Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Asymmetric Suzuki-Miyaura Cross-Coupling of 1-Bromo-2-naphthoates using the Helically Chiral Polymer Ligand PQXphos

Yuto Akai, Laure Konnert, Takeshi Yamamoto, and Michinori Suginome*

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, Tel: 075-383-2720, Fax: 075-383-2722, E-mail: suginome@sbchem.kyoto-u.ac.jp

Contents

- 1. General
- 2. Experimental Procedures and Spectral Data for the New Compounds
- **3.** Determination of the Enantiomeric Excesses of the Products by HPLC or SFC with a Chiral Stationary Phase
- 4. References
- 5. NMR Spectra of New Compounds

1. General

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring. ¹H and ¹³C NMR spectra were recorded on a Varian 400-MR spectrometer at ambient temperature. ¹H NMR data are reported as follows: chemical shift in ppm downfield from tetramethylsilane (δ scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, and br = broad), coupling constant (Hz), and integration. ¹³C NMR chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale). ³¹P NMR chemical shifts are reported in ppm downfield from H₃PO₄ (85%). All ¹³C NMR and ³¹P NMR spectra were obtained with complete proton decoupling.

Toluene and THF were dried and deoxygenized using an alumina/catalyst column system $[PdCl(\eta^{3}-C_{3}H_{5})]_{2}$ (GlassContour Co.).. (TCI), distilled water (Nacalai tesque). 1-bromo-2-naphthoic acid (TCI), methanol (Nacalai tesque), ethanol (Nacalai tesque), 2,4-dimethyl-3-pentanol 2-propanol (Nacalai tesque), 3-pentanol (TCI), (TCI). dicyclohexylmethanol (Aldrich), cyclohexanol (Wako), cyclooctanol (TCI), t-butyl alcohol (Wako), phenol (TCI), 2,6-dimethylphenol (TCI), oxalyl chloride (Wako), 1-naphthaleneboronic acid (Wako), 2-methylphenylboronic acid (Wako), 4-methyl-1-naphthaleneboronic acid (Alfa Aesar), 4-methoxy-1-naphthaleneboronic acid (Aldrich), 4-fluoro-1-naphthaleneboronic acid (Aldrich), 1-pyreneboronic acid (Wako), 2,3-dimethylphenylboronic acid (Wako), 2,5-dimethylphenylboronic acid (Wako), 5-fluoro-2-methylphenylboronic acid (Wako), 4-fluoro-2-methylphenylboronic acid (Alfa Aesar), lithium alminium hydride (Wako), and potassium hydroxide (Nacalai tesque) were used as received from the commercial sources. 1,1,2-trichloroethane (Wako), dimethylformamide (Nacalai tesque), and pyridine (Wako) were purchased from the commercial sources and distilled before use. Potassium phosphate (Nacalai tesque) was purchased and dried prior to use. PQXphos L1-L6 were synthesized by the method reported previously.^{S1}

2. Experimental Procedures and Spectral Data for New Compounds

2.1 Preparation of Aryl Bromide

Scheme S1. Synthesis of aryl bromide 1

General procedure: To a solution of 1-bromo-2-naphthoic acid (1.11 g, 4.40 mmol) in CH₂Cl₂ (20 mL) was added oxalyl chloride (416 μ L, 4.84 mmol) at 0 °C. The mixture was stirred at room temperature for 1 h. After evaporation of the solvent, to the mixture was added pyridine (1.0 mL, 13.3 mmol), alcohol (13.3 mmol), and CH₂Cl₂ (20 mL). The mixture was stirred at room temperature for 18 h. The resulting mixture was quenched by water and extracted with CH₂Cl₂. After drying with anhydrous MgSO₄, the concentrated mixture was purified by column chromatography (hexane:CH₂Cl₂ = 2:1) to give a desired product.

Methyl 1-bromo-2-naphthoate (**1A**): 95% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.58-7.70 (m, 3H), 4.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 135.2, 132.3, 131.2, 128.6, 128.2, 128.1, 128.1, 127.8, 125.7, 122.6, 52.7; IR (ATR) ν 2925, 1717, 1456, 1429, 1265, 1234, 1219, 1126, 1003, 866, 827, 760 cm⁻¹; HRMS (ESI) m/z calcd for C₁₂H₉BrO₂+H⁺ (M+H⁺): 264.9859, found: 264.9851.

Isopropyl 1-bromo-2-naphthoate (1B): 82% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.56-7.67 (m, 3H), 5.36 (sep, J = 6.0 Hz, 1H), 1.44 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 135.0, 132.2, 132.2, 128.4, 128.2, 128.0, 127.9, 127.8, 125.6, 122.0, 69.7, 21.8 (2C); IR (ATR) v 2986, 1722, 1460, 1373, 1271, 1242, 1172, 1099, 978, 926, 823, 788, 762 cm⁻¹; HRMS (ESI) m/z calcd for C₁₄H₁₃BrO₂+H⁺ (M+H⁺): 293.0172, found: 293.0162.

Pentan-3-yl 1-bromo-2-naphthoate (**1C**): 87% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 7.85 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.56-7.67 (m, 3H), 5.12 (quin, *J* = 6.0 Hz, 1H), 1.77 (dq, *J* = 7.6 Hz, 6.0 Hz, 4H), 1.03 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 134.9, 132.4, 132.3, 128.4, 128.2, 128.0, 127.9, 127.8, 125.5, 121.9, 78.8, 26.5 (2C), 9.8 (2C); IR (ATR) *v* 2966, 1728, 1558, 1456, 1265, 1234, 1150, 1136, 1109, 1045, 974, 930, 822, 758 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₆H₁₇BrO₂+H⁺ (M+H⁺): 321.0485, found: 321.0475.

2,4-Dimethylpentan-3-yl 1-bromo-2-naphthoate (**1D**): 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.4 Hz, 1H), 7.84 (dd, J = 7.2 Hz, 0.8 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 7.56-7.70 (m, 3H), 4.97 (t, J = 6.0 Hz, 1H), 2.07 (dsep, J = 6.4 Hz, 6.0 Hz, 2H), 1.03 (t, J = 6.4 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 135.0, 132.4, 132.3, 128.5, 128.1, 128.0, 127.9, 127.8, 125.7, 122.1, 84.7, 26.6 (2C), 19.7 (2C), 17.5 (2C); IR (ATR) *v* 2963, 1717, 1558, 1325, 1276, 1240, 1171, 1117, 972, 935, 893, 810, 754 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₈H₂₁BrO₂+H⁺ (M+H⁺): 349.0798, found: 349.0787.

Dicyclohexylmethyl 1-bromo-2-naphthoate (**1E**): 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.56-7.72 (m, 3H), 5.00-5.04 (m, 1H), 1.56-1.78 (m, 12H), 1.15-1.34 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 135.0, 132.4, 132.1, 128.6, 128.1, 128.0, 127.9, 127.8, 125.8, 122.3, 83.3, 38.6 (2C), 30.0 (2C), 27.7 (2C), 26.4 (2C), 26.3 (2C), 26.1 (2C); IR (ATR) ν 2929, 2851, 1728, 1683, 1653, 1558, 1265, 1238, 1167, 1124, 975, 754 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₂₉BrO₂+H⁺ (M+H⁺): 429.1424, found: 429.1411.

Cyclohexyl 1-bromo-2-naphthoate (**1F**): 92% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.4 Hz, 1H), 7.84 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.56-7.67 (m, 3H), 5.13 (sep, *J* = 4.0 Hz, 1H), 2.02-2.07 (m, 2H), 1.80-1.85 (m, 2H), 1.51-1.70 (m, 3H), 1.41-1.51 (m, 2H), 1.29-1.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 135.0, 132.3 (2C), 128.4, 128.2, 128.0, 127.9, 127.8, 125.7, 122.0, 74.5, 31.6 (2C), 25.4, 23.7 (2C); IR (ATR) *v* 2933, 1717, 1558, 1506, 1456, 1285, 1248, 1170, 1128, 1011, 980, 824, 756 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₇H₁₇BrO₂+H⁺ (M+H⁺): 333.0485, found: 333.0473.

Cyclooctyl 1-bromo-2-naphthoate (**1G**): 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.56-7.66 (m, 3H), 5.30 (sep, *J* = 4.0 Hz, 1H), 1.90-2.07 (m, 4H), 1.74-1.83 (m, 2H), 1.55-1.66 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 135.0, 132.4, 132.2, 128.4, 128.1, 128.0, 127.9, 127.8, 125.6, 122.0, 77.2, 31.4 (2C), 27.1 (2C), 25.4, 23.0 (2C); IR (ATR) *v* 2920, 1717, 1558, 1273, 1244, 1169, 1138, 1031, 976, 924, 826, 758, 746 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₉H₂₁BrO₂+H⁺ (M+H⁺): 361.0798, found: 361.0784.

tert-Butyl 1-bromo-2-naphthoate (1H): 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.55-7.65 (m, 3H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 134.8, 133.4, 132.2, 128.3, 128.1, 127.9, 127.8, 127.7, 125.5, 121.3, 82.9, 28.2 (3C); IR (ATR) v 1724, 1684, 1558, 1506, 1456, 1367, 1294, 1248, 1126, 822, 754, 654 cm⁻¹; HRMS (ESI) m/z calcd for C₁₅H₁₅BrO₂+H⁺ (M+H⁺): 307.0328, found: 307.0317.

