1, 4, 8, 11, 15, 18, 22, 25-Alkylsulfanyl phthalocyanines.

Effect of macrocycle distortion on packing and spectroscopic

properties

Supporting information

Yunus Zorlu, Ufuk Kumru, Ümit İşci, Burcin Divrik, Erwann Jeanneau, Florian Albrieux,

Yavuz Dede, Vefa Ahsen and Fabienne Dumoulin

Content

Fig S1 Atom numbering scheme for 1 and 2	page 3
Fig S2 Packing of phthalocyanine 1	page 4
Fig S3 Perspective views of 2	page 5
Synthesis and characterization	page 6
Materials and methods	page 6
General protocol for the preparation of phthalocyanines	page 7
Preparation of phthalocyanine 1	page 8
Fig S4 HRMS spectrum of 1	page 8
Fig S5 HPLC chromatogram of 1	page 9
Fig S6 Quantitative UV-vis spectra of 1	page 10
Preparation of phthalocyanine 2	page 11
Fig S7 HRMS spectrum of 2	page 11
Fig S8 HPLC chromatogram of 2	page 12
Fig S9 Quantitative UV-vis spectra of 2	page 13
Fig S10 UV-vis spectrum of 1 and 2 in solid state, colour of the powder	page 14
X-ray data collection and structure refinement	page 15
Table S1 Crystal data and refinement parameters for 1 and 2	page 16
Table S2 Crystal Data of all reported structures of unmetallated 1,4,8,11,15,18,22,25-	page 18
octasubstituted phthalocyanines (R_8PcH_2).	
Calculation parameters	page 19
Table S3. DFT Results at CAM-B3LYP/CEP-31G Level of Theory	page 20
Table S4. MO Energies at UB3LYP/cc-pVTZ + Solvation (SCRF, Solvent=THF) Level of	
Theory	page 20
References	page 23
Checkcif files	page 25

Fig. S1 Atom numbering scheme for phthalocyanine 1 (left) and phthalocyanine 2 (right)

Fig. S2 Packing of phthalocyanine **1** showing the shortest π - π stacking interaction (3.570 Å) in the unite cell.

Fig. S3 Top: perspective view of **2** showing the deviations of the isoindole rings from the 4N mean plane. Bottom: perspective view of **2** showing the dihedral angle between the pair of the planes generated by the isoindole unites.

Synthesis and characterization

Materials and methods

Solvents and chemicals were purchased from Aldrich or Alfa Aesar and used as received. Mass spectra were recorded on a MALDI (matrix assisted laser desorption ionization) BRUKER Microflex LT using 2,5-dihydroxybenzoic acid as the matrix. High resolution mass spectra were recorded on a BRUKER MicroTOFQ-II with an ESI (electrospray ionization) ion source in positive mode. The sample was infused at 150 µL/h in 50:50 water and acetonitrile with 0.1% of formic acid. The gas flow of the sprayer is 0.6 bar, and the spray voltage is 3.5 kV. The capillary temperature is 200 °C. The ions are transferred to the TOF by using mild conditions on ion optics (the two ion funnels, the hexapole, the quadrupole, and the collision cell) to preserve the complex. The mass range of the TOF is 50-5000 m/z and the calibration was done with cesium iodide. Melting points were recorded on a Stuart device. IR spectrum was recorded between 4000 and 650 cm⁻¹ using a Perkin Elmer Spectrum 100 FT-IR spectrometer with an attenuated total reflection (ATR) accessory featuring a zinc selenide (ZnSe) crystal. Electronic absorption spectra in the UV-visible region were recorded with a Shimadzu 2001 UV spectrophotometer using a 1 cm path length cuvette at room temperature. The HPLC system is a Agilent 1100 series HPLC system (ChemStation software) equipped with a G 1311A pump and G1315B diode array detector monitoring the range 254–900 nm. Use of a normal phase column Lichrosorb-SI-60 (250 x 4.6 mm) from Alltech. Assocciates, Inc. The purity of 1 and 2 have been checked by normal phase HPLC. The mobile phase was a 98/2 (v/v) mixture of chloroform-THF. The flow-rate was set at 1 ml.min⁻¹ and the samples were dissolved in chloroform at a concentration 1 mg.ml⁻¹ for the normal phase. Under these conditions, the retention time for 1 and 2 were found to be 3.16 and 2.75 min., respectively. 3,6-di-tert-Butylsulfanylphthalonitrile [1] and 3,6-dihexylsulfanylphthalonitrile [2] were prepared following literature reports from corresponding ditosylated 3,6-dicyanohydroquinone.[3]

General protocol for the preparation of phthalocyanines

Phthalocyanines **1** and **2** were prepared by previously reported lithium-assisted templating method [4] from the corresponding phthalonitriles (Scheme S1).

