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ELECTRONIC SUPPLEMENTARY INFORMATION

MATERIALS AND METHODS

Buffers
All measurements were made in citric acid-phosphate buffer (pH 2.3, 12 mM Na2HPO4 and 94 mM 
citric acid).

Microscopy
Solutions for measurement were placed in tunnel slides made from two perpendicular coverslips 
separated by a single layer of double sided tape (total sample volume ~30 μL). The sample was 
excited through a 60 oil-immersion 1.45 N.A. TIRF objective on a Nikon TE-2000 inverted 
microscope using a 473 nm laser reflected by a dichroic filter (Semrock Brightline FF497-Di03), giving 
a <100 fL probe volume. Fluorescence transmitted through the dichroic filter was passed through an 
emission filter (Semrock Brightline 550/88) before fluorescence detection using an Andor iXon+ 
electron-multiplying CCD camera (emCCD, gain: 300) (Fig. 1a). Illumination intensity at the sample 
was 0.5 kW cm2 neglecting losses inside the microscope body and optics. Both camera firing and 
magnetic field switching were controlled by the output of a Quantum Composers 9520 pulse 
generator to ensure complete synchrony. The magnetic field was switched (on or off) every ten 
camera frames (102.4 ms) for the duration of recording (usually 1000 frames). 

Calibration and determination of the rise time of the solenoid
Magnetic fields were generated using a solenoid wound around a 3 mm diameter ferrite core and 
fixed into a non-metallic mount using epoxy resin. A custom-built power supply drove the solenoid 
at an input frequency of up to 2 kHz and provided a maximum field strength at the tip of the 

Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2015



- 2 - 

solenoid of over 27 mT. Calibration of the solenoid was performed using a gaussmeter based upon a 
Hall effect probe with 3 μs rise time (Honeywell SS94A). The rise time of the magnetic field 
generated by the solenoid was found to be less than 70 μs at the maximum achievable field 
strength.

The solenoid assembly was attached via a cantilever to a micrometer-resolution 3-axis translation 
stage mounted securely on the body of the inverted microscope. This arrangement allowed the 
solenoid position relative to the microscope objective to be reproducibly controlled, while an 
independent 2-axis translation stage was used to adjust the horizontal position of the sample. To 
centre the solenoid over the objective, coarse calibration was performed using bright-field 
microscopy images of the solenoid, followed by a magnetic field mapping experiment in which the 
MFE measured in a TIRF experiment was plotted against micrometer position to determine the 
centre field in the horizontal plane. All further MFE experiments were performed with the solenoid 
centred relative to the objective lens.

Fluorescence data processing
Camera frames (one every 10.24 ms) were separated according to the presence or absence of 
magnetic field, and the mean pixel intensity across each frame determined to give a single data 
point per frame. In order to ensure that data collected at the moment of field switching did not 
contain contributions from both field conditions, the data from such frames were discarded. To 
determine the magnetic field effect, eight values of mean pixel intensity within each sequence of ten 
points (representing measurements in the presence / absence of magnetic field, but excluding 
frames which may contain contributions from both conditions) were fit with a straight line. The line 
was extrapolated to the moment of field-switching and the step height between field on and off 
measurements determined by subtraction.

The value of F(0) – F(B0) varied over the first few data points collected, although it was constant at 
longer times  (Fig. S4 a,b). This apparent time-dependence was also observed for FAD/Trp in the 
absence of magnetic fields (Fig. S4 c,d) and for FMN (which shows no magnetic field effect) in the 
presence of magnetic fields (Fig. S4 e,f). It is an artefact introduced by the initial steepness of the 
measured decay curves for the flavins, hence it was not observed for the photostable dye Alexa 
Fluor® 488 (Fig. S4 g,h). In order to enable as much of the data as possible to contribute to the final 
value, traces of mfeF versus time were fit by an exponential decay plus a straight line and the y-
intercept of the extrapolated straight line taken as the measured mfeF value.

Transient absorption
Transient absorption spectra were observed using custom-built equipment. A flow system was used 
to transfer the sample into a quartz optical cell (optical path length 4 mm) where photochemical 
reactions were initiated by a laser pulse. The third harmonic (λ = 355 nm) of a Nd:YAG Laser (Spectra 
Physics GCR-3) was used as the excitation light source. The energy of the laser was adjusted to 15 mJ 
per pulse. The laser pulse repetition rate was 5 Hz. A 500 W Xe lamp (Ushio UXL-500SX) was used as 
a probe light source. The transient absorption signal was detected by a photomultiplier tube 
(Hamamatsu R928) preceded by a monochromator (Jasco CT-25) and was recorded by a digital 
oscilloscope (LeCroy LT-344). 
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SUPPLEMENTARY FIGURES

Fig. S1: Fluorescence decay curves for control fluorophores. (a) 1 μM FAD + 300 M tryptophan in 
the absence of magnetic fields; (b) 1 μM fluorescein and (c) 1 μM Alexa Fluor® 488 in the presence 
of a square wave modulated magnetic field (same conditions as in Fig. 1b). The fast decay rate for 
fluorescein is 2-3 times slower than that for FAD and FMN. Alexa Fluor® 488 is over 40 times as 
bright as FAD and FMN, and so fluorescence in (c) was measured at 15 times lower laser power and 
0.5-0.7 times the gain on the emCCD camera compared with (a), (b) and Fig. 1b-c.
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Fig. S2: Absorption spectra of flavin and tryptophan species. Absorption of FAD (black) measured at 
pH 2.6, absorption of flavin excited triplet state (red) and protonated flavin radical (green) taken 
from Ref 1, absorption of protonated Trp+ radical (blue) taken from Ref 2. Tryptophan itself absorbs 
below 300 nm.

Fig. S3: Magnetic sensitivity of FAD absorption in the visible spectrum as measured by transient 
absorption. (a) Magnetic sensitivity over time for 0.2 mM FAD + 0.5 mM Trp. Filled circles – 0.2 μs; 
open circles – 0.5 μs; filled squares – 1.0 μs; open squares – 5.0 μs. (b) Magnetic sensitivity at 
different concentrations of Trp. Data averaged 0.5-2.0 μs. Red – 0 mM Trp; yellow – 0.1 mM Trp; 
green – 0.5 mM Trp; cyan – 1.0 mM Trp; purple – 2.0 mM Trp. Boxes indicate regions of the 
spectrum averaged in the A measurements reported in the main text.
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Fig. S4: Apparent time-dependence in mfeF calculations. (a, b) 1 μM FAD + 300 μM Trp in the 
presence of a pulsed 26.8 mT magnetic field. (c, d) 1 μM FAD + 300 μM Trp in the absence of an 
applied magnetic field. Quantities calculated as ‘mock’ measurements using exactly the same 
methodology as panels (a), (b) and (e)–(h). The difference in y-axis label for panel (c) reflects the 
absence of magnetic fields in this ‘mock’ measurement. (e, f) 1 μM FMN in the presence of a pulsed 
26.8 mT magnetic field. (g, h) 1 μM Alexa Fluor® 488 in the presence of a pulsed 26.8 mT magnetic 
field. Note the scale used on the Alexa measurements. Solid lines in panels (b), (d) and (f) are fits to 
an exponential decay plus a straight line. The extrapolation of this straight line back to the y-axis was 
taken to be the time-independent value of mfeF. Blue: measurements originating in a step down 
(from field-off to field-on), red: measurements originating in a step up (from field-on to field-off).
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