Phenyl 1-bromo-2-naphthoate (**1I**): 79% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (dd, J = 8.4 Hz, 0.8 Hz, 1H), 7.87-7.93 (m, 3H), 7.69 (ddd, J = 8.4 Hz, 7.2 Hz, 1.2 Hz, 1H), 7.64 (ddd, J = 8.0 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.45-7.50 (m, 2H), 7.29-7.35 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 150.8, 135.4, 132.4, 130.5, 129.6 (2C), 128.7, 128.4, 128.3, 128.3, 128.0, 126.2, 125.9, 123.4, 121.6 (2C); IR (ATR) v 1734, 1718, 1684, 1558, 1489, 1456, 1229, 1190, 1109, 968, 822, 758, 745, 691 cm⁻¹; HRMS (ESI) m/z calcd for C₁₇H₁₁BrO₂+H⁺ (M+H⁺): 307.0015, found: 307.0003.

2,6-Dimethylphenyl 1-bromo-2-naphthoate (1J): 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.70 (ddd, J = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.65 (ddd, J = 8.0 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.12-7.19 (m, 3H), 2.36 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 148.2, 135.4, 132.4, 130.3, 130.2 (2C), 128.8 (2C), 128.4, 128.3, 128.2, 128.0, 126.1, 125.8 (2C), 123.5, 16.7 (2C); IR (ATR) v 2358, 1684, 1653, 1647, 1558, 1506, 754 cm⁻¹; HRMS (ESI) m/z calcd for C₁₉H₁₅BrO₂+H⁺ (M+H⁺): 355.0328, found: 355.0316.

2.2 Preparation of Aryl Chloride 1D'

2,4-Dimethylpentan-3-yl 1-chlolro-2-naphthoate: To a solution of **1D** (349 mg, 1.0 mmol) in DMF (1.0 mL) was added CuCl (109 mg, 1.1 mmol). The mixture was stirred at 140 °C for 18 h. After filtration of the reaction mixture with Et₂O, the filtrate was extracted by Et₂O and washed by water, dried over MgSO₄. After evaporation of the solvent, the residue was purified by column chromatography (hexane:CH₂Cl₂ = 2:1) to give a desired product (254 mg, 84%).; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.66 (dd, *J* = 6.8 Hz, 6.4 Hz, 1H), 7.61 (dd, *J* = 6.8 Hz, 6.4

Hz, 1H), 4.97 (t, J = 6.0 Hz, 1H), 2.06 (dsep, J = 6.4 Hz, 6.0 Hz, 2H), 1.01 (t, J = 6.4 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 135.1, 131.5, 131.2, 128.9, 128.1 (2C), 127.7, 126.9, 125.8, 125.7, 84.5, 29.6 (2C), 19.7 (2C), 17.4 (2C); IR (ATR) ν 2963, 1717, 1464, 1331, 1272, 1242, 1120, 989, 893, 812, 754 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₂₁ClO₂+Na⁺ (M+Na⁺): 327.1122, found: 327.1118.

2.3 General Procedure for Asymmetric Suzuki-Miyaura Cross-coupling (Tables 1–3 and Eq 1)

To a solution of (*P*)-(*R*)-PQXphos (27 mg, 4.0 μ mol phosphorous atom) in THF (300 μ L) was added [PdCl(η^3 -C₃H₅)]₂ (0.01 M in THF, 100 μ L, 1 μ mol), K₃PO₄ (43 mg, 0.2 mmol), **1** (0.10 mmol), **2** (0.15 mmol), H₂O (40 μ L) in this order. The reaction was stirred at 40 °C for 24–48 h. After the reaction, subsequent addition of MeCN (10 mL) resulted in precipitation of the polymer complex. The suspension was passed through a pad of Celite[®] using MeCN as an eluent. The crude product was subjected to PTLC (hexane/Et₂O = 4/1) to give a desired product. Further purification was performed by GPC if necessary. The enantiomeric excesses of the products were determined by HPLC or SFC with a chiral stationary phase.

2.4 Gram-Scale Reaction (Table 3, ently 6)

To a solution of (*P*)-(*R*)-PQXphos (595 mg, 96 μ mol phosphorous atom) in THF (16 mL) was added [PdCl(η^3 -C₃H₅)]₂ (14.6 mg, 40 μ mol), K₃PO₄ (1.70 g, 8.0 mmol), **1** (1.40 g, 4.0 mmol), **2** (900 mg, 6.0 mmol), H₂O (1.6 mL) in this order. The reaction was stirred at 40 °C for 72 h. After the reaction, subsequent addition of MeCN (30 mL) resulted in precipitation of the PQXphos. The suspension was passed through a pad of Celite[®] using MeCN as an eluent. The crude product was isolated by column chromatography (hexane/Et₂O = 4/1) to give a desired product **3Dg** (1.31 g, 87% yield). The enantiomeric excess of this compound was determined by SFC analysis.

2.5 Reuse of Catalyst (Scheme 1)

[**Initial Run**] To a solution of (*P*)-(*R*)-PQXphos (27 mg, 4.0 μ mol phosphorous atom) in THF (300 μ L) was added [PdCl(η^3 -C₃H₅)]₂ (0.01 M in THF, 100 μ L, 1 μ mol), K₃PO₄ (43 mg, 0.2 mmol), **1D** (0.12 mmol, 42 mg), **2g** (0.10 mmol, 15 mg), H₂O (40 μ L) in this order. The reaction was stirred at 40 °C for 40 hours. After the reaction, acetonitrile was added to the mixture to precipitate polymer complex. The insoluble materials were washed by acetonitrile to extract the product. After evaporation of the extract, the residue was purified by by PTLC (hexane/Et₂O = 4/1) to give a desired product (20 mg, 53%). The enantiomeric excesses of the

products were determined by SFC with a chiral stationary phase. The polymer catalyst remaining in the reaction vessel was dried under vacuum and used for the next run.

[2nd and 3rd Runs] To a mixture of polymer catalyst and THF (400 μ L) was added K₃PO₄ (43 mg, 0.2 mmol), **1D** (0.12 mmol, 42 mg), **2g** (0.10 mmol, 15 mg), H₂O (40 μ L) in this order. The reaction was stirred at 40 °C. After the reaction, acetonitrile was added to the mixture to precipitate polymer complex. The insoluble materials were washed by acetonitrile to extract the product. After evaporation of the extract, the residue was purified by by PTLC (hexane/Et₂O = 4/1) to give a desired product (2nd run, 25 mg, 66%; 3rd run, 26 mg 69%). The enantiomeric excesses of the products were determined by SFC with a chiral stationary phase.

2.6 Asymmetric Suzuki-Miyaura Coupling Using Helically Inversed PQXphos (Scheme 2)

(*R*)-L6 (27 mg, 4.0 μ mol phosphorus atom) in 1,1,2-trichloroethane (0.6 mL) and THF (0.2 mL) was stirred at 60 °C for 24 h. To the mixture was added [PdCl(η^3 -C₃H₅)]₂ [0.01 M in THF/1,1,2-TCE (5/2), 100 μ L, 1 μ mol], and the solution was stirred at 60 °C for 10 min. To the mixture was added K₃PO₄ (43 mg, 0.2 mmol), **1D** (35 mg, 0.1 mmol), **2f** (37 mg, 0.15 mmol), and H₂O (40 μ L). The mixture was stirred at 40 °C for 48 h. After the reaction, subsequent addition of MeCN (10 mL) resulted in precipitation of the PQXphos. The suspension was passed through a pad of Celite[®] using MeCN as an eluent. The crude product was subjected to PTLC (hexane/Et₂O = 4/1). Further purification was performed by GPC to give a desired product (44 mg, 93% yield). The enantiomeric excesses of the products were determined by SFC with a chiral stationary phase.

2.7 Reduction and Hydrolysis of (S)-3Dg (Scheme 3)

[Reduction] To a solution of (*S*)-**3Dg** (35 mg, 0.094 mmol) in Et₂O (7.0 mL) was added lithium aluminum hydride (7 mg, 0.20 mmol) at 0 °C. The mixture was stirred at 80 °C for 1 h. After the reaction, the mixture was quenched by water and extracted with Et₂O. After drying with anhydrous MgSO₄, the concentrated mixture was purified by column chromatography (hexane/Et₂O = 3/1) to give a desired product (*S*)-**4** (21 mg, 84% yield). The enantiomeric excess of this compound was determined by SFC analysis.

