Cu-catalyzed Selective Cascade *sp*³ C-H Bonds Oxidative Functionlization towards Isoxazoline Derivatives

Gang-Wei Wang,^a Ming-Xing Cheng,^a Ran-Song Ma,^a Shang-Dong Yang^{ab,*}

a. State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

b. State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics

Contents

1. General information	(S2)		
2. Reaction conditions screening	(S2)		
3. General procedures	(S3)		
4. Other 2-substituted quinolines scope	(S3)		
5. Synthetic application			
5.1 High selective synthesis of isoxazoline-linked carbohydrates	(S3)		
5.2 Gram-scale reaction	(S3)		
6. Mechanism experiments			
6.1. Radical trapping experiments	(S3)		
6.2. Control experiments	(S4)		
$6.3.^{18}O_2$ labeling experiment	(S5)		
6.4. H_2O^{18} labeling experiment	(85)		
7. Characterization of the Products	(S6)		
8. Charts of products			

1. General information

¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer in CDCl₃ with TMS as internal standard. ¹⁹F NMR was recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), Coupling constants, *J*, are reported in hertz. IR spectra were recorded on a Nexus 670 FT-IR spectrometer and only major peaks are reported in cm⁻¹. Mass spectra were mearsured using Bruker microTOF-Q II. The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM).

		Ca	it (10 mol %)	<u> </u>	_
		, OBu ⁿ	Oxidant		Ŋ [−] O, OBu ⁿ
N	+		[NO] Solvent		
1a		2a		3a	
Entry	Cat.	Oxidant	[NO]	Solvent	Yield of 3a [%] ^[b,c]
1	CuCl ₂	PhI(OAc) ₂	KNO ₃	DMF	0
2	CuCl ₂	BQ	KNO3	DMF	0
3	CuCl ₂	TBHP	KNO ₃	DMF	0
4	CuCl ₂	Select-F	KNO ₃	DMF	21
5	CuCl ₂	$K_2S_2O_8$	KNO ₃	DMF	63
6	CuCl	$K_2S_2O_8$	KNO ₃	DMF	65
7	CuBr	$K_2S_2O_8$	KNO ₃	DMF	71
8	Sc(OTf) ₃	$K_2S_2O_8$	KNO ₃	DMF	0
9	AICI ₃	$K_2S_2O_8$	KNO ₃	DMF	0
10	Zn(OTf) ₂	$K_2S_2O_8$	KNO3	DMF	0
11	Fe(acac) ₂	$K_2S_2O_8$	KNO ₃	DMF	24
12	CuBr	$K_2S_2O_8$	KNO ₃	DMF	72 ^[d]
13	CuBr	$K_2S_2O_8$	KNO ₃	DMF	76
14	CuBr	$K_2S_2O_8$	KNO ₂	DMF	0
15	CuBr	$K_2S_2O_8$	NaNO ₃	DMF	74
16	CuBr	$K_2S_2O_8$	NH ₄ NO ₃	DMF	37
17	CuBr	$K_2S_2O_8$	AgNO ₃	DMF	0
18	CuBr	$K_2S_2O_8$	KNO ₃	DMSO	42
19	CuBr	$K_2S_2O_8$	KNO3	THF	0
20	CuBr	K ₂ S ₂ O ₈	KNO3	DCE	0
21	CuBr	$K_2S_2O_8$	KNO ₃	Toluene	0
22	CuBr	$K_2S_2O_8$	KNO ₃	CH₃CN	43
23	CuBr	$K_2S_2O_8$	KNO ₃	DMF/CH ₃ CN=1	0:1 82 ^[e]
24		K ₂ S ₂ O ₈	KNO ₃	DMF	0

2. Reaction conditions screening^[a]

[a] Reaction was carried out with Cu (10 mol %), oxidant (2.5 equiv), [NO] (6.0 equiv), 2ethylquinoline **1a** (0.2mmol), butyl acrylate **2a** (0.6 mmol) in solvent (2.0 ml) at 80 °C for 24 h. [b] Isolated yield. [c] Entries 1-9 were preformed in a closed tube under air and entries 11-20 were preformed in an open tube. [d] Reaction wwas preformed under O_2 . [e] DMF/CH₃CN=2ml/0.2ml.