Scheme S1 Preparation of phthalocyanines 1 and 2

Phthalonitriles were dissolved in pentanol at 60° C, lithium granules were added and the reaction mixture was refluxed. The colour change of the reaction mixture to green was observed concomitantly to a degagement of hydrogen gas indicating the formation of lithium pentanolate. After cooling down, the reaction mixture are poured in a 50:50 mixture of ethanol:water. The resulting precipitated phthalocyanine is filtrated and purified on a silica gel coloum chromatography. Difficulties were encountered during the preparation of **2** which quickly decomposes. Therefore the reaction is interrupted 30 minutes after the first observation of a green colour, eventhough starting phthalonitrile is recovered. Attempts to last longer the reaction lead most of the times to the degradation of the expected phthalocyanine.

Preparation of phthalocyanine 1

Reaction was initiated from phthalonitrile **3** (3.3 g, 10 mmol) and yielded 1.51 g of a dark purple brown solid (42 %). C₈₀H₁₁₄N₈S₈, MW 1444.33. m.p. 175-180°C (dec). MS (MALDI-TOF) m/z1445.54 [MH+]. ATR-IR (v, cm⁻¹) 3297, 2952, 2921, 2851, 1561, 1460, 1432, 1366, 1310, 1270, 1224, 1158, 142, 1090, 1028, 907, 867, 788, 753, 723, 708. HRMS m/z (experimental) 1443.6997; C₈₀H₁₁₅N₈S₈ m/z (theoretical) 1443.7005. Error: 0.6 ppm. HPLC t_R (min) 3.16. UV-Vis λ max nm (log ε) in THF: 805 (5.16), 720 (4.58), 350 (4.68), in CHCl₃: 810 (5.18), 720 (4.59), 350 (4.70)

Fig. S4 High resolution mass spectrum (ESI-TOF) of compound **1**. Theoretical (red) and experimental (black) isotopic patterns. m/z (experimental) = 1443.6997; $C_{80}H_{115}N_8S_8$ m/z (theoretical) 1443.7005. Error: 0.6 ppm. The observed molecular ions in ESI are a mixture of M+ and $[M+H]^+$

Fig. S5 HPLC chromatogram of 1

Fig. S6 UV-Vis spectra of 1 (4 to 12 μ M) in THF (top) and chloroform (bottom). Insets: plot of absorbance vs concentration

Preparation of phthalocyanine 2

Reaction was initiated from phthalonitrile **4** (300 mg, 0.98 mmol) and yielded 49 mg of a green solid (16 %). C₆₄H₈₂N₈S₈, MW 1219.90. m.p. > 300°C. MS (MALDI-TOF) *m/z* 1122.49 [M2H+]. ATR-IR (v, cm⁻¹) 3307, 2956, 2939, 2920, 2893, 2860, 1551, 1482, 1470, 1452, 1391, 1361, 1279, 1227, 1159, 1141, 1089, 1037, 903, 874, 791, 772, 733, 708. HRMS *m/z* (experimental) 1219,4472; C₆₄H₈₂N₈S₈ *m/z* (theoretical) 1219,4501. Error: 2.3 ppm. HPLC t_R (min) 2.75. UV-Vis λ max nm (log ε) in THF: 750 (4.83), 350 (4.49), in CHCl₃: 755 (4.83), 350 (4.51).

Fig. S7 High resolution mass spectrum (ESI-TOF) of compound **2**. Theoretical (red) and experimental (black) isotopic patterns. m/z (experimental) = 1219,4472; $C_{64}H_{82}N_8S_8$ m/z (theoretical) = 1219,4501. Error: 2.3 ppm. The observed molecular ions in ESI are M⁺.