[Hydrolysis] To a solution of (S)-**3Dg** (131 mg, 0.35 mmol) in EtOH (30.0 mL) was added KOH (11 g, 200 mmol). The mixture was stirred at 80 °C for 12 hours. After the reaction, the mixture was extracted with Et_2O and the extracts were washed with water. After drying with anhydrous MgSO₄, the concentrated mixture was purified by column chromatography (hexane: $Et_2O = 1:1$) to give a desired product (S)-**5** (94 mg, 98% yield). The enantiomeric

excess of this compound was determined by SFC analysis.

2.8 Determination of Absolute Configuration

To a solution of **3Da** (26 mg, 0.066 mmol, 84% ee) in EtOH (7.0 mL) was added KOH (3.0 g, 53 mmol). The mixture was stirred at 80 °C for 12 hours. After the reaction, the mixture was extracted with Et₂O and the extracts were washed with water. After drying with anhydrous MgSO₄, the concentrated mixture was purified by column chromatography (hexane:Et₂O = 1:1) to give a desired product **6** (16 mg, 83% yield). The enantiomeric excess of this compound was determined by SFC analysis. The absolute configuration was determined by comparing its optical rotation with reported data.^{S2a} (**S1**): ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.8 Hz, 1H), 7.92-7.95 (m, 3H), 7.52-7.57 (m, 2H), 7.45 (ddd, *J* = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.33 (dd, *J* = 6.8 Hz, 0.8 Hz, 1H), 7.21-7.30 (m, 3H), 7.15 (d, *J* = 8.0 Hz, 1H); [α]²³_D -20.1 [c 0.810, CH₂Cl₂, 84% ee (*S*)].

To a solution of **3Db** (42 mg, 0.12 mmol, 82% ee) in Et₂O (7.0 mL) was added lithium aluminum hydride (9 mg, 0.24 mmol) at 0 °C. The mixture was stirred at 80 °C for 1 h. After the reaction, the mixture was quenched by water and extracted with Et₂O. After drying with anhydrous MgSO₄, the concentrated mixture was purified by column chromatography (hexane/Et₂O = 3/1) to give a desired product **7** (23 mg, 80% yield). The enantiomeric excess of this compound was determined by SFC analysis. The absolute configuration was determined by comparing its optical rotation with reported data.^{S2b} (**S2**): ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 9.6 Hz, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.36 (ddd, J = 7.6 Hz, 6.8 Hz, 0.8 Hz, 1H), 7.15-7.28 (m, 5H), 7.05 (d, J = 7.2 Hz, 1H), 4.39 (d, J = 5.6 Hz, 2H), 1.82 (s, 3H); $[\alpha]^{22}_{\text{D}}$ –33.7 [c 1.070, CH₂Cl₂, 81% ee (*S*)].

2.9 Spectral Data for New Compounds

Methyl 1-(1-naphthyl)-2-naphthoate (3Aa): ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.94-7.98 (m, 3H), 7.59 (dd, J = 8.4 Hz, 6.8 Hz, 1H), 7.55 (ddd, J = 8.0 Hz, 5.2 Hz, 2.4 Hz, 1H), 7.46 (ddd, J = 8.4 Hz, 6.8 Hz, 1.6 Hz, 1H), 7.37 (dd, J = 6.8 Hz, 1.2 Hz, 1H), 7.29-7.32 (m, 2H), 7.25–7.28 (m, 1H), 7.22 (d, J = 8.4 Hz, 1H), 3.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 140.2, 136.9, 134.8, 133.2, 133.1, 132.9, 128.7, 128.2, 128.1, 128.0, 127.8, 127.8, 127.6, 126.9, 126.7, 126.0, 126.0, 125.7, 125.7, 125.2, 51.8; IR (ATR) *v* 3057, 2947, 2841, 1724, 1712, 1504, 1431, 1280, 1240, 1122, 831, 798, 763, 731 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₂H₁₆O₂+H⁺ (M+H⁺): 313.1223, found: 313.1215; [α]²⁷_D -20.1 [c 1.240, CH₂Cl₂, 70% ee (*S*)].

Isopropyl 1-(1-naphthyl)-2-naphthoate (3Ba): ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.92-7.99 (m, 3H), 7.56 (dd, J = 8.0 Hz, 6.8 Hz, 1H), 7.53 (ddd, J = 8.4 Hz, 6.4 Hz, 2.0 Hz, 1H), 7.45 (ddd, J = 8.4 Hz, 5.2 Hz, 3.2 Hz, 1H), 7.25-7.35 (m, 5H), 4.74 (sep, J = 6.4 Hz, 1H), 0.57 (d, J = 6.4 Hz, 3H), 0.54 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 139.3, 137.3, 134.7, 133.3, 133.3, 133.1, 129.8, 128.0, 128.0, 127.9, 127.9, 127.6, 127.4, 127.1, 126.6, 126.4, 125.9, 125.8, 125.7, 125.1, 67.9, 20.8, 20.8; IR (ATR) v 3057, 2977, 2931, 1699, 1371, 1278, 1103, 822, 766 cm⁻¹; HRMS (ESI) m/z calcd for C₂₄H₂₀O₂+H⁺ (M+H⁺): 341.1536, found: 341.1530; [α]²⁸_D -7.3 [c 1.050, CH₂Cl₂, 79% ee (*S*)].

3-pentyl 1-(1-naphthyl)-2-naphthoate (3Ca): ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4

Hz, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.94 (m, 3H), 7.56 (dd, J = 8.4 Hz, 7.2 Hz, 1H), 7.54 (ddd, J = 8.4 Hz, 5.2 Hz, 4.8 Hz, 1H), 7.45 (ddd, J = 8.0 Hz, 4.4 Hz, 3.2 Hz, 1H), 7.36 (dd, J = 6.8 Hz, 1.2 Hz, 1H), 7.28-7.30 (m, 2H), 7.24-7.27 (m, 2H), 4.58 (sep, J = 2.4 Hz, 1H), 0.74-1.09 (m, 4H), 0.54 (t, J = 7.2 Hz, 3H), 0.43 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 139.5, 137.4, 134.8, 133.3, 133.3, 133.2, 129.5, 128.1, 128.0 (2C), 127.8, 127.6, 127.5, 127.0, 126.6, 126.4, 126.1, 125.9, 125.7, 125.1, 77.4, 25.9, 25.7, 9.5, 9.2; IR (ATR) *v* 3057, 2966, 2933, 1699, 1327, 1269, 1136, 833, 766 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₆H₂₄O₂+H⁺ (M+H⁺): 369.1849, found: 369.1841; [α]²⁹_D -6.4 [c 1.105, CH₂Cl₂, 82% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(1-naphthyl)-2-naphthoate (3Da): ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.8 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 2.4 Hz, 1H), 7.93 (d, *J* = 2.0 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.56 (dd, *J* = 8.0 Hz, 6.8 Hz, 1H), 7.52 (ddd, *J* = 8.0 Hz, 6.4 Hz, 1.6 Hz, 1H), 7.43 (ddd, *J* = 8.0 Hz, 5.2 Hz, 2.8 Hz, 1H), 7.38 (dd, *J* = 6.8 Hz, 1.2 Hz, 1H), 7.20-7.29 (m, 4H), 4.55 (t, *J* = 6.0 Hz, 1H), 1.46 (sep, *J* = 6.4 Hz, 1H), 1.39 (sep, *J* = 6.4 Hz, 1H), 0.66 (d, *J* = 6.8 Hz, 3H), 0.63 (d, *J* = 6.8 Hz, 3H) 0.50 (d, *J* = 6.4 Hz, 3H), 0.30 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 139.4, 137.1, 134.7, 133.4, 133.3, 133.1, 129.6, 128.1, 128.0, 127.8, 127.8, 127.4, 127.3, 126.6, 126.4, 126.2, 126.0, 125.7, 125.2, 83.7, 29.1, 19.2, 17.4 (2C), 16.5 (2C); IR (ATR) ν 2963, 2359, 1726, 1699, 1558, 1506, 1456, 1232, 1117, 800, 770 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₈H₂₈O₂+H⁺ (M+H⁺): 397.2162, found: 397.2155; [α]²⁹_D -6.7 [c 1.030, CH₂Cl₂, 87% ee (*S*)].