3. General procedures:

In a schlenk tube, 2-ethylquinpline **1a** (0.30 mmol), butyl acrylate **2a** (0.9 mmol), CuBr (0.03 mmol), $K_2S_2O_8$ (0.75 mmol), KNO₃ (1.80 mmol) were added. Then, anhydrous DMF (3 mL) and acetonitrile (0.3mL) were added. The mixture was allowed to stir at 80°C for 24 hr with the tube open to air. After substrate was consumed (monitored by TLC), the reaction was cooled to room temperature, and then the mixture is extracted by EtOAc (4*10 mL) and H₂O. The organic layers were combined, dried with MgSO₄. The residue was purified by column chromatography (EtOAc /petroleum ether=10/1) to give the product **3a**.

4. Other 2-substituted quinolines scope

5. Synthetic application

5.1 High selective synthesis of isoxazoline-linked carbohydrates

In a schlenk tube, 2-ethylquinpline **1a** (0.30 mmol), carbohydrates **4a** (0.9 mmol), CuBr (0.03 mmol), $K_2S_2O_8$ (0.75 mmol), KNO₃ (1.80 mmol) were added. Then, anhydrous DMF (3 mL) and acetonitrile (0.3mL) were added. After the mixture was stir at 80°C for 20 hours with the tube open to air, the reaction was cooled to room temperature, and then the mixture is extracted by EtOAc (5*10 mL) and H₂O. Organic layers were combined, dried with MgSO₄. The residue was purified by column chromatography (petroleum ether/EtOAc=10/1) to give the product **5a**, and the big part of excess carbohydrates **4a** was recycled (0.51 mmol).

5.2 Gram-scale reaction

In a 100 ml round-bottom flask, 2-ethylquinpline **1a** (8.0 mmol, 1.26g), butyl acrylate 2a (2.4 mmol, 3.07g), CuBr (0.8 mmol), $K_2S_2O_8$ (20 mmol), KNO_3 (48 mmol) were added. Then, anhydrous DMF (60 mL) and acetonitrile (6 mL) were added. After the mixture was stir at 80°C for 24 hours with the tube open to air, the reaction was cooled to room temperature, and then the mixture is extracted by EtOAc (2*150 mL) and H₂O (150 mL). Organic layers were combined, dried with MgSO₄. The residue was purified by column chromatography (petroleum ether/EtOAc=10/1) to give the product **3a** (5.28 mmol, 1.73g, 66 %).

6. Mechanism experiments

6.1. Radical trapping experiments

In a schlenk tube, 2-ethylquinpline **1a** (0.30 mmol), butyl acrylate **2a** (0.9 mmol), CuBr (0.03 mmol), $K_2S_2O_8$ (0.75 mmol), KNO₃ (1.80 mmol) were added, anhydrous DMF (3 mL) and acetonitrile (0.3mL) were added, then 1, 1-Diphenylethylene (0.60 mmol) was added to the system. After stir at 80°C for 4 hours, the reaction was completed (TLC). Then it was cooled to room temperature, extracted by EtOAc (3*10 mL) and H₂O. The organic layers were combined, dried with MgSO₄. The residue was purified by column chromatography (petroleum ether/EtOAc=50/1) to give the (2-nitroethene-1, 1-diyl)dibenzene **AA** (51%) and benzophenone **BB** (23%). No desire product was formed under this condition.

6.2. Control experiments

In a schlenk tube, 2-ethylquinpline **1a** (0.30 mmol), butyl acrylate **2a** (0.9 mmol), CuBr (0.03 mmol), $K_2S_2O_8$ (0.75 mmol), KNO₃ (1.80 mmol) were added. Then, anhydrous DMF (3 mL) and acetonitrile (0.3mL) were added. The mixture was allowed to stir at 80°C for 15 mintues with the tube open to air. Then the reaction was cooled to room temperature, and then the mixture is extracted by EtOAc (3*10 mL) and H₂O. Organic layers were combined, dried with MgSO₄. The residue was purified by column chromatography (EtOAc/petroleum ether=20/1) to give the product AC in 34 % yield combined with trace amount of **3a**.

