Supporting Information

DNA–Ligand Interactions Gained and Lost: Light-induced Ligand Redistribution in a Supramolecular Cascade

Daria V. Berdnikova,^{*,a,b} Tseimur M. Aliyeu,^b Thomas Paululat,^a Yuri V. Fedorov,^b Olga A. Fedorova,^b and Heiko Ihmels^a

^{*a*} Department Chemie–Biologie, Organische Chemie II, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany

^b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia

berdnikova@chemie-bio.uni-siegen.de; daria@ineos.ac.ru

Table of Contents:

1.	Materials and Methods	S2
2.	Synthesis	S2
3.	Supramolecular Interactions	S4
4.	Photochemical Studies	S13
5.	Concurrent Binding of 2 with ct DNA and CB[7]	S15
6.	NMR Spectra	S17
7.	HRMS Data	S19

1. Materials and Methods

All reagents and solvents were obtained from commercial sources and used as received. (2-Hydroxypropyl)- β -cyclodextrin with average $M_{\rm w} \sim 1,460$ (0.8 molar substitution) was purchased from Sigma Aldrich. Purified water with resistivity $\geq 18 \text{ M}\Omega \text{ cm}^{-1}$ was used for preparation of buffer solutions and spectrometric measurements. Na-phosphate buffer (10 mM, pH 7.0) was used for all measurements.

NMR spectra were recorded on a Varian VNMR-S 600 spectrometer equipped with 3 and 5 mm dual broadband and 3mm triple resonance inverse probes. Solvent signals were used as internal standard (Acetone-d6: $\delta_{\rm H} = 2.05$, $\delta_{\rm C} = 29.8$ ppm; CD₃CN: $\delta_{\rm H} = 1.93$, $\delta_{\rm C} = 1.28$ ppm), all spectra are recorded at T = 25°C. Pulse sequences were taken from Varian pulse sequence library. Spectra in H2O/D2O 9:1 were recorded at T = 25 °C with water suppression using wet sequence.

High-resolution mass spectra were recorded on a time-of-flight mass-spectrometer Bruker MicrOTOF in a positive-ion mode using electrospray ionization method.

Mass spectra (ESI in the positive-ion mode) were recorded with a Finnigan LCQ Deca instrument; only m/z values in the range of 100–2000 units were analyzed.

Electronic absorption spectra were recorded using a Varian Cary 100 Bio spectrophotometer. Fluorescence spectra were recorded on a Varian Cary Eclipse spectrofluorometer. Circular dichroism spectra were measured with an Applied Photophysics Chirascan CD spectrometer. Spectrophotometric measurements were performed in thermostated quartz sample cells of 10 mm pathlength at 20 ± 1 °C. Preparation and handling of the solutions were carried out under red light. The actual concentrations of DNA samples were determined photometrically using the extinction coefficient $\varepsilon_{260} = 12824$ cm⁻¹ M⁻¹ (bp). Photochemical reactions were carried out with a high pressure Hg vapor lamp (145 W) and an immersed Hg photoreactor (125 W).

2. Synthesis

Cucurbit[7]uril (purity >95%) was obtained according to the published protocol,¹ and its purity was confirmed by NMR and ESI MS data.

(*E*)-2-(3,4-dimethoxystyryl)pyridine (1)

1,2-Dimethylpyridinium iodide (500 mg, 2.13 mmol) and 3,4dimethoxybenzaldehyde (354 mg, 2.13 mmol) were dissolved in *n*-BuOH (4 mL) with addition of pyrrolidine (0.3 mL). The mixture was stirred at 120 °C under argon during 2 h. Then the solvent was

removed in vacuum, the residue was treated with hot benzene. The precipitate was filtered, washed with diethyl ether and dried to give 1-methyl-2-(3,4-dimethoxystyryl)pyridinium iodide (644 mg, 1.70 mmol, yield 85%).