Dicyclohexylmethyl 1-(1-naphthyl)-2-naphthoate (3Ea): ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 1.6 Hz, 1H), 7.94 (s, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.56 (dd, J = 8.0 Hz, 6.8 Hz, 1H), 7.52 (ddd, J = 8.0 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.44 (ddd, J = 8.0 Hz, 6.0 Hz, 2.4 Hz, 1H), 7.38 (dd, J = 6.8 Hz, 1.2 Hz, 1H), 7.19-7.28 (m, 4H), 4.59 (t, J = 6.0 Hz, 1H), 0.03-1.57 (m, 22H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 139.3, 137.2,

134.7, 133.4, 133.3, 133.2, 129.4, 128.1 (2C), 128.0, 127.8, 127.6, 127.4, 127.2, 126.5 (2C), 126.5, 126.0, 125.6, 125.1, 82.3, 37.9 (2C), 29.5, 29.2, 27.7, 26.2, 26.2, 26.1, 26.1, 26.0, 25.9, 25.8; IR (ATR) *v* 2924, 2849, 1726, 1699,1446, 1271, 1121, 907, 766, 729 cm⁻¹; HRMS (ESI) *m*/*z* calcd for $C_{34}H_{36}O_2+H^+$ (M+H⁺): 477.2788, found: 477.2777; $[\alpha]_{D}^{29}$ -1.2 [c 1.735, CH₂Cl₂, 82% ee (*S*)].

Cyclohexyl 1-(1-naphthyl)-2-naphthoate (3Fa): ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 4.0 Hz, 1H), 7.94 (d, J = 4.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.56 (dd, J = 8.0 Hz, 6.8 Hz, 1H), 7.53 (ddd, J = 8.0 Hz, 4.8 Hz, 2.8 Hz, 1H), 7.45 (ddd, J = 8.0 Hz, 3.6 Hz, 3.6 Hz, 1H), 7.35 (dd, J = 6.8 Hz, 1.2 Hz, 1H), 7.25-7.29 (m, 4H), 4.53 (tt, J = 9.6 Hz, 4.0 Hz, 1H), 1.25-1.34 (m, 5H), 0.99-1.12 (m, 2H), 0.87-0.97 (m, 1H) 0.52-0.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 139.2, 137.3, 134.7, 133.3, 133.2, 133.1, 129.9, 128.0 (2C), 127.9, 127.7, 127.4, 127.1, 126.6, 126.4, 125.9 (2C), 125.7, 125.2, 73.1, 30.7 (2C), 25.1 (2C), 23.4, 23.4; IR (ATR) ν 2930, 1699, 1327, 1279, 1111, 912, 764 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₇H₂₄O₂+H⁺ (M+H⁺): 381.1849, found: 381.1840; [α]³⁰_D -5.2 [c 1.030, CH₂Cl₂, 80% ee (*S*)].

Cyclooctyl 1-(1-naphthyl)-2-naphthoate (3Ga): ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.95 (dd, J = 6.0 Hz, 0.8 Hz, 1H), 7.92-7.94 (m, 2H), 7.56 (dd, J = 8.0 Hz, 6.8 Hz, 1H), 7.52 (ddd, J = 8.0 Hz, 4.0 Hz, 1H), 7.46 (ddd, J = 8.0 Hz, 4.8 Hz, 2.8 Hz, 1H), 7.34 (dd, J = 7.2 Hz, 1.2 Hz, 1H), 7.25-7.29 (m, 4H), 4.72 (sep, J = 4.0 Hz, 1H), 1.10-1.31 (m, 12H), 0.80-1.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 139.0, 137.3, 134.7, 133.4, 133.3, 133.1, 130.0, 128.0, 128.0, 127.9, 127.9, 127.7, 127.3, 127.1, 126.5, 126.4, 126.0, 125.9, 125.7, 125.2, 75.7, 30.0, 30.0, 27.1, 27.1, 25.0, 22.4, 22.3; IR (ATR) ν 2922, 1705, 1335, 1269, 1134, 945, 762 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₂₈O₂+H⁺ (M+H⁺): 409.2162, found: 409.2152; [α]³⁰_D -10.5 [c 1.240, CH₂Cl₂, 80% ee (*S*)].

tert-Butyl 1-(1-naphthyl)-2-naphthoate (3Ha): ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.99 (m, 5H), 7.56 (dd, J = 8.4 Hz, 6.8 Hz, 1H), 7.51 (ddd, J = 8.4 Hz, 6.0 Hz, 2.4 Hz, 1H), 7.46 (ddd, J = 8.0 Hz, 5.6 Hz, 2.4 Hz, 1H), 7.35 (dd, J = 6.8 Hz, 1.2 Hz, 1H), 7.24-7.31 (m, 4H), 0.81 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 138.2, 137.4, 134.5, 133.4, 133.3, 133.0, 131.4, 128.0, 127.9, 127.9, 127.8, 127.6, 127.3, 127.2, 126.6, 126.5, 126.0, 125.8, 125.7, 125.2, 80.9, 27.1 (3C); IR (ATR) ν 2976, 1699, 1367, 1334, 1286, 1124, 853, 766 cm⁻¹; HRMS (ESI) m/z calcd for C₂₅H₂₂O₂+Na⁺ (M+Na⁺): 377.1512, found: 377.1502; [α]²⁷_D -21.5 [c 0.810, CH₂Cl₂, 68% ee (*S*)].

Phenyl 1-(1-naphthyl)-2-naphthoate (3Ia): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.56-7.61 (m, 2H), 7.44-7.48 (m, 2H), 7.39 (d, J = 8.0 Hz, 1H), 7.27-7.36 (m, 3H), 7.13-7.19 (m, 2H), 7.06 (dddd, J = 8.8 Hz, 6.8Hz, 1.2 Hz, 1.2 Hz, 1H), 6.46-6.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 150.4, 140.3, 136.6, 135.0, 133.3, 130.0, 132.9, 129.0 (2C), 128.4, 128.2, 128.1, 128.0, 128.0, 127.9, 127.8, 127.3, 126.8, 126.2, 126.0, 125.8, 125.8, 125.4, 125.1, 121.0 (2C); IR (ATR) ν 2962, 1728, 1591, 1265, 1188, 1099, 1068, 798, 762 cm⁻¹; HRMS (ESI) m/z calcd for C₂₇H₁₈O₂+H⁺ (M+H⁺): 375.1380, found: 375.1370; [α]³⁰_D +29.7 [c 0.640, CH₂Cl₂, 78% ee (*S*)].

2,6-Dimethylphenyl 1-(1-naphthyl)-2-naphthoate (3Ja): ¹H NMR (400 MHz, CDCl₃) δ 8.32

(d, J = 8.8 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.55-7.61 (m, 2H), 7.48 (dd, J = 6.8 Hz, 1.2 Hz, 1H), 7.43 (ddd, J = 8.4 Hz, 6.0 Hz, 2.0 Hz, 1H), 7.24-7.34 (m, 4H), 6.88-6.92 (m, 3H), 1.83 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 148.2, 140.9, 136.5, 135.0, 133.4, 133.1, 130.0, 128.3 (2C), 128.2, 128.2, 128.2, 128.2, 128.1, 127.9, 127.9, 127.9, 127.3, 126.8, 126.1 (2C), 126.1, 125.9, 125.7, 125.5 (2C), 125.1, 16.1 (2C); IR (ATR) *v* 2926, 1746, 1230, 1159, 1109, 800, 772, 764 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₉H₂₂O₂+H⁺ (M+H⁺): 403.1693, found: 403.1682; [α]³⁰_D +29.7 [c 0.945, CH₂Cl₂, 85% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(2-methylphenyl)-2-naphthoate (3Db): ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.54 (ddd, *J* = 8.0 Hz, 6.4 Hz, 0.8 Hz, 1H), 7.40 (ddd, *J* = 8.4 Hz, 6.4 Hz, 1.2 Hz, 1H), 7.29-7.36 (m, 3H), 7.25 (ddd, *J* = 7.2 Hz, 1.6 Hz, 0.8 Hz, 1H), 7.12 (dd, *J* = 6.8 Hz, 1.2 Hz, 1H), 4.71 (t, *J* = 6.4 Hz, 1H), 1.97 (s, 3H), 1.79 (sep, *J* = 6.8 Hz, 1H), 1.71 (sep, *J* = 6.8 Hz, 1H), 0.81 (d, *J* = 6.8 Hz, 3H), 0.80 (d, *J* = 6.8 Hz, 3H), 0.74 (d, *J* = 6.8 Hz, 3H), 0.74 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 140.7, 138.7, 136.7, 134.6, 132.4, 129.6, 129.5, 128.4, 127.9, 127.6, 127.5, 127.4, 127.3, 126.6, 125.9, 125.4, 83.6, 29.4, 29.4, 20.0, 19.4, 19.4, 17.5, 17.2; IR (ATR) ν 2922, 1695, 1558, 1261, 1118, 937, 770, 760, 731 cm⁻¹; HRMS (ESI) *m/z* calcd for C₂₅H₂₈O₂+H⁺ (M+H⁺): 361.2162, found: 361.2151; [α]²⁵_D -40.5 [c 1.020, CH₂Cl₂, 88% ee (*S*)]