Fig. S8 HPLC chromatogram of 2

Fig. S9 UV-Vis spectra of 2 (4 to 12 μ M) in THF (top) and chloroform (bottom). Insets: plot of absorbance vs concentration

Fig. S10 Top: UV-vis spectrum of phthalocyanines **1** and **2** in solid state (KBr pellets), recorded on UV-2600 Shimadzu spectrophotometer with integration sphere attachment. Bottom: picture of the powder of phthalocyanine **1** and **2** spread out on a white sheet of paper.

Pc 2

X-ray data collection and structure refinement

Unit cell measurements and intensity data collection were performed on an Bruker APEX II QUAZAR three-circle diffractometer using monochromatized Mo $K\alpha$ X-radiation ($\lambda = 0.71073$ Å). The data reduction included a correction for Lorentz and polarization effects, with an applied multiscan absorption correction (SADABS) [5]. Space groups were determined using XPREP implemented in APEX2 [6]. The structure was solved using the direct methods procedure in SIR97 [7], and then refined by full-matrix least-squares refinements on F^2 using the CRYSTALS software [8]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H in the range 0.93-0.98 Å) and U_{iso}(H) (in the range 1.2-1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

For **1** and **2** metal-free phthalocyanine compounds, internal H atoms attached to the pyrrole nitrogen atoms each have a partial occupancy of 0.5. For compound **2**, the unit cell consists of a large region of disordered solvent which could not be modelled as discrete atomic sites. Herein, the contributions of the disordered solvent molecules were eliminated from the structure using the SQUEEZE algorithm in the PLATON [9] program suite. The final geometrical calculations and the molecular drawings were carried out with PLATON [9] and MERCURY [10] program.

Crystal parameters	1	2
CCDC	894420	894419
Empirical Formula	$C_{80}H_{114}N_8S_8$	$C_{64}H_{82}N_8S_8$
Formula weight (g.mol ⁻¹)	1444.37	1219.94
Temperature (K)	120	120
Wavelength (Å)	0.71073	0.71073
Crystal system	Triclinic	Cubic
Space group	P-1	P -4 3 n
<i>a</i> (Å)	12.7956 (11)	22.6217 (4)
b (Å)	17.1258 (15)	22.6217 (4)
c (Å)	18.8008 (16)	22.6217 (4)
α(°)	112.281 (4)	90
β(°)	91.994 (5)	90
γ(°)	94.129 (4)	90
Crystal size (mm)	$0.50 \times 0.16 \times 0.11$	$0.50 \times 0.40 \times 0.38$
$V(Å^3)$	3793.8 (6)	11576.5 (4)
Z	2	6
$\rho_{calcd} (mg.m^{-3})$	1.264	1.050
μ (mm ⁻¹)	0.28	0.27
F(000)	1556	3900
θ range for data collection (°)	1.29 - 25.03	1.27 - 27.52
h/k/l	-15/14, -20/19, -22/22	-16/16, 0/20, 1/29
Reflections collected	58037	196857
Independent reflections	13404	4450
$T_{\rm max}$ and $T_{\rm min}$	0.9686 and 0.9554	0.903 and 0.898

Table S1 Crystal data and refinement parameters for 1 and 2.

Data/restraints/parameters	13404/0/865	4450/19/182	
Goodness-of-fit on F ²	0.97	1.01	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.037, wR_2 = 0.102$	$R_1 = 0.063, wR_2 = 0.192$	
Largest diff. peak and hole $(e.Å^{-3})$	-0.51 and 0.80	-0.43 and 0.63	

Table S2 Crystal Data of all reported structures of unmetallated 1,4,8,11,15,18,22,25-octasubstituted phthalocyanines (R_8PcH_2). Data of entries 1-8 were obtained by a search in Cambridge Structural Database (CSD V. 5.35, Conquest 1.16)

