4.05 (t, J = 8 Hz, 2H), 7.01-7.03 (d, 2H), 7.37-7.34 (m, 2H), 7.90-7.86 (m, 4H), and 8.66-8.74 (m, 6H). The ¹³C NMR spectrum of **1** is shown in Fig. S2. ¹³C NMR (100 MHz, chloroform-d, 293 K) δ (ppm): 160.14, 156.44, 155.83, 149.84, 149.11, 136.86, 130.48, 128.49, 123.75, 121.38, 118.25, 114.86, 76.70, 68.15, 52.96, 46.85, 29.63, 29.57, 29.54, 29.41, 29.28, 27.74, 26.85, 26.06, 11.57. LRESIMS is shown in Fig. S3: m/z 537.4 $[1 + H]^+$. HRESIMS is shown in Fig. S4: m/z calcd for $[1 + H]^+ C_{35}H_{45}N_4O^+$, 537.3588; found 537.3578; error – 1.9 ppm.

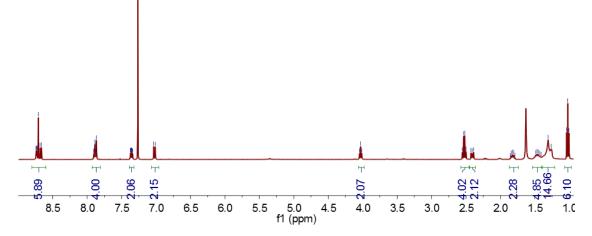


Fig. S1¹H NMR spectrum (400 MHz, chloroform-d, 293K) of 1.

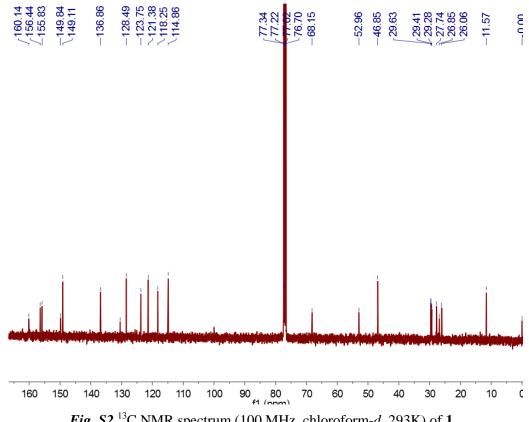


Fig. S2 ¹³C NMR spectrum (100 MHz, chloroform-d, 293K) of 1.

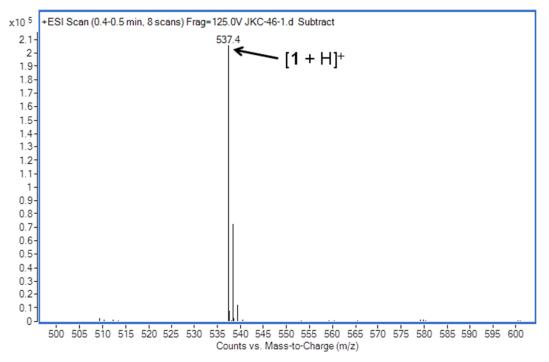


Fig. S3 Electrospray ionization mass spectra of 1.

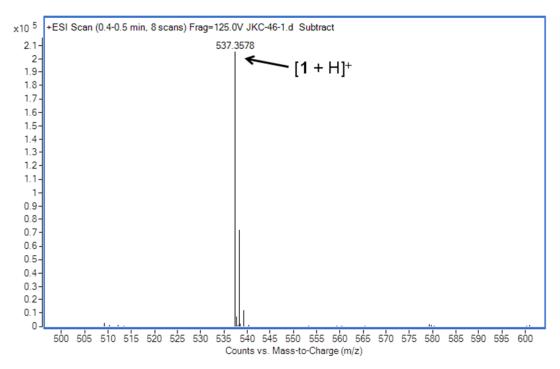
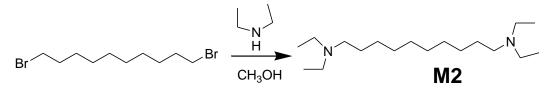



Fig. S4 High resolution electrospray ionization mass spectra of 1.

2.2 Synthesis of model compound M2

Scheme S2. Synthetic route to M2.

A mixture of 1,10-dibromodecane (3.00 g, 10.0 mmol) with excess diethylamine (30 equiv) were dissolved in ethanol and refluxed for 24 h. The solvent was evaporated, and the residue was poured into a NaOH solution (1.00 M, 400 mL) and stirred. The solution was extracted with ethyl acetate (3 × 50 mL), and the organic phase was obtained. The yellow liquid was isolated after evaporation of the solution as the crude product, which was distilled in vacuo to give **M2** as yellow liquid. The yield of **M2** was 88%. The ¹H NMR spectrum of **M2** is shown in Fig. S5. ¹H NMR (400 MHz, chloroform-*d*, 293 K) δ (ppm): 2.54–2.49 (m, 4H), 2.39 (t, *J* = 8 Hz, 4H), 1.45–1.42 (m, 4H), 1.28 (s, 12H), 1.02 (t, *J* = 6 Hz, 12H). The ¹³C NMR spectrum of **M2** is shown in Fig. S6. ¹³C NMR (100 MHz, chloroform-*d*, 293 K) δ (ppm): 55.06, 52.97, 46.84, 30.95, 29.63, 29.59, 29.74, 26.91, 11.62. LRESIMS is shown in Fig. S7: *m/z* 285.2 [**M2** + H]⁺. HRESIMS *m/z* calcd for **M2** C₁₈H₄N₂, 284.3191; found 284.3187; error –1 ppm.