The 1-methyl-2-(3,4-dimethoxystyryl)pyridinium iodide (100 mg, 0.26 mmol) was dissolved in *N*,*N*-dimethylaniline (2 mL) and the solution was stirred at 170 °C under argon during 2.5 h. Then *N*,*N*-dimethylaniline was removed in vacuum, the residue was treated with hot benzene (30 mL), undissolved precipitate was filtered off. The filtrate was evaporated; the remaining residue was purified by column chromatography (Al₂O₃, benzene-ethylacetate going from 1:0 to 100:1) followed by recrystallization from heptane to give the desired product **1** in 77% yield (49.0 mg, 0.20 mmol). ¹H NMR (acetone-*d*₆, 600 MHz) δ : 3.84 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 6.97 (d, *J* = 8.3, 1H, H-5'), 7.14-7.20 (m, 3H, H-a, H-6', H-5), 7.31 (broad. s, 1H, H-2'), 7.45 (d, *J* = 7.9, 1H, H-3), 7.67 (d, *J*_{trans} = 16.1, 1H, H-b), 7.72 (m, 1H, H-4), 8.55 (d, *J* = 4.8, 1H, H-6). ¹³C NMR (acetone-*d*₆, 150 MHz) δ : 55.2 (2C, OCH₃), 109.8 (C-2'), 111.8 (C-5'), 120.8 (C-6'), 121.7 (C-3), 121.8 (C-5), 126.0 (C-a), 129.9 (C-1'), 132.4 (C-b), 136.4 (C-4), 149.5 (C-4'), 149.7 (C-6), 150.1 (C-3'), 156.0 (C-2). Anal. calcd. for C₁₅H₁₅NO₂: C, 74.67; H, 6.27; N, 5.81; found: C, 74.61; H, 6.26; N, 5.79.

8,9-(*dimethoxy*)[3,4]*benzo*[*c*]*quinolizinium perchlorate* (2)

The acetonitrile solution (1.00 mM) of **1** (50.0 mg; 0.21 mmol) was irradiated with an immersed Hg photoreactor (125 W) under UV-Vis spectroscopy control. As soon as maximum conversion was reached the solvent was removed in vacuum, the residue was washed with hexane and recrystallized from MeOH with addition of $HClO_4$ to give the

photocyclization product **2** as a perchlorate salt in 57% yield (41.0 mg, 0.12 mmol). ¹H NMR (CD₃CN, 600 MHz) δ : 4.06 (s, 3H, OCH₃), 4.20 (s, 3H, OCH₃), 7.67 (s, 1H, H-9), 8.04-8.07 (m, 2H, H-2, H-7), 8.16 (s, 1H, H-12), 8.34 (t, J = 7.3, J = 8.2, 1H, H-3), 8.41 (d, J = 8.2, 1H, H-4), 8.48 (d, J = 8.7, 1H, H-6), 10.01 (d, J = 6.9, 1H, H-1). ¹³C NMR (CD₃CN, 150 MHz) δ : 56.3 (OCH₃), 57.1 (OCH₃), 99.1 (C-12), 109.0 (C-9), 120.6 (C-10), 122.9 (C-2), 123.5 (C-7), 128.4 (C-4), 130.3 (C-11), 133.1 (C-1), 136.1 (C-6), 137.3 (C-3), 142.5 (C-5), 152.0 (C-8), 154.8 (C-13). Anal. calcd. for C₁₅H₁₄ClNO₆: C, 53.03; H, 4.15; N, 4.12; found: C, 53.05; H, 4.18; N, 4.11. HRMS *m/z* 240.1028 [**2**]⁺ (calcd. for C₁₅H₁₄NO₂, 240.1019).

3. Supramolecular Interactions

3.1. Styrylpyridine derivative $1 - HP-\beta-CD$ interaction

Absorption, fluorescence and circular dichroism spectroscopy

Figure S1. Spectrophotometric titration of HP- β -CD to **1** ($c_1 = 20 \ \mu\text{M}$, $c_{\text{HP-}\beta\text{-CD}}/c_1 = 0\text{--}1000$) in phosphate buffer (pH 7.0) at 20 °C.

Figure S2. Fluorimetric titration of HP- β -CD to **1** ($\lambda_{ex} = 330$ nm, $c = 20 \mu$ M, $c_{HP-\beta-CD}/c_1 = 0-1000$) in phosphate buffer (pH 7.0) at 20 °C.

Figure S3. Polarimetric titration of HP- β -CD to **1** ($c = 20 \ \mu$ M, $c_{\text{HP-}\beta\text{-CD}}/c_1 = 0\text{--}1000$) in phosphate buffer (pH 7.0) at 20 °C.