Entry	Compound (R)	CSD Entry Code or CCDC number	Crystal System	Space Group	Deviations from the 4N mean plane	λ_{max} (solvent)	Ref
1	r22	WOKDAB	Monoclinic	<i>C</i> 2/c	Saddle ^a 18° 11.3°	$Q_x = 731 \text{ nm}$ $Q_y = 701 \text{ nm}$ THF	[11]
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SOZBUE	Triclinic	<i>P</i> -1	Planar	Data not available	[12]
3	~~0	TUXXAL, TUXXAL01	Triclinic	<i>P</i> -1	Saddle ^b 14.58° 16.78° 18.27° 18.83°	751 nm 772 nm CHCl ₃	[13, 14]
4	~~0	ILEJAK	Triclinic	<i>P</i> -1	Planar	769 nm CH ₂ Cl ₂	[15]
5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SUKSUM	Triclinic	<i>P</i> -1	Planar	Data not available	[16]
6	~~CF ₃	DOTJAY	Tetragonal	<i>I</i> 41/a	Saddle ^{*b} 20.36 ^o	Data not available	[17]
7	~~CH2	NUGSEO	Triclinic	<i>P</i> -1	Planar	735 nm THF	[18]
8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ECOSOE	Triclinic	<i>P</i> -1	Saddle* ^b 21.32° 24.33° 25.02° 17.71°	788 nm CHCl ₃	[19]
9	~~S	CCDC-966681	Monoclinic	<i>C</i> 2/c	Saddle* ^b 16.73° 12.22°	824 nm CH ₂ Cl ₂	[20]
10	~Se-	CCDC-966682	Monoclinic	P21/c	Saddle* ^b 16.20° 29.93° 5.50° 16.81°	811 nm CHCl ₃	[20]
11	~Te	CCDC-966683	Tetragonal	P42/nmc	Saddle* ^b 30.91°	844 nm CHCl ₃	[20]

12	~~S	CCDC-894420	Triclinic	<i>P</i> -1	Planar*	810 nm CHCl ₃	this work
13	~~S	CCDC-894419	Cubic	<i>P</i> -43n	Saddle* ^b 24.08°	755 nm CHCl ₃	this work

^{*} Data calculated from the related available cif files.

^a based on five-membered rings.

^b based on isoindole rings.

Calculation parameters

The two octa non peripherally alkylsulfonyl substituted Pcs 1 and 2 represented Figure 1 in the paper were computationally modelled using Density Functional Theory (DFT).[21] Various conformations of the substituents were considered. Calculations were performed with Gaussian 09 suite of programs (Revision A.02).[22] Geometries were optimized at spin unrestricted (U) B3LYP hybrid functional[23] using the CEP-31G core potentials[24] and verified to be minima with vibrational frequency calculations. In order to perform a more refined analysis, by using a large number of basis functions, of the electronic structure of 1 and 2, the non-peripheral substituents were chopped and the resulting structures were capped with methyl groups. Subsequent optimizations of the newly added methyl groups resulted in smaller models of 1 and 2 that could be treated at a higher level of theory (2188 basis functions). Single point energy calculations on these structures were performed with B3LYP hybrid functional employing the Dunning type cc-pVTZ basis set[25] from which Kohn-Sham orbital energies discussed in the main text were obtained.

Initial trials from various conformers were performed with semi-empirical AM1[26] and PM3[27] methods as well as B3LYP and Coulomb attenuated CAM-B3LYP[28] density functionals using various basis sets. No restrictions on symmetry were imposed.

Table S3 DFT Results at CAM-B3LYP/CEP-31G Level of Theory

Table S4. MO Energies and Electrostatic Potential Charges^a at UB3LYP/cc-pVTZ + Solvation (SCRF, Solvent=THF) Level of Theory

Sector MO		E(eV)	ΔE(LUMO ·	Charge	
species	MO		(eV)	(nm)	Charge
1	LUMO	-3.11			0.24
1	HOMO	-4.77	1.66	748	-0.24
2	LUMO	-3.08			0.01
2	HOMO	-4.86	1.78	698	-0.21
^a A ware as abarea computed for S stoms					

^aAverage charge computed for S atoms.