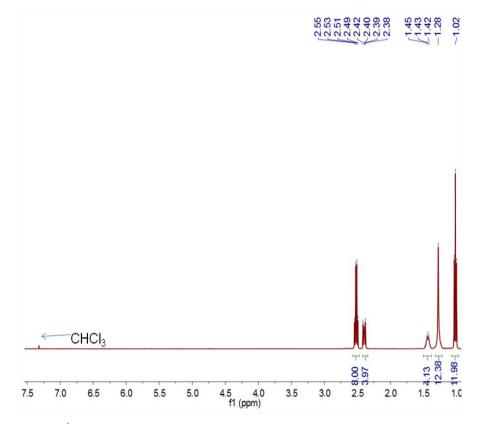
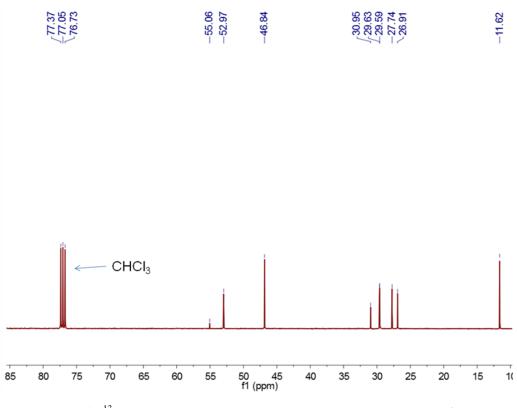
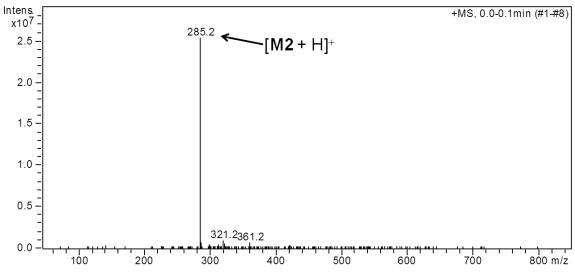
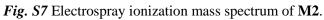





Fig. S5 ¹H NMR spectrum (400 MHz, chloroform-d, 293 K) of M2.

Fig. S6 13 C NMR spectrum (100 MHz, chloroform-*d*, 293 K) of M2.

3. UV-Vis studies of 1 before and after slightly acidification in water

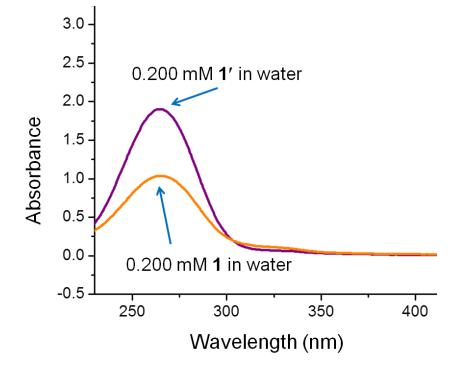


Fig. S8 UV-Vis spectra of 0.200 mM 1 and 1' in water.

4. TEM and SEM images of 1' in water

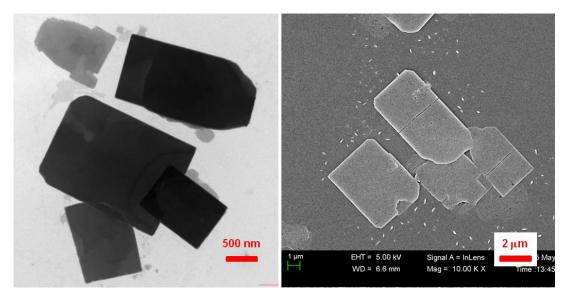


Fig. S9 (a) TEM and (b) SEM images of the brick-like structures formed by 1' (0.200 mM) in water.

- 5. Gelation study of the metallogel:
- 5.1 Gelation study of the metallogel with Cu^{2+} in presence of other metal ions:

To a stock solution of **1'** (800 μ L, 0.25 mM) taken in a test bottle, a mixture of 100 μ L of M²⁺ (0.200 mM Cd²⁺/Zn²⁺/Ni²⁺/Ca²⁺/Rh²⁺/Fe²⁺/Mg²⁺/Co²⁺/Mn²⁺) and 100 μ L of CuCl₂ (0.200 mM in H₂O) was added and allowed to stand after gentle shaking. It was observed that most of the metal ions disturbed the gelation while the presence of Ca²⁺ resulted in a partial gel.