2,4-Dimethylpentan-3-yl 1-(4-methyl-1-naphthyl)-2-naphthoate (3Dc): ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 7.45 (ddd, J = 8.4 Hz, 4.8 Hz, 2.8 Hz, 1H), 7.38 (dd, J = 7.2 Hz, 0.8 Hz, 1H), 7.21-7.26 (m, 5H), 4.53 (t, J = 6.4 Hz, 1H), 2.78 (d, J = 0.4 Hz, 3H), 1.49 (sep, J = 6.8 Hz, 1H), 1.42 (sep, J = 6.8 Hz, 1H), 0.65 (d, J = 6.8 Hz, 3H), 0.61 (d,

J = 6.8 Hz, 3H), 0.47 (d, J = 6.8 Hz, 3H), 0.36 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 139.7, 135.3, 134.6, 134.0, 133.5, 133.2, 132.5, 129.7, 128.1, 127.8, 127.7, 127.3, 127.0, 126.9, 126.5, 126.1, 125.9, 125.6, 125.5, 124.2, 83.5, 29.1, 29.1, 19.5, 19.2, 19.2, 17.2, 16.6; IR (ATR) v 2962, 1699, 1456, 1271, 1236, 1124, 947, 827, 750 cm⁻¹; HRMS (ESI) m/zcalcd for C₂₉H₃₀O₂+H⁺ (M+H⁺): 411.2319, found: 411.2308; $[\alpha]^{29}_{D}$ –5.6 [c 0.815, CH₂Cl₂, 92% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(4-methoxy-1-naphthyl)-2-naphthoate (3Dd): ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.51 (ddd, J = 8.0 Hz, 6.0 Hz, 1.6 Hz, 1H), 7.42 (ddd, J = 8.0 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.23-7.32 (m, 4H), 7.17 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 4.55 (t, J = 6.0 Hz, 1H), 4.08 (s, 3H), 1.53 (sep, J = 6.8 Hz, 1H), 1.44 (sep, J = 6.8 Hz, 1H), 0.69 (d, J = 6.8 Hz, 3H), 0.62 (d, J = 6.8 Hz, 3H), 0.48 (d, J = 6.8 Hz, 3H), 0.41 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 155.2, 139.3, 134.6, 134.0, 133.7, 130.2, 129.1, 128.1, 127.8, 127.8, 127.3, 127.2, 126.5, 126.5, 126.3, 126.0, 125.4, 125.0, 122.0, 103.3, 83.5, 55.6, 29.2, 29.2, 19.3, 19.2, 17.2, 16.6; IR (ATR) ν 2924, 1718, 1683, 1558, 1506, 1456, 1236, 1088, 762 cm⁻¹; HRMS (ESI) m/z calcd for C₂₉H₃₀O₃+H⁺ (M+H⁺): 427.2268, found: 427.2260; [α]³⁰_D +1.7 [c 1.870, CH₂Cl₂, 88% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(4-fluoro-1-naphthyl)-2-naphthoate (3De): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.53 (ddd, J = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.50 (ddd, J = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.20-7.32 (m, 6H), 4.56 (t, J = 6.4 Hz, 1H), 1.53 (sep, J = 6.8 Hz, 1H), 1.48 (sep, J = 6.8 Hz, 1H), 0.68 (d, J = 6.8 Hz, 3H), 0.65 (d, J = 7.2 Hz, 3H), 0.54 (d, J = 6.8 Hz, 3H), 0.37 (d, J =

6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 158.5 ($J_{CF} = 250.1$ Hz), 138.5, 134.7, 134.4 ($J_{CF} = 4.7$ Hz), 133.4, 133.0 ($J_{CF} = 4.6$ Hz), 129.9, 128.2, 127.9, 127.8, 127.5, 127.0, 126.8 ($J_{CF} = 8.5$ Hz), 126.7, 126.4 ($J_{CF} = 2.3$ Hz), 126.1, 126.0 ($J_{CF} = 1.5$ Hz), 123.6 ($J_{CF} = 16.3$ Hz), 120.6 ($J_{CF} = 5.4$ Hz), 108.8 ($J_{CF} = 20.1$ Hz), 83.7, 29.2 (2C), 19.3, 19.2, 17.3, 16.5; IR (ATR) ν 2966, 1718, 1684, 1558, 1506, 1456, 1246, 1126, 953, 841, 759 cm⁻¹; HRMS (ESI) m/z calcd for $C_{28}H_{27}O_2F+H^+$ (M+H⁺): 415.2068, found: 415.2057; [α]³⁰_D -7.1 [c 1.955, CH₂Cl₂, 90% ee (S)].

2,4-Dimethylpentan-3-yl 1-(1-pyrenyl)-2-naphthoate (3Df): ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 7.6 Hz, 1H), 8.06-8.23 (m, 6H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 9.2 Hz, 1H), 7.53 (ddd, *J* = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.48 (d, *J* = 9.2 Hz, 1H), 7.23 (ddd, *J* = 8.4 Hz, 6.4 Hz, 1.2 Hz, 1H), 7.12 (dd, *J* = 8.4 Hz, 0.8 Hz, 1H), 4.48 (t, *J* = 6.8 Hz, 1H), 1.41 (sep, *J* = 6.8 Hz, 1H), 1.38 (sep, *J* = 6.4 Hz, 1H), 0.59 (d, *J* = 6.8 Hz, 3H), 0.56 (d, *J* = 6.8 Hz, 3H), 0.45 (d, *J* = 6.8 Hz, 3H), 0.27 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 139.8, 134.6, 134.4, 133.5, 131.3, 130.9, 130.8, 129.9, 129.7, 128.1, 128.0, 127.8, 127.8, 127.4, 127.4 (2C), 127.2, 126.6, 126.0, 125.8, 125.5, 125.0, 124.9, 124.7, 124.6, 124.2, 83.5, 29.0, 29.0, 19.1, 19.1, 17.0, 16.5; IR (ATR) *v* 2964, 1716, 1699, 1456, 1276, 1186, 847, 750, 721, 667 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₃₄H₃₀O₂+H⁺ (M+H⁺): 471.2319, found: 471.2307; [α]³⁰_D -67.1 [c 2.165, CH₂Cl₂, 95% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(2,3-dimethylphenyl)-2-naphthoate (3Dg): ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.53 (ddd, J = 8.4 Hz, 6.8 Hz, 1.6 Hz, 1H), 7.32-7.40 (m, 2H), 7.22 (d, J = 7.6 Hz, 1H), 7.14 (dd, J = 7.6 Hz, 7.6 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 4.71 (t, J = 6.0 Hz, 1H), 2.36 (s, 3H), 1.87 (s, 3H), 1.76 (sep, J = 6.8 Hz, 1H), 1.69 (sep, J = 6.8 Hz, 1H), 0.81 (d, J = 7.2 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H), 0.72 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

168.3, 141.3, 138.7, 136.3, 135.1, 134.6, 132.6, 129.1, 128.5, 127.8, 127.6, 127.5, 127.3, 127.3, 126.5, 126.0, 125.0, 83.5, 29.4, 29.3, 20.4, 19.4, 19.4, 17.4, 17.1, 16.7; IR (ATR) ν 2958, 1695, 1558, 1456, 1327, 1273, 1265, 1119, 891, 772 cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₃₀O₂+H⁺ (M+H⁺): 375.2319, found: 375.2309; $[\alpha]_{D}^{26}$ -44.6 [c 1.460, CH₂Cl₂, 96% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(2,5-dimethylphenyl)-2-naphthoate (3Dh): ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.53 (ddd, *J* = 8.4 Hz, 6.0 Hz, 2.4 Hz, 1H), 7.34-7.41 (m, 2H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.13 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 6.94 (d, *J* = 1.2 Hz, 1H), 4.71 (t, *J* = 6.0 Hz, 1H), 2.31 (s, 3H), 1.93 (s, 3H), 1.78 (sep, *J* = 6.8 Hz, 1H), 1.69 (sep, *J* = 6.8 Hz, 1H), 0.81 (d, *J* = 6.8 Hz, 6H), 0.74 (d, *J* = 6.8 Hz, 3H), 0.73 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 140.8, 138.5, 134.6, 134.6, 133.6, 132.4, 130.3, 129.4, 128.5, 128.3, 127.9, 127.5, 127.4, 127.3, 126.6, 126.0, 83.6, 29.4 (2C), 20.9, 19.5, 19.4, 19.4, 17.4, 17.1; IR (ATR) *v* 2962, 1699, 1558, 1464, 1329, 1261, 1234, 1121, 1096, 943, 899, 810, 768 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₆H₃₀O₂+H⁺ (M+H⁺): 375.2319, found: 375.2309; [α]²⁷_D -44.2 [c 0.965, CH₂Cl₂, 91% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(5-fluoro-2-methylphenyl)-2-naphthoate (3Di): ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 6.4 Hz, 1H), 7.56 (ddd, J = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.41 (ddd, J = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.26 (dd, J = 8.4 Hz, 6.4 Hz, 1H), 7.04 (ddd, J = 8.4 Hz, 8.4 Hz, 2.8 Hz, 1H), 6.87 (dd, J = 9.2 Hz, 2.8 Hz, 1H), 4.73 (t, J = 6.4 Hz, 1H), 1.91 (s, 3H), 1.80 (sep, J = 6.8 Hz, 1H), 1.75 (sep, J = 6.8 Hz, 1H), 0.84 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 7.2 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 160.9 (J_{CF} = 243.1 Hz), 140.5 (J_{CF} = 7.8 Hz), 139.5, 134.7, 132.4 (J_{CF} = 3.1 Hz), 132.0, 130.8 (J_{CF} = 8.5 Hz), 128.2, 128.0, 127.9, 127.6, 127.1, 126.9, 126.0, 116.5 (J_{CF} = 20.9 Hz), 114.2 (J_{CF} = 20.9 Hz), 83.8, 29.4, 29.4, 19.4 (2C), 19.1, 17.4, 17.2; IR (ATR) ν 2924, 1717, 1558, 1488, 1254, 1130, 951,