Cartesian Coordinates						
1'						
UB3LYP/cc-pVTZ, 2S+1=1						
E _{to}	t = -5169.242	2802 A.U.	0			
	x(Å)	y(Å)	z(Å)			
С	4.574397	-3.387222	9.188567			
Η	5.455035	-3.539332	8.559661			
Η	4.057411	-4.337425	9.345233			
С	9.792910	-7.594437	11.825198			
Η	10.653982	-8.194335	12.129585			
Η	9.937281	-7.277193	10.789390			
С	12.552476	2.639278	21.664490			
Η	13.003262	3.551899	21.265590			
Η	11.792400	2.889464	22.408546			
С	13.047653	-7.117832	15.731012			
Η	14.072828	-6.757461	15.614606			
Η	12.906703	-7.539524	16.729357			
С	14.541688	-1.982677	20.596519			
Η	15.411483	-2.123328	19.949532			
Η	14.292709	-2.918835	21.101999			
С	1.419904	-0.075390	11.644370			
Η	1.173645	-0.833009	10.896975			
Η	0.705395	-0.153408	12.467638			
С	7.236486	6.612129	18.851716			
Η	8.194795	7.067837	18.589160			
Η	6.434616	7.238616	18.453768			
С	2.792868	5.076365	16.528676			
Η	2.625217	5.554921	15.560429			
Η	1.913744	4.497128	16.820764			
Η	13.335641	2.050655	22.148338			
Η	7.129874	6.559121	19.938199			
Η	2.962705	5.853573	17.277621			
Η	1.353143	0.911228	11.178843			
Η	3.892903	-2.700748	8.680578			
Η	8.894752	-8.211359	11.909762			
Η	12.869869	-7.903252	14.992771			
Η	14.789797	-1.232568	21.351322			
S	4.315243	4.072005	16.547548			
С	3.968626	2.822116	15.356121			
С	4.903459	1.797660	15.093847			
С	4.643018	0.794077	14.118348			
С	5.787004	-0.106774	14.109496			
Ν	5.951023	-1.131710	13.281711			
С	6.956996	-2.016022	13.364506			
Ν	7.960818	-2.033253	14.287238			
С	8.659360	-3.192792	14.120431			
Ν	9.701546	-3.625926	14.844244			
С	10.248620	-2.975949	15.863137			
Ν	9.922471	-1.720464	16.330231			
С	10.727630	-1.329329	17.373424			

Ν	10.646826	-0.214594	18.089600
С	9.731013	0.748843	17.897798
Ν	8.680514	0.721466	17.026793
С	7.987962	1.888952	17.177110
Ν	6.831275	2.228167	16.591290
С	6.210382	1.516698	15.664219
Ν	6.663274	0.365507	15.056528
Η	7.533194	-0.089257	15.311164
С	8.638404	2.752341	18.179339
С	9.747361	2.013522	18.646086
С	10.573143	2.511320	19.678518
S	11.896806	1.554127	20.352341
С	10.289502	3.802472	20.150645
С	9.220849	4.542321	19.658730
С	8.355241	4.039436	18.675767
S	7.002540	4.990333	18.047942
Η	9.093034	5.556318	20.009875
Η	10.963267	4.292975	20.832626
С	11.663574	-2.420051	17.621812
С	11.373936	-3.433703	16.664712
С	12.138733	-4.617824	16.587992
S	11.813179	-5.829792	15.348657
С	13.160002	-4.751745	17.536760
C	13.453321	-3.757125	18.470947
C	12.729544	-2.563422	18.537948
S	13.113827	-1.288996	19.696396
Ĥ	14.351363	-3.906546	19.044790
Н	13.787510	-5.633743	17.543356
Н	9.089616	-1.195730	16.092258
C	8.104347	-3.970558	12.992532
Ċ	7.028140	-3.198914	12.507040
Ċ	6.270479	-3.598134	11.394242
S	5.001036	-2.554046	10.756002
Ĉ	6.574633	-4.850364	10.835500
Ċ	7.624162	-5.621944	11.321861
Ċ	8.428798	-5.203133	12.399075
S	9 779443	-6.181661	12.979514
Н	7 780629	-6 602643	10 895384
Н	5 915766	-5.293197	10.110819
C	3 434552	0 771269	13 384641
S	3 120117	-0.476121	12 169607
$\hat{\mathbf{C}}$	2 512397	1 776555	13 688226
č	2.776504	2.772228	14 629357
н	2.007976	3 518131	14 786964
Н	1 523107	1 78/125	13 256021
11	1.525107	1.707123	13.230021