Figure S4. ROESY spectrum of styrylpyridine derivative 1 ($c_1 = 0.3 \text{ mM}$) in the presence of a 10-fold excess of HP- β -CD in D₂O.

3.2. Styrylpyridine derivative 1 – ct DNA interaction

Figure S5. Spectrophotometric titration of ct DNA to **1** ($c_1 = 10 \ \mu\text{M}$, $c_{\text{DNA}}/c_1 = 0-45$) in phosphate buffer (pH 7.0) at 20 °C.

Figure S6. Fluorimetric titration of ct DNA to 1 ($\lambda_{ex} = 330 \text{ nm}, c_1 = 10 \mu \text{M}, c_{\text{DNA}} / c_1 = 0-52.6$) in phosphate buffer (pH 7.0) at 20 °C.

Figure S7. Circular dichroism spectra of ct DNA (green) and mixture of **1** and ct DNA (blue); $c_{\text{DNA}} = 0.1 \text{ mM}$, $c_1 = 20 \text{ }\mu\text{M}$ in phosphate buffer (pH 7.0) at 20 °C.

3.3. Styrylpyridine derivative 1 – CB[7] interaction

Absorption spectroscopy

Figure S8. Spectrophotometric titration of CB[7] to **1** ($c_1 = 10 \ \mu\text{M}$, $c_{\text{CB[7]}} / c_1 = 0$ -30) in phosphate buffer (pH 7.0) at 20 °C.

Figure S9. Suppression of the protonation of ligand **1** in the presence of CB[7] (red) upon addition of HP- β -CD (blue) in phosphate buffer (pH 7.0) at 20 °C ($c_1 = 20 \mu$ M, $c_{CB[7]} / c_1 = 15$, $c_{HP-\beta-CD} = 10$ mM).

Protonation of the CB-bound ligand is a consequence of charge-dipole interactions between a cucurbituril host and a guest that result in the shifting of the p K_a of the guest towards higher values.² In contrast, the p K_a of a ligand decreases when bound to cyclodextrin because hydrophobic interactions are the dominant interactions in this complex.³ Considering these differences the competition of the two hosts for ligand **1** at the applied pH value of 7.0 was assessed, *i. e.* when the non-protonated form of **1** prevails.

3.4. Photocyclization product $2 - HP-\beta-CD$ interaction

<u>Circular dichroism spectroscopy</u>

Figure S10. Circular dichroism spectra of ligand **2** ($c_2 = 20 \,\mu\text{M}$) in the presence of HP- β -CD at HP- β -CD/ligand ratios: 0 (black); 250 (red); 500 (blue); 750 (green); 1000 (pink) in phosphate buffer (pH 7.0) at 20 °C.

3.5. Photocyclization product 2 – ct DNA interaction

Figure S11. Spectrophotometric titration of ct DNA to ligand 2 ($c_2 = 20 \mu$ M, $c_{DNA} / c_2 = 0-17.2$) in phosphate buffer (pH 7.0) at 20 °C. Inset: Scatchard plot *r/c vs. r.*

Figure S12. Circular dichroism spectra of mixtures of ct DNA ($c_{DNA} = 50 \mu$ M, in base pairs) with ligand **2** at ligand-DNA ratio *LDR* = 0; 0.3; 0.5; 0.8; 1.0; in phosphate buffer (pH 7.0) at 20 °C.

Figure S13. Fluorimetric titration of ct DNA to **2** ($\lambda_{ex} = 393$ nm, $c_2 = 20$ mM, $c_{DNA}/c_2 = 0-24.7$) in phosphate buffer (pH 7.0) at 20 °C. Inset: plot of I/I_0 at 420 nm *vs.* c_{DNA} .

Figure S14. Normalized thermal denaturation curves of ct DNA in the presence of compound **2** at ligand-DNA ratios LDR = 0, 0.1, 0.2, 0.3, 0.4, 0.5; and a plot of induced $T_{\rm m}$ shifts versus LDR, $c_{\rm DNA} = 40 \,\mu M$ (base pairs) in phosphate buffer (pH 7.0).

Viscometry

Figure S15. Relative specific viscosity of ct DNA in the presence of **2** (blue triangles) and ethidium bromide (black circles) as a function of the ligand-DNA ratio *LDR*, $c_{\text{DNA}} = 1$ mM (base pairs) in phosphate buffer (pH 7.0) at 20 °C.