889, 804, 760 cm⁻¹; HRMS (ESI) m/z calcd for C₂₅H₂₇FO₂+H⁺ (M+H⁺): 379.2068, found: 379.2059; $[\alpha]^{28}_{D}$ -37.5 [c 1.705, CH₂Cl₂, 93% ee (*S*)].

(2,4-Dimethylpentan-3-yl 1-(4-fluoro-2-methylphenyl)-2-naphthoate (3Dj): ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.55 (ddd, *J* = 8.0 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.42 (ddd, *J* = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.31 (dd, *J* = 8.0 Hz, 0.4 Hz, 1H), 7.08 (dd, *J* = 8.4 Hz, 6.0 Hz, 1H), 7.04 (dd, *J* = 9.6 Hz, 2.4 Hz, 1H), 6.96 (ddd, *J* = 8.8 Hz, 8.8 Hz, 2.4 Hz, 1H), 4.72 (t, *J* = 6.4 Hz, 1H), 1.96 (s, 3H), 1.83 (sep, *J* = 6.8 Hz, 1H), 1.77 (sep, *J* = 6.8 Hz, 1H), 0.83 (d, *J* = 6.8 Hz, 6H), 0.77 (d, *J* = 6.8 Hz, 3H), 0.77 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 162.3 (*J*_{CF} = 243.9 Hz), 139.6, 139.2 (*J*_{CF} = 7.7 Hz), 134.7, 134.5 (*J*_{CF} = 3.1 Hz), 132.5, 130.9 (*J*_{CF} = 7.7 Hz), 128.8, 128.0, 127.8, 127.4, 127.1, 126.8, 125.9, 116.3 (*J*_{CF} = 20.9 Hz), 112.2 (*J*_{CF} = 20.9 Hz), 83.7, 29.4 (2C), 20.1, 19.4, 19.4, 17.4, 17.2; IR (ATR) ν 2923, 1684, 1558, 1506, 1456, 1329, 1238, 1110, 895, 770 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₂₅H₂₇FO₂+H⁺ (M+H⁺): 379.2068, found: 379.2060; [α]²⁸_D -34.1 [c 1.730, CH₂Cl₂, 87% ee (*S*)].

2,4-Dimethylpentan-3-yl 1-(3-methoxy-2-methylphenyl)-2-naphthoate (3Dk): ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 10.8 Hz, 1H), 7.90 (d, J = 6.0 Hz, 1H), 7.53 (ddd, J = 8.0 Hz, 5.2 Hz, 3.2 Hz, 1H), 7.36-7.38 (m, 2H), 7.21 (dd, J = 8.4 Hz, 8.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.76 (dd, J = 7.6 Hz, 0.8 Hz, 1H), 4.71 (t, J = 6.0 Hz, 1H), 3.90 (s, 3H), 1.83 (s, 3H), 1.79 (sep, J = 6.8 Hz, 1H), 1.71 (sep, J = 6.8 Hz, 1H), 0.82 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.8 Hz, 3H) , 0.73 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 157.5, 140.6, 139.9, 134.6, 132.5, 128.3, 127.8, 127.6, 127.4, 127.3, 126.6, 125.9, 125.8, 125.5, 122.2, 109.2, 83.5, 55.4, 29.4, 29.3, 19.4, 19.4, 17.4, 17.1, 13.0; IR (ATR) ν 2960, 1730, 1684, 1653, 1558, 1456, 1242, 1126, 1088, 945, 835, 775 cm⁻¹; HRMS

(ESI) m/z calcd for $C_{26}H_{30}O_3+H^+$ (M+H⁺): 391.2268, found: 391.2257; $[\alpha]_{D}^{29}$ -33.7 [c 1.725, CH₂Cl₂, 91% ee (*S*)].

[1-(2,3-dimethylphenyl)naphthalen-2-yl]methanol (4): ¹H NMR (400 MHz, CDCl₃) δ7.91 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.46 (ddd, J = 8.0 Hz, 6.8 Hz, 1.6 Hz, 1H), 7.35 (ddd, J = 8.4 Hz, 6.8 Hz, 1.2 Hz, 1H), 7.26-7.30 (m, 2H), 7.21 (dd, J = 7.6 Hz, 7.2 Hz, 1H), 7.00 (d, J = 7.2 Hz, 1H), 4.50 (s, 2H), 2.39 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 137.6, 137.2, 135.5, 135.4, 132.9, 132.5, 129.3, 127.9, 127.8, 127.7, 126.3, 126.1, 125.7, 125.7, 125.6, 63.5, 20.5, 16.4; IR (ATR) *v* 3192, 2923, 2362, 1446, 1068, 1014, 827, 815, 744, 723 cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₉H₁₈O+Na⁺ (M+Na⁺): 285.1250, found: 285.1243; [α]²⁴_D -49.6 [c 1.040, CH₂Cl₂, 96% ee (*S*)].

1-(2,3-dimethylphenyl)-2-naphthoic acid (5): ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.8 Hz, 2H), 7.56 (ddd, J = 10.0 Hz, 8.0 Hz, 1.6 Hz, 1H), 7.34-7.41 (m, 2H), 7.25 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 8.0 Hz, 7.2 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 2.38 (s, 3H), 1.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 143.1, 138.1, 136.5, 135.3, 135.2, 132.6, 129.3, 127.9, 127.9, 127.5, 127.1, 126.7, 126.2, 126.1, 125.1, 20.4, 16.5; IR (ATR) ν 2924, 2359, 1695, 1666, 1558, 1288, 939, 773 cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₉H₁₆O₂-H⁻ (M-H): 275.1078, found: 275.1082; $[\alpha]^{25}_{D}$ -48.0 [c 0.695, CH₂Cl₂, 97% ee (*S*)].

3. Determination of the Enantiomeric Excesses of the Products by HPLC or SFC with a Chiral Stationary Phase

entry	Compound	column	Eluent	Flow rate (mL/min)	$t_{\rm R}$ of (R)- isomer (min)	t _R of (S)- isomer (min)
1	OMe 3Aa	AD-H	<i>i</i> -PrOH/CO ₂ 1/20	3.15	11.5	13.7
2	3Ba	AD-H	<i>i</i> -PrOH/CO ₂ 1/10	3.3	5.3	6.7
3	3Ca	AD-H	<i>i</i> -PrOH/CO ₂ 1/10	3.3	6.3	7.1
4	3Da	AD-H	<i>i</i> -PrOH/CO ₂ 1/10	3.3	6.2	7.0
5	3Ea	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	8.8	7.3
6	3Fa	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	5.0	6.8
7	Generation of the second secon	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	6.2	7.9
8	3Ha	AD-H	<i>i</i> -PrOH/CO ₂ 1/10	3.3	5.6	9.1

Table S1. SFC separation conditions and retention times of products

9	JIa	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	7.0	10.0
10	Ja Me Me	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	8.2	13.2
11	Me o J 3Db	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	2.1	1.9
12 ^{<i>a</i>}	Me o o o o o o o o o o o o o o o o o o o	AD-H	<i>i</i> -PrOH/hexane 1/19	0.6	8.2	12.0
13	OMe o o o o o o o o o o o o o o o o o o o	AD-H	<i>i</i> -PrOH/CO ₂ 1/10	3.3	8.6	7.4
14	F O O O O O O O O O O O O O O O O O O O	AZ-H	<i>i</i> -PrOH/CO ₂ 1/20	3.15	6.7	6.1
15	3Df	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	7.1	10.8
16	Me Me 3Dg	OZ-H	<i>i</i> -PrOH/CO ₂ 1/20	3.15	3.9	3.4

17 ^a	Me O 3Dh	AD-H	<i>i</i> -PrOH/hexane 1/49	0.6	10.4	7.8
18	Me O 3Di	AD-H	<i>i</i> -PrOH/CO ₂ 1/20	3.15	3.4	3.1
19	Me O 3Dj	AD-H	<i>i</i> -PrOH/CO ₂ 1/20	3.15	3.1	2.6
20		OZ-H	<i>i</i> -PrOH/CO ₂ 1/20	3.15	5.7	4.6
21	Me Me OH	AZ-H	<i>i</i> -PrOH/CO ₂ 1/10	3.3	8.3	9.2
22	Me O OH 5	AD-H	<i>i</i> -PrOH/CO ₂ 1/10	3.3	9.2	10.3
23	O S1	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	9.3	10.3
24	Me OH S2	AD-H	<i>i</i> -PrOH/CO ₂ 1/5	3.6	6.9	5.6

^{*a*} Determined by chiral HPLC.