2'						
UB3LYP/cc-pVTZ, 2S+1=1						
Etot	= -5169.2570)696 A.U.				
	x(Å)	y(Å)	z(Å)			
С	-29.947128	-13.117077	-7.777527			
Η	-29.688258	-13.410063	-8.798098			
Η	-30.387218	-13.963677	-7.244088			
Η	-30.684799	-12.312365	-7.819751			
С	-24.870085	-18.405997	-8.049793			
Η	-25.714260	-18.849024	-7.514686			
Η	-25.190806	-18.062165	-9.036281			
Η	-24.099903	-19.170124	-8.176856			
С	-20.814159	-18.651986	-3.540986			
Н	-19.977247	-19.099776	-4.082900			
Η	-20.509890	-18.394493	-2.523474			
Η	-21.626197	-19.381138	-3.490703			
С	-15.521358	-13.571857	-3.258859			
Η	-15.866817	-13.883936	-2.270156			
Η	-15.083582	-14.420952	-3.790157			
Η	-14.754407	-12.803875	-3.137160			
С	-15.302009	-9.507202	-7.772544			
Η	-14.558462	-10.307042	-7.800075			
Η	-15.555281	-9.227145	-8.798174			
Η	-14.874313	-8.651679	-7.243727			
С	-20.390649	-4.214266	-8.042011			
Н	-20.075519	-4.549477	-9.033261			
Н	-21.163068	-3.450534	-8.158070			
Η	-19.544481	-3.775639	-7.507039			
С	-24.448590	-3.980637	-3.543039			
Η	-24.745097	-4.237745	-2.523026			
Η	-23.646076	-3.240978	-3.499784			
Η	-25.294022	-3.546327	-4.082877			
С	-29.739192	-9.061755	-3.264333			
Η	-30.510041	-9.829050	-3.161936			
Н	-29.406054	-8.763237	-2.267351			
Η	-30.169094	-8.205318	-3.790167			
S	-16.730637	-10.219267	-6.889891			
С	-17.916125	-8.896797	-6.965448			
C	-19.218772	-9.089302	-6.475009			
C	-20.195592	-8.070874	-6.533373			
C	-19.922507	-6.805838	-7.081497			
S	-21.185919	-5.555557	-7.095070			
Ĉ	-18.610061	-6.612532	-7.544337			
Ċ	-17.641811	-7.619098	-7.480996			
H	-16.645635	-7.378992	-7.831633			
Н	-18.304103	-5.642735	-7.915333			
C	-21.414895	-8.672772	-5.977332			
N	-21.224757	-9.994059	-5.711979			
C	-19.906308	-10.259080	-5.916027			
N	-19.275014	-11.398475	-5.607467			

S	-21.520681	-17.218920	-4.420959
С	-20.198421	-16.035572	-4.345402
С	-20.398155	-14.728210	-4.835841
С	-19.370385	-13.745660	-4.777477
С	-18.101479	-14.028198	-4.229353
S	-16.850218	-12.768744	-4.215780
С	-17.914994	-15.336513	-3.766513
С	-18.925219	-16.305809	-3.829854
Η	-18.684935	-17.301642	-3.479217
Η	-16.946338	-15.645374	-3.395517
С	-19.918768	-12.518564	-5.333518
Ν	-21.241297	-12.775549	-5.598871
С	-21.578313	-14.090080	-5.394823
Ν	-22.729972	-14.658454	-5.703383
Η	-21.906589	-12.058521	-5.856758
S	-28.519601	-12.406705	-6.889891
С	-27.334419	-13.729569	-6.965448
С	-26.031417	-13.537569	-6.475009
С	-25.054721	-14.556217	-6.533373
С	-25.328934	-15.821006	-7.081497
S	-24.067974	-17.073231	-7.095070
С	-26.641317	-16.013829	-7.544337
С	-27.609262	-15.007046	-7.480996
Η	-28.605530	-15.246730	-7.831633
Η	-26.947362	-16.983679	-7.915333
С	-23.835266	-13.954720	-5.977332
Ν	-24.025375	-12.633537	-5.711979
С	-25.343681	-12.368046	-5.916027
Ν	-25.974978	-11.228613	-5.607467
S	-23.728627	-5.408399	-4.420959
С	-25.050533	-6.591822	-4.345402
С	-24.851597	-7.899008	-4.835841
С	-25.879696	-8.881197	-4.777477
С	-27.148888	-8.597730	-4.229353
S	-28.400959	-9.856920	-4.215780
С	-27.334235	-7.289461	-3.766513
С	-26.323522	-6.320752	-3.829854
Η	-26.563621	-5.324835	-3.479217
Η	-28.302664	-6.980211	-3.395517
С	-25.331437	-10.108427	-5.333518
Ν	-24.008887	-9.851657	-5.598871
С	-23.671761	-8.537251	-5.394823
Ν	-22.520069	-7.968975	-5.703383
Η	-23.343654	-10.568724	-5.856758