3.6. Photocyclization product 2 - CB[7] interaction

Absorption spectroscopy

Figure S16. Spectrophotometric titration of CB[7] to 2 ($c_2 = 20 \ \mu\text{M}$, $c_{\text{CB[7]}}/c_2 = 0-11.9$) in phosphate buffer (pH 7.0) at 20 °C.

3.7. Interactions in the mixtures $HP-\beta-CD - ct DNA - CB[7]$

Circular dichroism spectroscopy

Figure S17. Circular dichroism spectra of ct DNA in the presence of HP- β -CD ($c_{\text{DNA}} = 50 \ \mu\text{M}$ base pairs, $c_{\text{HP-}\beta-\text{CD}}/c_{\text{DNA}} = 0-1000$) in phosphate buffer (pH 7.0) at 20 °C.

Figure S18. Normalized thermal denaturation curves of ct DNA in the presence of HP- β -CD at HP- β -CD–DNA ratios = 0, 100, 250, 500, 1000, 1500; and a plot of induced $T_{\rm m}$ shifts versus HP- β -CD–DNA ratio, $c_{\rm DNA} = 40 \,\mu$ M (base pairs) in phosphate buffer (pH 7.0).

Figure S19. Normalized thermal denaturation curves of ct DNA upon addition of CB[7] at CB[7]-DNA ratios = 0, 2, 4, 6; and a plot of induced $T_{\rm m}$ shifts versus CB[7]-DNA ratio, $c_{\rm DNA} = 40 \ \mu M$ (base pairs) in phosphate buffer (pH 7.0).

Figure S20. Normalized thermal denaturation curves of ct DNA upon addition of CB[7] and 500 molar eq. of HP- β -CD at CB[7]-DNA ratios = 0, 2, 4, 6; and a plot of induced $T_{\rm m}$ shifts versus CB[7]-DNA ratio, $c_{\rm DNA} = 40 \ \mu$ M (base pairs) in phosphate buffer (pH 7.0).

Figure S21. ¹H NMR spectra of (a): **2** ($c_2 = 2 \text{ mM}$); (b): **2** in the presence of CB[7] ($c_2 = 2 \text{ mM}$, $c_{CB[7]} = 2.6 \text{ mM}$); (c): Dickerson dodecamer 5'-CGCGAATTCGCG-3' ($c_{DNA} = 2 \text{ mM}$); (d): Dickerson dodecamer in the presence of **2** ($c_{DNA} = 2 \text{ mM}$, $c_2 = 2 \text{ mM}$); (e): Dickerson dodecamer in the presence of CB[7] ($c_{DNA} = 2 \text{ mM}$, $c_{CB[7]} = 2 \text{ mM}$); (f): Dickerson dodecamer in the presence of both **2** and CB[7] ($c_{DNA} = 2 \text{ mM}$, $c_{CB[7]} = 2 \text{ mM}$, $c_2 = 2 \text{ mM}$). In all cases: H₂O/D₂O (9:1) mixture containing phosphate buffer (10 mM, pH 7.0), NaN₃ (10µM), and EDTA (10µM); 25 °C. Signals of CB[7] are marked with an asterisk.

NMR data support the intercalative binding mode of compound 2. Thus, upon addition of 2 (c_{DNA}/c_2 = 1) the signals of the imino protons of the DNA duplex (12.5–13.7 ppm) undergo a pronounced upfield shift along with significant broadening. Such a behavior indicates dynamic DNA intercalation that strongly affects the chemical environment of the DNA imino groups.⁴

4. Photochemical Studies

4.1. Photocyclization of free styrylpyridine derivative 1

Figure S22. Photocyclization of **1** monitored by absorption spectroscopy ($c_1 = 20 \mu M$, full light of a Hg lamp, spectra were recorded every 5 min, timescale 0–30 min) in phosphate buffer (pH 7.0) at 20 °C.

4.2. Photocyclization of **1** encapsulated in the cavity of $HP-\beta-CD$

Figure S23. Photocyclization of **1** encapsulated in the cavity of HP- β -CD monitored by absorption (left) and CD (right) spectroscopy ($c_1 = 20 \ \mu\text{M}$, $c_{\text{HP-}\beta\text{-}\text{CD}} = 10 \ \text{mM}$, full light of a Hg lamp, spectra were recorded every 5 min, timescale 0–60 min) in phosphate buffer (pH 7.0) at 20 °C.