1012 YA-1110_006 2014/11/08 16:27:14

クロマトグラム情報 ユーザー名 更新日時 コメント HPLC システム名 測定日 注入量 サンブル# プロジェクト名 取込時間 測定シーケンス コントロールメソッド

JASCO 2012/10/12 19:51:37 JASCO SFC 2012/10/12 19:32:36 1.00 [µL] 47 Akai 19.0 [min]

P2_IPA5%_20min_220nm

<u>ニーク情報</u>											
# ピーウ名	tR [min]	面積 [μV·sec]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度			
Unknown	11.517	452360	30353	14,713	17.042	N/A	13887	5.196			
2Unknown	13.743	2622203	147749	85.287	82.958	N/A	13777	N/A			

1101 YA-1142_005 2014/11/08 16:24:24

JASCO 2012/11/01 18:41:48 JASCO SFC 2012/11/01 18:32:46 1.00 [µL] 12 Akai 9.0 [min]

P2_IPA10%_10min_230nm

ピーク情報								
# ピーク名	tR [min]	面積 [µV·seo]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度
没1Unknown	5.273	915145	76705	10.423	13.696	N/A	4391	3.909
2Unknown	6.740	7865264	483333	89.577	86.304	N/A	3859	N/A

0308 YA-1334_003 2014/11/08 16:19:52

JASCO 2013/03/08 16:46:39 JASCO SFC 2013/03/08 16:32:37 1.00 [µL] 2 Akai 14.0 [min]

P2_IPA10%_15min_220nm

2-	~ つ情報											
#	ピーク名	tR [min]	面積 [µV sec]	高さ[µV]	面積%	商さ%	定量值	NTP	分離度			
(1)	Unknown	6.283	426305	48403	8.803	10.016	N/A	11668	3.433			
濕2	Unknown	7.140	4416613	434882	91.197	89.984	N/A	11377	N/A			

1/1

•

SFC trace for 3Ca

0624 LK01 final_001 2014/11/08 16:10:53

JASCO 2014/06/24 15:20:14 JASCO SFC 2014/06/24 14:52:50 1.00 [µL] 1 Akai 14.0 [min]

P2_IPA10%_15min_220nm

ビーク情報										
# ピーク名	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	(高さ)	定量值	NTP	分離度		
⊠1Unknown	6.227	121323	12000	6.483	6.975	N/A	8558	2.903		
2 Unknown	7.033	1750166	160039	93.517	93.025	N/A	9542	N/A		

1/1

SFC trace for **3Da**

0726 YA-1473_003 2014/11/08 16:33:22

JASCO 2013/07/26 18:36:16 JASCO SFC 2013/07/26 18:22:14 1.00 [µL] 22 Akai 14.0 [min]

P2_IPA20%_15min_220nm

ピーク情報

Ŧ.	E-93	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度
談]	Jnknown	7.313	2600063	211016	90.815	92.307	N/A	8202	4.209
2	Jnknown	8.820	262973	17586	9,185	7.693	N/A	7986	N/A

1/1

SFC trace for 3Ea

0228 YA-1319_003 2014/11/08 16:21:27

<u> </u>	- 11116								
#	ピーク名	tR [min]	面積 [µV·sec]	高さ[』٧]	面積%	高さ%	定量值	NTP	分離度
T	Unknown	4.973	903083	126722	10.031	14.413	N/A	11325	7.890
2	Unknown	6.830	8099978	752520	89.969	85.587	N/A	9192	N/A

יב	ノトロールメソ	P2_IPA20%_10min_220nm							
Ľ-	ーク情報			,					
#	ピーク名	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度
[2]	Unknown	6.210	564870	57952	10.063	12.506	N/A	9509	5.738
2	Unknown	7.880	5048657	405427	89.937	87.494	N/A	9185	N/A

0221 YA-1301_003 2014/11/08 16:23:06

JASCO 2013/02/21 18:50:21 JASCO SFC 2013/02/21 18:36:19 1.00 [µL] 2 Akai 14.0 [min]

P2_IPA10%_15min_220nm

ピーク情報								
# ピーク名	tR [min]	面積 [µV·sec]	高さ[uV]	面積%	高さる	定量值	NTP	分離度
Unknown	5.620	199526	25444	15.979	24.109	N/A	11739	12.759
2 Unknown	9.147	1049122	80095	84.021	75.891	N/A	11128	N/A

1/1

SFC trace for 3Ha

Akai-1 lk02 2014/11/08 16:34:18

JASCO 2014/06/26 15:41:21 JASCO SFC 2014/06/26 15:03:09 1.00 [µL] 2 Akai 14.0 [min] Akai-1 P2.JPA20%_15min_220nm

Ľ-	ピーク情報										
#	ピーク名	tR [min]	面積 [µV sec]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度		
廢1	Unknown	6.980	157362	14817	10.988	15.875	N/A	10148	8.687		
2	Unknown	10.017	1274750	78518	89.012	84.125	N/A	8936	N/A		

Akai-1 lk03 2014/11/08 16:34:49

クロマトゲラム情報 ユーザー名 更新日時 コメント HPLC システム名 測定日 注入量 サンブル# プロジェクト名 取込時間 測定シーゲンス コントロールメソッド

JASCO 2014/06/26 15:41:20 JASCO SFC 2014/06/26 15:18:13 1.00 [µL] 3 Akai 14.0 [min] Akai-1 P2,IPA20%_15min_220nm

Ľ-	・ク情報								
#	ビーク名	tR [min]	面積 [µV·sec]	高さ[µV]	⑥面積%	高さ%	定量値	NTP	分離度
澂	Unknown	8.220	118561	8306	7.305	10.995	N/A	7513	10.267
2	Unknown	13.163	1504346	67238	92.695	89.005	N/A	8067	N/A

Me Me Me

Akai-1 lk08 2014/11/08 16:12:10

JASCO 2014/07/03 18:36:12 JASCO SFC 2014/07/03 17:37:54 1.00 [µL] 4 Akai 14.0 [min] Akai-1 P2_JPA20%_15min_220nm

# ピーク名 IR [min] 面積 (JV/sec] 高さ (JV) 面積% 高さ% 定量値 NTP タ 10known 1.877 1241115 378550 94.159 94.306 N/4 7994	ピーク情報										
Unknown 1.877 1241115 378550 94 159 94 306 N/A 7994	量值 NTP 分離度	定量值	高さ%	面積%	高さ「山V]	面積 [µV·sec]	tR [min]	# ピーク名			
	N/A 7994 2.333	N/A	94.306	94.159	378550	1241115	1.877	🕅 Unknown			
2Unknown 2.077 76990 22856 5.841 5.694 N/A 8917	N/A 8917 N/A	N/A	5.694	5.841	22856	76990	2.077	2Unknown			

Me of of

1/1

SFC trace for **3Db**

(

(

CH.1 Peak Not Found.