In a schlenk tube, 1-(quinolin-2-yl)ethanone AC (0.30 mmol), butyl acrylate 2a (0.9 mmol), CuBr (0.03 mmol), K₂S₂O₈ (0.75 mmol), KNO₃ (1.80 mmol) were added. Then, anhydrous DMF (3 mL) and acetonitrile (0.3mL) were added. The mixture was allowed to stir at 80°C for 24 hr with the tube open to air. Then the reaction was cooled to room temperature, and the mixture is extracted by EtOAc (3*10 mL) and H₂O. Organic layers were combined, dried with MgSO₄. The residue was purified by column chromatography (EtOAc /petroleum ether=101/1) to give the product **3a** in 89 % yield.

6.3. ¹⁸O₂ labeling experiment

In a schlenk tube, 2-ethylquinpline **1a** (0.30 mmol), butyl acrylate **2a** (0.9 mmol), CuBr (0.03 mmol), $K_2S_2O_8$ (0.75 mmol), KNO₃ (1.80 mmol) were added, anhydrous DMF (3 mL) and acetonitrile (0.3mL) were added, the tube was degassed and charged with ¹⁸O (three times). The mixture was allowed to stir at 80°C for 24 hours, then the reaction was cooled to room temperature and extracted by EtOAc (3*10 mL) and H₂O. The organic were combined, dried with MgSO₄. The residue was purified by column chromatography (petroleum ether/EtOAc=10/1) to give the product, and product was analyzed by chromatography-mass spectrometry to indentify the percentage of **3a**'. This result indicated that molecular oxygen was not the oxygen source of the carbonyl group

6.4. H₂O¹⁸ labeling experiment

In eight different schlenk tubes, 2-ethylquinpline **1a** (0.30 mmol), butyl acrylate **2a** (0.9 mmol), CuBr (0.03 mmol), $K_2S_2O_8$ (0.75 mmol), KNO₃ (1.80 mmol), anhydrous DMF (3 mL) and acetonitrile (0.3mL) were added to every tube, then different equivalents of H_2O^{18} (0, 1, 2, 3, 4, 5, 7, 9,) were added to the different tubes and allowed to stir at 80°C for 24 hours, then every reactions were extracted by EtOAc (3*10 mL) and H₂O. The organic were combined, dried with MgSO₄. The every residue was purified by column chromatography (petroleum ether/EtOAc=10/1) to give the corresponding products, and products were analyzed by chromatography-mass spectrometry to indentify the percentage of **3a'** (We used the debris samples of **CC** and **CC'** as the standard to set up the ration). This result indicated that that H_2O might serve as a small part of the oxygen source for the carbonyl group.

7. Characterization of the Products

butyl 3-(quinoline-2-carbonyl)-4,5-dihydroisoxazole-5-carboxylate 3a : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.32 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 5.28 (t, J = 9.6 Hz, 1H), 4.24 (t, J = 9.6 Hz, 2H), 3.86 (d, J = 9.6 Hz, 2H), 1.69 (m, 2H), 1.40 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ: 185.66, 169.13, 156.48, 152.54, 147.18, 137.09, 130.71, 130.33, 129.36, 128.98, 127.57, 120.08, 79.62, 65.96, 38.72, 30.38, 19.02, 18.93, 13.57. HRMS calc. for C₁₈H₁₈N₂O₄ (M+H)⁺, 327.1339; found, 327.1335.

(5-octyl-4,5-dihydroisoxazol-3-yl)(quinolin-2-yl)methanone 3b : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.30 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.80-7.76 (m, 1H), 7.65 (t, J = 7.6 Hz, 1H), 4.91-4.83 (m, 1H), 3.54 (dd, J = 10.8 Hz, J = 17.2 Hz, 1H), 3.15 (dd, J = 8.8 Hz, J = 17.6 Hz, 1H), 1.90-1.81 (m, 1H), 1.74-1.62 (m, 1H), 1.54-1.39 (m, 12H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.96, 157.50, 153.27, 147.31, 136.93, 130.77, 130.22, 129.26, 128.70, 127.55, 120.39, 84.23, 38.95, 35.14, 31.79, 29.40, 29.33, 29.15, 25.25, 22.61, 14.05. HRMS calc. for C₂₁H₂₆N₂O₂ (M+H)⁺, 339.2067; found, 339.2063.