Figure S24. Photocyclization of **1** in the presence of ct DNA monitored by absorption (left) and CD (right) spectroscopy ($c_1 = 20 \mu$ M, $c_{DNA} = 0.1 m$ M, full light of a Hg lamp, spectra were recorded every 5 min, timescale 0–30 min) in phosphate buffer (pH 7.0) at 20 °C.

4.4. Photocyclization of 1 encapsulated in HP- β -CD in the presence of CB[7] and ct DNA

Figure S25. Photocyclization of **1** encapsulated in HP- β -CD in the presence of both ct DNA and CB[7] monitored by absorption (left) and CD (right) spectroscopy ($c_1 = 20 \ \mu\text{M}$, $c_{\text{HP-}\beta\text{-CD}} = 10 \ \text{mM}$, $c_{\text{DNA}} = 0.1 \ \text{mM}$, $c_{\text{CB[7]}} = 0.2 \ \text{mM}$, full light of a Hg lamp, spectra were recorded every 5 min, timescale 0–30 min) in phosphate buffer (pH 7.0) at 20 °C.

5. Concurrent Binding of 2 with ct DNA and CB[7]

Figure S26. Absorption spectra of 2–ct DNA mixtures upon addition of CB[7] in phosphate buffer $(c_2 = 10 \ \mu\text{M}, c_{\text{DNA}} = 80 \ \mu\text{M}$: (a) without HP- β -CD, $(c_{\text{CB[7]}}/c_2 = 0-42)$; (b) in the presence of 500 eq. of HP- β -CD ($c_{\text{CB[7]}}/c_2 = 0-40$, $c_{\text{HP-}\beta\text{-CD}} = 5 \text{ mM}$). Final spectra of the 2-CB[7] complex are marked in blue.

Figure S27. Absorption spectra of 2–CB[7] mixtures upon addition of ct DNA in phosphate buffer $(c_2 = 10 \ \mu\text{M}, c_{\text{CB[7]}} = 0.1 \ \text{mM}, c_{\text{DNA}} / c_2 = 0-30)$: (a) without HP- β -CD; (b) in the presence of 500 eq. of HP- β -CD ($c_{\text{HP-}\beta\text{-CD}} = 5 \ \text{mM}$). Final spectra of the 2-DNA complex are marked in red.

Figure S28. Circular dichroism spectra of 2–ct DNA mixtures ($c_2 = 15 \ \mu\text{M}$, $c_{\text{DNA}} = 50 \ \mu\text{M}$) in phosphate buffer (pH 7.0) at 20 °C: blue: without CB[7]; green: in the presence of 5 eq. of CB[7] ($c_{\text{CB[7]}} = 75 \ \mu\text{M}$); red: in the presence of 10 eq. of CB[7] ($c_{\text{CB[7]}} = 150 \ \mu\text{M}$). Inset: Disappearance of the ICD signal of the 2-DNA complex due to extraction of ligand 2 from the DNA helix by CB[7].

6. NMR Spectra

Figure S29. ¹H NMR spectrum of **2** in CD₃CN.

Figure S30. ¹³C NMR spectrum of 2 in CD₃CN.

7. HRMS Data

Figure S31. HRMS for 2 in CD₃CN; upper panels: experiment, lower panel: calculation.

References

- 1. C. Marquez, F. Huang, W. M. Nau, *NanoBioscience, IEEE Transact.* 2004, *3*, 39.
- 2. N. Barooah, J. Mohanty, H. Pal, A. C. Bhasikuttan, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 2014, 84, 1.
- 3. M. Shaikh, J. Mohanty, P. K. Singh, W. M. Nau, H. Pal, *Photochem. Photobiol. Sci.*, **2008**, 7, 408.
- 4. (a) J. Feigon, W. A. Denny, W. Leupin and D. R. Kearns, J. Med. Chem., 1984, 27, 450; (b) M. A. Keniry and R. H. Shafer, *Methods Enzymol.*, 1995, 261, 575; (c) L. Strekowski and B. Wilson, *Mutat. Res.*, 2007, 623, 3.