References

- U. Kumru, F. Dumoulin, E. Jeanneau, F. Yuksel, Y. Cabezas, Y. Zorlu, V. Ahsen Struct. Chem. 2012, 23, 175-183.
- [2] Y. Zorlu, Ü. İşçi, U. Kumru, F. Dumoulin, V. Ahsen, Struct. Chem. 2013, 24, 1027 1038
- [3] G. Mbambisa, P. Tau, E. Antunes, T. Nyokong, *Polyhedron*, 2007, 26, 5355–5364.
- [4] Sharman WM, Lier JE (2003) In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 15. Academic Press, New York, pp 1–62.
- [5] SADABS, version v2008/2, Bruker (2008), Bruker AXS Inc., Madison, WI.
- [6] APEX2, version 2010.5-0, Bruker (2010), Bruker AXS Inc., Madison, WI
- [7] A. Altomare, M. C., Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. Grazia, G. Moliterni, G. Polidori, R. Spagna, J. App. Cryst., 1999, 32, 115-119.
- [8] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst.
 2003, 36, 1487-1487,
- [9] A. L. Spek, J. App. Cryst. 2003, 32, 7-13.
- [10] C. F., Macrae, P. R., Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, V.
 D. S. Towler, *J. Appl. Cryst.*, **2006**, *39-3*, 453-457.
- [11] I. Chambrier, M. J. Cook, P. T. Wood, Chem. Commun., 2000, 2133-2134.
- [12] I. Chambrier, M. J. Cook, M. Helliwell, A. K. Powell, *Chem. Commun.*, 1992, 444-445.
- [13] Y. Gao, Y. Chen, R. Li, Y. Bian, X. Li, J. Jiang, *Chem.-Eur. J.*, 2009, 15, 13241-13252.
- [14] J. D. Wang, J. L. Huang, J. W. Cai, N. S. Chen, *Chin. J. Struct. Chem.*, 2002, 21, 617-620.

- [15] M. P. Donzello, C. Ercolani, A. A. Gaberkorn, E. V. Kudrik, M. Meneghetti, G. Marcolongo, C. Rizzoli, P. A. Stuzhin, *Chem.-Eur. J.*, 2003, 9, 4009-4024.
- [16] M. J. Cook, J. McMurdo, A. K. Powell *Chem. Commun.*, **1993**, 903-904.
- [17] S. M. Gorun, J. W. Rathke, M. J. Chen, *Dalton Trans.*, 2009, 1095-1097.
- [18] A. N. Cammidge, C. H. Tseng, I. Chambrier, D. L. Hughes, M. J. Cook, *Tetrahedron Lett.*, 2009, 50, 5254-5256.
- [19] N. Kobayashi, T. Fukuda, K. Ueno, H. Ogino, J. Am. Chem. Soc., 2001, 123, 10740-10741.
- [20] T. Furuyama, K. Satoh, T. Kushiya, N. Kobayashi, J. Am. Chem. Soc., 2014, 136, 765-766.
- [21] a) W. Kohn, A. D. Becke, R. G. Parr, *J. Phys. Chem.* 1996, *100*, 12974; b) R. G. Parr,
 W. Yang, Oxford University Press, 1989.
- [22] Gaussian 09 (Gaussian, Inc., Wallingford, CT, USA, 2009).
- [23] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; b) A. D. Becke, Phys. Rev. A 1988, 38, 3098; c) C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [24] W. J. Stevens, H. Basch, M, Krauss, J. Chem. Phys. 1984, 81, 6026.
- [25] Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
- [26] Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899.
- [27] Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.
- [28] Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision: C-C = 0.0027 AWavelength=0.71073 Cell: a=12.7956(11) b=17.1258(15) c=18.8008(16) beta=91.994(5) gamma=94.129(4) alpha=112.281(4) Temperature: 120 K Calculated Reported Volume 3793.8(6) 3793.8(6) Space group P -1 P -1 Hall group -P 1 -P 1 Moiety formula C80 H114 N8 S8 C80 H114 N8 S8 C80 H114 N8 S8 Sum formula C80 H114 N8 S8 Mr 1444.28 1444.37 1.264 1.264 Dx,g cm-3 2 2 Ζ Mu (mm-1) 0.285 0.285 F000 1556.0 1556.0 F000′ 1558.39 h,k,lmax 15,20,22 15,20,22 Nref 13430 13404 0.947,0.969 0.955,0.969 Tmin,Tmax Tmin' 0.868 Correction method= # Reported T Limits: Tmin=0.955 Tmax=0.969 AbsCorr = MULTI-SCAN Data completeness= 0.998 Theta(max) = 25.028R(reflections) = 0.0372(11476) wR2(reflections) = 0.1021(13404) S = 0.970Npar= 865