(5-butyl-4,5-dihydroisoxazol-3-yl)(quinolin-2-yl)methanone 3c : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.31 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.81-7.77 (m, 1H), 7.68-7.64 (m, 1H), 4.92-4.84 (m, 1H), 3.54 (dd, J = 10.8 Hz, J = 17.2 Hz, 1H), 3.16 (dd, J = 8.8 Hz, J = 17.2 Hz, 1H), 1.91-1.82 (m, 1H), 1.73-1.65 (m, 1H), 1.55-1.35 (m, 4H), 0.94 (t, J = 6.8 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.91, 157.46, 153.18, 147.23, 136.91, 130.69, 130.20, 129.19, 128.68, 127.52, 120.37, 84.19, 38.87, 34.78, 27.31, 22.39, 13.89. HRMS calc. for C₁₇H₁₈N₂O₂ (M+H)⁺, 283.1441; found, 283.1438.

(5-(cyclohexylmethyl)-4,5-dihydroisoxazol-3-yl)(quinolin-2-yl)methanone 3d : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.30 (d, J = 8.8 Hz, 1H), 8.25 (d, J = 8.8 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.80-7.76 (m, 1H), 7.67-7.63 (m, 1H), 5.00-4.94 (m, 1H), 3.56 (dd, J = 10.4 Hz, J = 17.2 Hz, 1H), 3.12 (dd, J = 8.8 Hz, J = 17.2 Hz, 1H), 1.86-1.54 (m, 6H), 1.53-1.49 (m, 2H), 1.33-1.15 (m, 3H), 1.04-0.94 (m, 2H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.87, 157.52, 153.18, 147.22, 136.88, 130.88, 130.27, 129.17, 128.64, 127.80, 120.35, 82.37, 42.93, 38.52, 34.55, 33.38, 32.87, 26.30, 26.05, 26.03. HRMS calc. for C₂₀H₂₂N₂O₂ (M+H)⁺, 323.1754; found, 323.1758.

(5-benzyl-4,5-dihydroisoxazol-3-yl)(quinolin-2-yl)methanone 3e : Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.29 (d, *J* = 9.6 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.78 (m, 1H), 7.65 (m, 1H), 7.28 (m, 5H), 5.13 (m, 1H), 3.49 (dd, *J* = 10.8 Hz, *J* = 17.6 Hz, 1H), 3.27 (dd, *J* = 8.4 Hz, *J* = 17.6 Hz, 1H), 3.19 (dd, *J* = 6.0 Hz, *J* = 14.0 Hz, 1H), 2.99 (dd, *J* = 6.4 Hz, *J* = 14.0 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.71, 157.42, 153.06, 147.23, 136.97, 136.10, 130.69, 130.26, 129.40, 129.31, 129.25, 128.75, 128.65, 127.54, 126.91, 120.34. HRMS calc. for C₂₀H₁₆N₂O₂ (M+H)⁺, 317.1286; found, 317.1282.

(5-((perfluorophenyl)methyl)-4,5-dihydroisoxazol-3-yl)(quinolin-2-yl)methanone 3f : White solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.33 (d, J = 8.8 Hz, 1H), 8.23 (d, J = 8.8 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.83-7.78 (m, 1H), 7.70-7.66 (m, 1H), 5.15-5.07 (m, 1H), 3.65 (dd, J = 10.8 Hz, J = 17.6 Hz, 1H), 3.37 (dd, J = 7.2 Hz, J = 17.6 Hz, 1H), 3.23 (dd, J = 7.6 Hz, J = 14.0 Hz, 1H), 3.10 (dd, J = 6.0 Hz, J = 14.4 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.36, 157.12, 152.75, 147.20, 145.44 (dm, J = 246.0 Hz), 140.35 (dm, J = 251.0 Hz), 137.52 (dm, J = 244.0 Hz), 137.12, 130.69, 130.37, 129.37, 128.97, 127.60, 120.10, 109.98-109.57 (m), 81.11, 39.46, 27.90. ¹⁹F NMR (367 MHz, CDCl₃) δ : -142.0 (m, 2F), -155.3 (t, J = 18.5 Hz 1F), -161.8 (m, 2F). HRMS calc. for C₂₀H₁₁F₅N₂O₂ (M+H)⁺, 407.0813; found, 407.0808.

mixed with trace amount of impurities.