LC-8020 Model I CHROMATO REPORT

Page 1

SFC trace for **3Dc**

0902 YA-1856_004 2014/11/08 15:58:10

JASCO 2014/09/02 12:37:23 JASCO SFC 2014/09/02 12:23:22 1.00 [µL] 3 Akai 14.0 [min]

P2_IPA10%_15min_220nm

Ľ-	・ク情報								
#	ピーク名	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度
% 1	Unknown	7.427	1408857	103072	93.941	94.960	N/A	6928	3.034
2	Unknown .	8.630	90868	5471	6.059	5.040	N/A	6202	N/A

SFC trace for **3Dd**

0903 YA-1857_007 2014/11/08 15:56:35

0823 YA-1840_003 2014/11/08 16:04:01

コントロールメソッド			P2_IPA20%_20min_220nm								
Ľ-	ク情報										
#	ビーク名	tR (min)	面積 [µV:sec]	高さ[µV]	面積%	高さ数	定量值	NTP	分離度		
1	Unknown	7.143	23328	1750	2.505	3.819	N/A	6678	8.234		
2	Unknown	10.797	907947	44072	97.495	96.181	N/A	6394	N/A		

٠

0828 YA-1841_001 2014/11/08 16:04:34

0511 YA-1387_007 2014/11/08 16:15:38

クロマトグラム情報 ユーザー名 更新日時 コメント HPLC システム名 測定日 注入量 サンプル# プロジェクト名 取込時間 測定シーケンス コントロールメソッド

JASCO 2013/05/11 12:07:52 JASCO SFC 2013/05/11 11:53:51 1.00 [µL] 22 Akai 14.0 [min]

P6_IPA5%_15min_220nm

Ľ~	-ク情報								
#	ピーク名	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度
- ŝ(Unknown	3.427	4676967	594042	98.250	98.453	N/A	4325	2.059
%2	Unknown	3.887	83296	9337	1.750	1.547	N/A	4210	N/A

LC-8020 Model II CHROMATO REPORT

Page 1

SFC trace for **3Dh**

•

0824 YA-1835_002 2014/11/08 16:01:55

1007 YA-1835-recr_001 2014/11/08 16:05:59

1Unknown 3.617 910535 166423 97.956 98.428 N/A 10349	10349 6 72
	1 10040 0.12
2/Unknown 4.727 19000 2657 2.044 1.572 N/A 10040	10040 N//

SFC trace for **3Dj** (after single recrystallization)

クロマトグラム情報 ユーザー名 更新日時 コメント HPLC システム名 測定日 注入量 サンブル# プロジェクト名 取込時間 測定シーケンス コントロールメソッド

JASCO 2014/09/03 12:48:19 JASCO SFC 2014/09/03 11:47:48 1.00 [µL] 12 Akai 9.0 [min]

P6_IPA5%_10min_220nm

Ľ-	ーク情報								
#	ピーク名	tR (min)	面積 [µV·sec]	高さ[µV]	面積%	高さ%	定量值	NTP	分離度
8	Unknown	4.623	818450	64828	94.976	95.944	N/A	3085	2.742
5	2Unknown	5.653	43293	2741	5.024	4.056	N/A	2893	N/A

1007 YA-1897_009 2014/11/08 16:06:35

クロマトゲラム情報 ユーザー名 更新日時 コメント HPLC システム名 測定日 注入量 サンブル# プロジェクト名 取込時間 測定シーケンス コントロールメソッド

JASCO 2014/10/07 18:22:05 JASCO SFC 2014/10/07 18:01:54 1.00 [µL] 25 Akai 14.0 [min]

P4_IPA10%_15min_220nm

ピーク情報								
# ピーク名	tR (min)	面積 [µV sec]	高さ[LiV]	面積%	高さ%	定量值	NTP	分離度
1 Unknown	8.337	1806464	125188	98.198	98.279	N/A	7651	2.223
2 Unknown	9.203	33150	2192	1.802	1.721	N/A	8447	N/A

.

1006 YA-1894_004 2014/11/08 16:07:10

クロマトゲラム情報 ユーザー名 更新日時 コメント HPLC システム名 測定日 注入量 サンブル# プロジェクト名 取込時間 測定シーケンス コントロールメソッド

JASCO 2014/10/06 12:03:20 JASCO SFC 2014/10/06 11:45:15 1.00 [µL] 24 Akai 14.0 [min]

P2_IPA10%_15min_220nm

ピーク情報								
# ピーク名	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	総商さる	定量值	NTP	分離度
Unknown	9.173	983210	55411	98.561	98.697	N/A	6539	2.428
2 Unknown	10.323	14352	731	1.439	1.303	N/A	6933	N/A

1/1

,

SFC trace for **5Dg**

0120 YA-1954_003 2015/01/21 10:57:54

クロマトグラム情報 ユーザー名 更新日時 コメント HPLC システム名 潮定日 注入量 サンブル# プロジェクト名 取込時間 測定シーケンス コントロールメソッド

JASCO 2015/01/20 19:41:52 JASCO SFC 2015/01/20 19:25:48 1.00 [µL] 28 Akai 14.0 [min]

P2_IPA20%_15min_220nm

ビーク情報											
#	ピーク名	tR [min]	面積 [µV-sec]	高さ [µV]	面積5	高さ	定量值	NTP	分離度		
	Unknown	9.327	73766	4089	7.831	8.719	N/A	6478	1.969		
L	Unknown	10.287	868200	42806	92.169	91.281	N/A	6408	N/A		

1/1

SFC trace for S1

0120 YA-1953_002 2015/01/21 10:57:42

クロマトグラム情報 ユーザー名 更新日時 コメント HPLC システム名 測定日 注入量 サンブル# プロジェクト名 取込時間 測定シーケンス コントロールメソッド

JASCO 2015/01/20 19:41:51 JASCO SFC 2015/01/20 19:08:49 1.00 [µL] 27 Akai 14.0 [min]

P2_IPA20%_15min_220nm

ピーク情報								
# ピーク名	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さる	定量值	NTP	分離度
1 Unknown	5.577	2359878	249387	90.548	92.136	N/A	8632	5.041
2 Unknown	6.923	246353	21287	9.452	7.864	N/A	8774	N/A

4. References

- [S1] a) Yamamoto, T.; Akai, Y.; Nagata, Y.; Suginome, M. *Angew. Chem., Int. Ed.* 2011, *50*, 8844.
 b) Yamamoto, T.; Akai, Y.; Suginome, M. *Angew. Chem., Int. Ed.* 2014, *53*, 12785.
- [S2] a) Tang, W.; Patel, N. D.; Xu, G.; Xu, X.; Savoie, J.; Ma, S.; Hao, M.-H.; Keshipeddy, S.; Capacci, A. G.; Wei, X.; Zhang, Y.; Gao, J. J.; Li, W.; Rodriguez, S.; Lu, B. Z.; Yee, N. K.; Senanayake, C. H., *Org. Lett.* **2012**, *14*, 2258.

b) Sun, L.; Dai, W.-M. Tetrahedron 2011, 67, 9072.

5. NMR Spectra and GPC Chart of New Compounds

¹H NMR of compound **1**A

¹³C NMR of compound **1**A

¹H NMR of compound **1B**

¹³C NMR of compound **1B**

 1 H NMR of compound **1**C

 13 C NMR of compound **1**C

¹H NMR of compound **1D**

¹³C NMR of compound **1D**

¹H NMR of compound **1**E

 ^{13}C NMR of compound 1E

¹H NMR of compound **1**F

 ^{13}C NMR of compound 1F

 1 H NMR of compound **1**G

¹³C NMR of compound **1G**

 1 H NMR of compound **1**H

¹³C NMR of compound **1H**

¹H NMR of compound **1I**

¹³C NMR of compound **1I**

¹H NMR of compound **1J**

 ^{13}C NMR of compound 1J

¹H NMR of compound **3Aa**

¹³C NMR of compound **3Aa**

¹H NMR of compound **3Ba**

¹³C NMR of compound **3Ba**

¹H NMR of compound **3Ca**

¹³C NMR of compound **3Ca**

¹H NMR of compound **3Da**

¹³C NMR of compound **3Da**

¹H NMR of compound **3Ea**

¹³C NMR of compound **3Ea**

¹H NMR of compound **3Fa**

¹³C NMR of compound **3Fa**

¹H NMR of compound **3Ga**

¹³C NMR of compound **3Ga**

¹H NMR of compound **3Ha**

¹³C NMR of compound **3Ha**

¹H NMR of compound **3Ia**

¹³C NMR of compound **3Ia**

¹H NMR of compound **3Ja**

¹³C NMR of compound **3Ja**

¹H NMR of compound **3Db**

¹³C NMR of compound **3Db**

¹H NMR of compound **3Dc**

¹³C NMR of compound **3Dc**

¹H NMR of compound **3Dd**

¹³C NMR of compound **3Dd**

¹H NMR of compound **3De**

¹³C NMR of compound **3De**

¹H NMR of compound **3Df**

¹³C NMR of compound **3Df**

¹H NMR of compound **3Dg**

¹³C NMR of compound **3Dg**

¹H NMR of compound **3Dh**

¹³C NMR of compound **3Dh**

¹H NMR of compound **3Di**

¹³C NMR of compound **3Di**

¹H NMR of compound **3Dj**

¹³C NMR of compound **3Dj**

¹H NMR of compound **3Dk**

¹³C NMR of compound **3Dk**

¹H NMR of compound **4Dg**

¹³C NMR of compound **4Dg**

¹H NMR of compound **5Dg**

¹³C NMR of compound **5Dg**