Fig. S10 From left to right: 0.200 mM of **1'** in presence of 0.200 mM (chloride salt of) Cd^{2+}/Cu^{2+} , Zn^{2+}/Cu^{2+} , Ni^{2+}/Cu^{2+} , Ca^{2+}/Cu^{2+} , Rh^{2+}/Cu^{2+} , Fe^{2+}/Cu^{2+} , Mg^{2+}/Cu^{2+} , Co^{2+}/Cu^{2+} , and Mn^{2+}/Cu^{2+} .

5.2 Gelation study of the metallogel in the presence of Cu^{2+} with other counter anions:

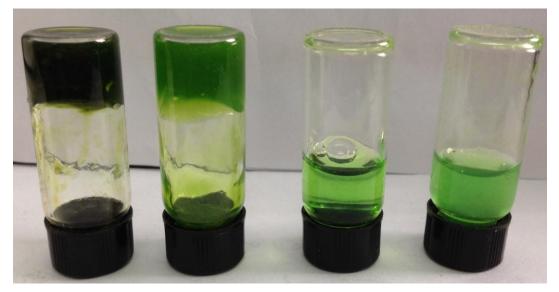
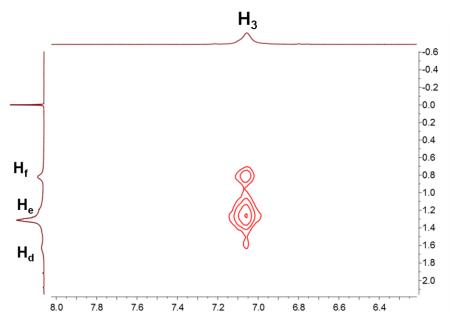
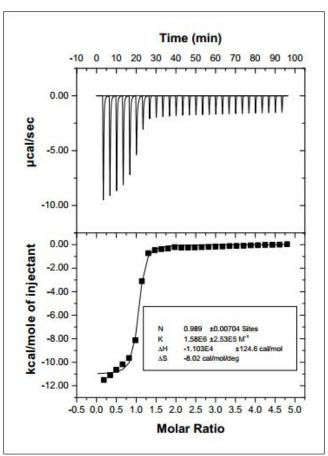
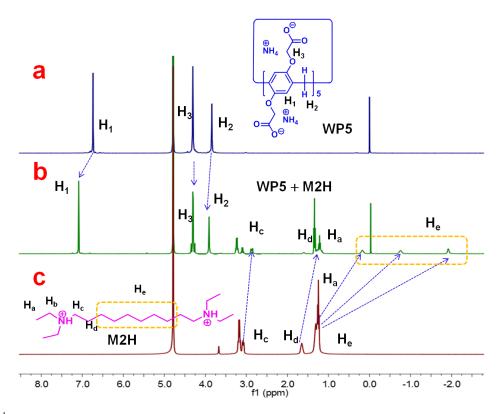




Fig. S11 From left to right: 0.200 mM of 1' in presence of 0.200 mM CuBr₂, CuI₂, Cu(OAc)₂ and CuSO₄.


6. Host-guest complexation between WP5 and model compounds M1H and M2H

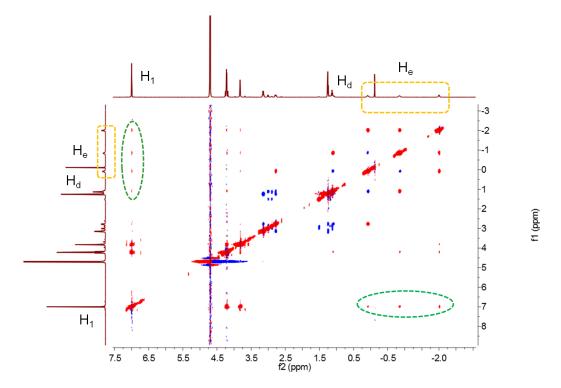

Fig. S12 2D NOESY NMR (500 MHz, D₂O, 293 K) spectrum of a solution of **WP5** (5.00 mM) and **M1H** (5.00 mM).

Fig. S13 Microcalorimetric titration of **M1H** with **WP5** in water at 298.15 K. (Top) Raw ITC data for 29 sequential injections (10 μ L per injection) of an **M1H** solution (2.00 mM) into a **WP5** solution (0.100 mM). (Bottom) Net reaction heat obtained from the integration of the calorimetric traces.

Fig. S14 Partial ¹H NMR spectra (400 MHz, D₂O, room temperature): (a) **WP5** (2.00 mM); (b) **WP5** (2.00 mM) and **M2H** (6.00 mM); (c) **M2H** (2.00 mM).

Fig. S15 2D NOESY NMR (500 MHz, D₂O, 293 K) spectrum of a solution of **WP5** (5.00 mM) and **M2H** (5.00 mM).

References:

S1. (a) Y. Yao, X. Chi, Y. Zhou and F. Huang, Chem. Sci., 2014, 5, 2778; (b) P. Wang, Z. Li and X. Ji, Chem. Commun., 2014, 50, 13114.