2-(2-(3-(quinoline-2-carbonyl)-4,5-dihydroisoxazol-5-yl)ethyl)isoindoline-1,3-dione 3h : Yellow oil. Selected ¹H NMR (400 MHz, CDCl3) δ : 8.30 (d, J = 8.8 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.88-7.76 (m, 4H), 7.71-7.63 (m, 3H), 4.91-4.83 (m, 1H), 3.74-3.71 (m, 2H), 3.56 (dd, J = 10.8 Hz, J = 17.2 Hz, 1H), 3.16 (dd, J = 8.4 Hz, J = 17.2 Hz, 1H), 1.95-1.86 (m, 1H), 1.84-1.73 (m, 3H), 1.64-1.55 (m, 1H), 1.53-1.43 (m, 1H). Selected ¹³C NMR (400 MHz, CDCl3) δ : 186.76, 168.33, 157.41, 153.10, 147.18, 136.92, 133.85, 131.97, 130.67, 130.20, 129.19, 128.68, 127.50, 123.13, 120.32, 83.70, 39.00, 37.52, 34.58, 28.23, 22.56. HRMS calc. for C₂₅H₂₁N₃O₄ (M+H)⁺, 428.1605; found, 428.1606.

3-(quinoline-2-carbonyl)-4,5-dihydroisoxazole-5-carbonitrile 3i : Red oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.36 (d, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.85-7.81 (m, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 5.48 (dd, *J* = 7.6 Hz, *J* = 10.4 Hz, 1H), 4.11-3.99 (m, 2H). ¹³C NMR (400 MHz, CDCl₃) δ: 184.69, 156.30, 151.87, 147.12, 137.51,

130.69, 129.67, 129.51, 127.73, 119.69, 116.20, 67.64, 41.61. HRMS calc. for $C_{14}H_9N_3O_2(M+H)^+$, 252.0768; found, 252.0765.

diethyl (3-(quinoline-2-carbonyl)-4,5-dihydroisoxazol-5-yl)phosphonite 3j : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.32 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.82-7.77 (m, 1H), 7.69-7.65 (m, 1H), 5.04-4.98 (m, 1H), 4.34-4.24 (m, 4H), 3.89 (dd, J = 11.2 Hz, J = 23.6 Hz, 2H), 1.41-1.37 (m, 6H). ¹³C NMR (400 MHz, CDCl₃) δ : 185.67, 156.83, 156.77, 152.49, 147.13, 137.05, 130.65, 130.29, 129.32, 128.96, 127.54, 119.95, 77.76, 76.08, 63.62, 63.56, 63.39, 63.32, 37.46, 16.43, 16.37. ³¹P NMR (162 MHz, CDCl₃) : 17.11. HRMS calc. for C₁₇H₁₉N₂O₅P (M+H)⁺, 363.1104; found, 363.1100.

(5-(hydroxymethyl)-4,5-dihydroisoxazol-3-yl)(quinolin-2-yl)methanone 3k : Red oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.31 (d, *J* = 8.8 Hz, 1H), 8.24 (d, *J* = 8.8 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.81-7.77 (m, 1H), 7.68-7.64 (m, 1H), 5.04-4.97 (m, 1H), 3.95 (dd, *J* = 2.8 Hz, *J* = 12.4 Hz, 1H), 3.75 (dd, *J* = 4.8 Hz, *J* = 12.4 Hz, 1H), 3.57 (dd, *J* = 11.2 Hz, *J* = 17.2 Hz, 1H), 3.46 (dd, *J* = 8.4 Hz, *J* = 17.2 Hz, 1H), 2,61 (br, 1H). ¹³C NMR (400 MHz, CDCl₃) δ : 188.45, 157.81, 152.33, 147.13, 137.15, 130.58, 130.39, 129.22, 128.89, 127.60, 120.11, 83.76, 63.44, 35.64. HRMS calc. for C₁₄H₁₂N₂O₃ (M+H)⁺, 257.0921; found, 257.0919.