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C		
PLAT220_ALERT_2_C Large Non-Solvent C	Ueq(max)/Ueq(min) Range	3.9 Ratio
PLAT222_ALERT_3_C Large Non-Solvent H	Uiso(max)/Uiso(min)	4.4 Ratio
PLAT230_ALERT_2_C Hirshfeld Test Diff for	C58 C59	6.1 su

Alert level GPLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIFPLAT007_ALERT_5_G Number of Unrefined Donor-H AtomsPLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range IdenticalPLAT808_ALERT_5_G No Parseable SHELXL Style Weighting Scheme Found

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
4 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
3 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 29/01/2015; check.def file version of 29/01/2015

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision:	C-C = 0.0071 A	Wavelen	gth=0.71073		
Cell: Temperature:	a=22.6217(4) alpha=90 120 K	b=22.6217(4) beta=90	c=22.6217(4) gamma=90		
_					
	Calculated	Report	ed		
Volume	11576.5(6)	11576.	5(4)		
Space group	P-43n	P-43	n		
Hall group	P -4n 2 3	P -4n	2 3		
Moiety formula	C64 H82 N8 S8	С64 Н8	2 N8 S8		
Sum formula	C64 H82 N8 S8	С64 Н8	2 N8 S8		
Mr	1219.86	1219.9	4		
Dx,g cm-3	1.050	1.050			
Z	6	6			
Mu (mm-1)	0.270	0.268			
F000	3900.0	3900.0			
F000'	3906.95	16.00			
h,k,lmax	29,29,29	16,20,	29		
Nrei ". "	4446[2397]	4450	0.000		
Tmin' Tmin'	0.879,0.903	0.898,	0.903		
Correction method= # Reported T Limits: Tmin=0.898 Tmax=0.903 AbsCorr = MULTI-SCAN					
Data completeness= 1.86/1.00 Theta(max)= 27.517					
R(reflections)=	0.0625(3464)	wR2(reflection	as)= 0.1917(4450)		
S = 1.009	Npar=	182			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C		
PLAT230_ALERT_2_C Hirshfeld Test Diff for S6 C5	6.0	su
PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for	S6	Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.0071	Ang.
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. #	1	Note
C64 H82 N8 S8		

```
Alert level G
```

-

PLAT003_ALERT_2_G Number	er of Uiso or Uij Restrained non-H Atoms	5	Report
PLAT005_ALERT_5_G No _:	<pre>iucr_refine_instructions_details in the CIF Pl</pre>	ease	Do !
PLAT007_ALERT_5_G Number	er of Unrefined Donor-H Atoms	1	Report
PLAT152_ALERT_1_G The S	Supplied and Calc. Volume s.u. Differ by	2	Units
PLAT605_ALERT_4_G Struc	cture Contains Solvent Accessible VOIDS of .	313	A**3
PLAT808_ALERT_5_G No Pa	arseable SHELXL Style Weighting Scheme Found Pl	ease	Check
PLAT860_ALERT_3_G Number	er of Least-Squares Restraints	19	Note
PLAT869_ALERT_4_G ALERT	TS Related to the use of SQUEEZE Suppressed	!	Info
PLAT950_ALERT_5_G Calci	ulated (ThMax) and CIF-Reported Hmax Differ	13	Units
PLAT951_ALERT_5_G Calci	ulated (ThMax) and CIF-Reported Kmax Differ	9	Units

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
4 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion
5 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 29/01/2015; check.def file version of 29/01/2015