(5-benzyl-4,5-dihydroisoxazol-3-yl)(6-methylquinolin-2-yl)methanone 3l: Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.18 (d, *J* = 8.8 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.61-7.59 (m, 2H), 7.28-7.24 (m, 5H), 5.15-5.07 (m, 1H), 3.48 (dd, *J* = 11.2 Hz, *J* = 17.6 Hz, 1H), 3.27 (dd, *J* = 8.4 Hz, *J* = 17.6 Hz, 1H), 3.18 (dd, *J* = 6.4 Hz, *J* = 14.0 Hz, 1H), 2.97 (dd, *J* = 7.2 Hz, *J* = 14.0 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ: 186.59, 157.43, 152.14, 145.84, 139.18, 136.13,

132.65, 130.32, 129.39, 129.36, 128.62, 126.87, 126.32, 120.47, 84.12, 40.83, 38.63, 21.77. HRMS calc. for $C_{21}H_{18}N_2O_2$ (M+H)⁺, 331.1441; found, 331.1437.

(5-benzyl-4,5-dihydroisoxazol-3-yl)(6-methoxyquinolin-2-yl)methanone 3m : Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.15-8.10 (m, 2H), 8.05 (d, J = 8.4 Hz, 1H), 7.41 (dd, J = 2.8 Hz, J = 9.2 Hz, 1H), 7.33-7.24 (m, 5H), 7.08 (d, J = 2.8 Hz, 1H), 5.15-5.07 (m, 1H), 3.95 (s, 3H), 3.49 (dd, J = 10.8 Hz, J = 17.6 Hz, 1H), 3.28 (dd, J = 8.0 Hz, J = 17.6 Hz, 1H), 3.18 (dd, J = 6.0 Hz, J = 13.6 Hz, 1H), 2.98 (dd, J = 6.8 Hz, J = 14.0 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.28, 159.61, 157.44, 150.56, 143.40, 136.17, 135.27, 132.25, 130.84, 129.39, 128.62, 126.86, 123.47, 120.98, 104.61, 84.00, 55.61, 40.83, 38.82. HRMS calc. for C₂₁H₁₈N₂O₂(M+H)⁺, 347.1390; found, 347.1386.

(5-benzyl-4,5-dihydroisoxazol-3-yl)(8-methoxyquinolin-2-yl)methanone 3n : Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ: 8.24 (d, J = 8.8 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.56 (t, J = 8.0 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.34-7.23 (m, 5H), 7.07 (d, J = 7.6 Hz, 1H), 5.14-5.06 (m, 1H), 4.05 (s, 3H), 3.49 (dd, J = 10.8 Hz, J = 17.6 Hz, 1H), 3.30 (dd, J = 8.4 Hz, J = 17.6 Hz, 1H), 3.20 (dd, J = 6.0 Hz, J = 13.6 Hz, 1H), 2.97 (dd, J = 7.2 Hz, J = 14.0 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ: 186.31, 157.47, 156.16, 151.70, 139.15, 136.72, 136.19, 130.38, 129.31, 129.28, 128.54, 126.77, 120.68 , 119.09, 108.28, 84.19, 56.04, 40.80, 38.65. HRMS calc. for C₂₁H₁₈N₂O₃ (M+H)⁺ , 347.1390; found, 347.1386.

mixed with trace amount of impurities.

(5-benzyl-4,5-dihydroisoxazol-3-yl)(8-phenoxyquinolin-2-yl)methanone 30 : Yellow oil. Selected ¹H NMR (400 MHz, CDCl₃) δ : 8.33 (d, J = 8.8 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.62 (d,

J = 8.4 Hz, 1H), 7.61-7.54 (m, 1H), 7.35-7.31 (m, 2H), 7.29-7.20 (m, 6H), 7.13-7.06 (m, 1H), 7.04 (d, J = 7.6 Hz, 2H), 5.01-4.93 (m, 1H), 3.40 (dd, J = 10.4 Hz, J = 17.6 Hz, 1H), 3.24 (dd, J = 8.4 Hz, J = 17.6 Hz, 1H), 3.09 (dd, J = 8.4 Hz, J = 14.0 Hz, 1H), 2.85 (dd, J = 6.8 Hz, J = 14.0 Hz, 1H). Selected ¹³C NMR (400 MHz, CDCl₃) δ : 186.07, 157.29, 154.19, 152.44, 139.90, 137.16, 136.33, 130.85, 129.74, 129.34, 129.24, 128.56, 126.76, 123.61, 122.46, 120.51, 119.09, 117.34, 84.50, 40.85, 39.38. HRMS calc. for C₂₆H₂₀N₂O₃ (M+H)⁺, 409.1547; found, 409.15443.

benzo[h]quinolin-2-yl(5-benzyl-4,5-dihydroisoxazol-3-yl)methanone 3p : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 9.02 (d, J = 8.4 Hz, 1H), 8.62 (t, J = 2.4 Hz, 1H), 8.24 (d, J = 8.8 Hz, 1H), 8.06-7.99 (m, 3H), 7.93 (d, J = 6.8 Hz, 1H), 7.72-7.67 (m, 2H), 7.35-7.24 (m, 5H), 5.17-5.05 (m, 1H), 3.51 (dd, J = 10.8 Hz, J = 17.6 Hz, 1H), 3.28 (dd, J = 8.0 Hz, J = 17.6 Hz, 1H), 3.19 (dd, J = 6.0 Hz, J = 14.0 Hz, 1H), 2.99 (dd, J = 6.8 Hz, J = 14.0 Hz, 1H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.30, 157.52, 152.17, 147.50, 136.09, 132.43, 131.79, 131.41, 129.41, 128.93, 128.78, 128.65, 128.45, 128.39, 127.42, 127.31, 126.91, 123.29, 121.39, 84.19, 40.84, 38.54. HRMS calc. for C₂₄H₁₈N₂O₂ (M+H)⁺, 367.1441; found, 367.1437.

butyl 3-(quinoxaline-2-carbonyl)-4,5-dihydroisoxazole-5-carboxylate 3r : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 9.46 (s, 1H), 8.27-8.25 (m, 1H), 8.20-8.18 (m, 1H), 7.95-7.86 (m, 2H), 5.30 (dd, J = 9.2 Hz, J = 10.8 Hz, 1H), 4.25 (t, J = 6.4 Hz, 2H), 3.82-3.73 (m, 2H), 1.73-1.66 (m, 2H), 1.46-1.37 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ: 184.68, 168.80, 156.35, 147.01, 144.23, 143.61, 141.15, 132.65, 131.05, 130.75, 129.33, 79.97, 66.14, 37.76, 30.40, 18.96, 13.60. HRMS calc. for C₁₇H₁₇N₃O₄ (M+H)⁺, 328.1292; found, 328.1296.

methyl 3-(quinoline-2-carbonyl)isoxazole-5-carboxylate 3u : Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.38 (d, J = 8.8 Hz, 1H), 8.29-8.23 (m, 2H), 7.92 (d, J = 7.6 Hz, 1H), 7.86 (s, 1H), 7.85-7.81 (m, 1H), 7.31-7.69 (m, 1H), 4.04 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ : 184.04, 160.92, 160.47, 156.89, 152.07, 147.10, 137.46, 130.77, 130.53, 129.65, 129.49, 127.72, 119.66, 111.87, 53.06. HRMS calc. for C₁₅H₁₀N₂O₄ (M+H)⁺, 283.0713; found, 283.0710.

(5-(phenoxymethyl)isoxazol-3-yl)(quinolin-2-yl)methanone 3v: Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.35 (d, J = 8.4 Hz, 1H), 8.25-8.21 (m, 2H), 7.90 (d, J = 8.0 Hz, 1H), 7.82-7.78 (m, 1H), 7.70-7.66 (m, 1H), 7.35-7.35 (m, 2H), 7.22 (s, 1H), 7.05-7.00 (m, 3H), 5.28 (d, J = 0.4 Hz, 2H). ¹³C NMR (400 MHz, CDCl₃) δ : 185.13, 168.64, 160.75, 157.60, 152.49, 147.14, 137.28, 130.78, 130.37, 129.67, 129.52, 129.21, 127.66, 121.95, 119.93, 114.78, 105.64, 61.09. HRMS calc. for C₂₀H₁₄N₂O₃ (M+H)⁺, 331.1077; found, 331.1076.

mixed with small amount of impurities.

(5-phenylisoxazol-3-yl)(quinolin-2-yl)methanone 3w : Yellow oil. Selected ¹H NMR (400 MHz, CDCl₃) δ : 8.38 (d, J = 8.4 Hz, 1H), 8.30 (dd, J = 2.0 Hz, J = 8.4 Hz, 2H), 7.93-7.88 (m, 3H), 7.84-7.80 (m, 1H), 7.72-7.68 (m, 1H), 7.54-7.47 (m, 3H), 7.38 (s, 1H). Selected ¹³C NMR (400 MHz, CDCl₃) δ : 185.57, 170.71, 161.38, 152.76, 147.27, 137.28, 130.89, 130.59, 130.38, 129.56, 129.17, 129.10, 127.69, 126.00, 120.15, 101,46. HRMS calc. for C₁₉H₁₂N₂O₂ (M+H)⁺, 301.0972; found, 301.0969.

(5-pentylisoxazol-3-yl)(quinolin-2-yl)methanone 3x : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ: 8.35 (d, *J* = 8.8 Hz, 1H), 8.26 (t, *J* = 8.8 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.83-7.79 (m, 1H), 7.70-7.66 (m, 1H), 6.83 (s, 1H), 2.88 (t, *J* = 7.6 Hz, 2H), 1.83-1.76 (m, 2H), 1.46-1.34 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ : 185.91, 174.64, 160.84, 152.94, 147.27, 137.19, 130.86, 130.29, 129.50, 129.04, 127.65, 120.19, 102.74, 31.18, 27.14, 26.67, 22.25, 13.88. MS (ESI) (M+H)⁺ : 294.9. HRMS calc. for C₁₈H₁₈N₂O₂ (M+H)⁺, 295.1441; found, 295.1438.

quinolin-2-yl(5-(((3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H- pyran-2- yl)methoxy)meth yl)-4,5-dihydroisoxazol-3-yl)methanone 5a : Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.29-8.21 (m, 2H), 8.07 (dd, J = 2.4 Hz, J = 8.4 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.78-7.73 (m, 1H), 7.65-7.61 (m, 1H), 7.36-7.30 (m, 6H), 7.28-7.24 (m, 9H), 5.00 (d, J = 10.8 Hz, 1H), 4.91 (d, J =10.8 Hz, 1H), 4.82 (t, J = 12.0 Hz, 3H), 4.68-4.61 (m, 2H), 4.54 (d, J = 3.2 Hz, 1H), 3.98 (t, J =9.2 Hz, 1H), 3.62 (t, J = 8.8 Hz, 1H), 3.53-3.34 (m, 2H), 3.33 (s, 3H), 3.21 (t, J = 9.2 Hz, 1H), 3.14-3.05 (m, 1H), 2.01-1.92 (m, 1H), 1.89-1.80 (m, 1H), 1.69-1.40 (m, 2H). ¹³C NMR (400 MHz, CDCl₃) δ : 186.76, 157.31, 153.06, 147.17, 138.57, 138.00, 137.98, 136.89, 130.65, 130.64, 130.17, 129.15, 128.66, 128.36, 128.31, 128.01, 127.98, 127.91, 127.82, 127.73, 127.54, 127.48, 120.27, 120.25, 97.73, 97.70, 83.84, 83.74, 81.93, 81.41, 80.00, 75.66, 75.15, 75.12, 73.22, 69.64, 69.59, 55.02, 38.92, 38.85, 31.02, 30.95, 27.26, 27.00. HRMS calc. for C₄₂H₄₁N₂O₇ (M+Na)⁺, 709.2891; found, 709.2884.

8. Charts of products

0.000

