Nickel Phosphine Catalysts with Pendant Amines

for the Electrocatalytic Oxidation of Alcohols

Charles J. Weiss, Eric S. Wiedner, John A. S. Roberts, and Aaron M. Appel*

Pacific Northwest National Laboratory, P.O. Box 999, MS K2-57, Richland, WA 99352, USA.

Table of Contents

General Procedures	2
Electrochemistry	3
Kinetic Data	6
References	14

General Procedures.

All manipulations were performed under N₂ using standard glovebox and Schlenk technique. Protio solvents were purchases anhydrous from Fischer and Aldrich and further dried on a solvent drying system. Acetonitrile- d_3 was purchased from Cambridge Isotopes Laboratories and distilled from P₂O₅. The amines were purchased from Aldrich, dried over KOH or CaH₂ and stored under inert atmosphere until use. Phosphines were purchases from Aldrich and Strem and used as received. Alcohols and benzaldehyde were purchased form Aldrich and were degassed and dried over 3 A molecular sieves. Complexes **1-Ph**, **1-Bn**, **1-'Bu**, and **2** were synthesized by literature methods.¹ The P^{tBu}₂N^{tBu}₂ ligand was synthesized by the below procedure modified from Liu et al.² All NMR spectra were collected on a Varian 500 MHz spectrometer at 25 °C in CD₃CN unless otherwise noted and referenced versus tetramethylsilane (¹H, 0.0 ppm) or H₃PO₄ (³¹P, 0.0 ppm).

Synthesis of P^{tBu}₂N^{tBu}₂. A 250 mL Schlenk flask was loaded with paraformaldehyde (1.80 g, 60.0 mmol) and 125 mL of ethanol. The flask was degassed and placed under N₂ before adding tertbutylphosphine (3.9 mL, 2.7g, 30 mmol) and heating to 75 °C for 5 hours. Neat tertbutylamine (3.2 mL, 2.2g, 30 mmol) was added slowly before leaving the reaction to stir at 22 °C for approximately 18 hours. The solvent was removed under vacuum and the resulting sticky white solid was dissolved in 10 mL diethylether, layered with 10 mL acetonitrile, and stored at -35 °C to yield white crystalline solid (39-76% yield). The ³¹P NMR spectrum matches that from the previously reported synthesis.²

Electrochemistry

Cyclic voltammetry. All electrochemical experiments were performed in 1.0 mL 0.1 M ⁿBuN₄PF₆ in CH₃CN under dry N₂ at 21 °C using a CH instruments model 620D or 660C potentiostat with a standard three-electrode configuration. This includes a 1 mm PEEK-encased glassy carbon rod as the working electrode, a glassy carbon rod counter electrode, and a silver wire in electrolyte separated from the main solution by a Vycor frit as a pseudo-reference. Scans were collected at 50 mV/s unless otherwise noted and all potentials are referenced versus $Cp_2Fe^{+/0}$ (0.0 V).

Bulk Electrolysis. Bulk electrolyses were performed in 1.0 or 10.0 mL solution of 0.1 M ⁿBuN₄PF₆ in CH₃CN under dry N₂ at 21 °C using an EC Epsilon BASi potentiostat equipped with a PWR-3 Power Module with a standard three-electrode configuration. This included a glassy carbon foam as the working electrode, a nichrome wire as the counter electrode, and a silver wire as the pseudo-reference electrode. The counter electrode and pseudo-reference electrode were suspended in 0.1 M ⁿBuN₄PF₆ in CH₃CN and separated from the main solution by a glass and Vycor frit, respectively. See images below. These catalysts are known to oxidize stoichiometric quantities of alcohol without applied potential or chemical oxidant, and therefore current efficiencies were calculated assuming that the Ni(II) precatalyst oxidizes a molar equivalent of alcohol without external potential. The non-exhaustive electrolysis was performed over 30 minutes, and the TON for oxidation of benzyl alcohol by 1-^tBu was determined to be 3.1 by integration of the benzaldehyde resonances in the ¹H NMR spectrum relative to a 1,3,5trimethoxybenzene as an internal standard. Benzoic acid (or benzoate) was not observed, but would not be expected in the absence of a significant concentration of water. The average catalytic turnover frequency during electrolysis was 6 h⁻¹, which is not equivalent to that from

the cyclic voltammetry results due to the mass transport limitations in an electrolysis experiment. Specifically, most of the catalyst is not near the electrode surface in an electrolysis, and the average turnover frequency accounts for all of the catalyst in the bulk of the solution.

Electrolyte and Conjugate Acid. The turnover frequencies of the 1-catalyzed oxidization of diphenylmethanol to benzophenone was measured by NMR spectroscopy using $Cp*_2FeBF_4$ as a chemical oxidant by the same method as described in ESI reference 1a. The addition of 0.06 M Et₃NHBF₄ or Et₄NBF₄ resulted in an observed turnover frequency of 54-57 h⁻¹ versus the reported value of 26.8 h⁻¹ reported in reference 3. This increase in turnover frequency may be the result of increased polarization of the solvent medium. This rate increase is unlikely the result of acid (Et₃NH⁺) because it is also observed with Et₄NBF₄.

Figure S1. A photograph of the electrodes (left) used in bulk electrolysis including the nichrome counter electrode (A), the silver pseudo-reference electrode (B), the carbon foam working electrode (C), and the 1 mm disk carbon electrode used for pre- and post-electrolysis cyclic voltammograms (D). The bulk electrolysis setup (right) in the reaction solution wired for bulk electrolysis.

The TOF is calculated using eq 3 from the main text. The initial current (i_p) is measured from the Ni(II/I) reduction wave before addition of alcohol or base, and catalytic current (i_{cat}) is measured from Ni(II/I) oxidation wave after the addition of alcohol and base as is shown in Figure S2.

Figure S2. Cyclic voltammogram of complex $1^{-t}Bu$ (black, 3.7 mM) and complex $1^{-t}Bu$ with upon addition of BnOH and Et₃N (blue) with the i_p and i_{cat} measurements show. The arrows indicate the starting potential and direction of each scan. Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s with 3.7 mM $1^{-t}Bu$, 57 mM BnOH, and 115 mM Et₃N.

Figure S3. Cyclic voltammogram of complex 1-^{*t*}**Bu** (black, 4.0 mM) and complex 1-^{*t*}**Bu** with upon addition of BnOH (red, 43 mM BnOH), indicating no background oxidation of benzyl alcohol in the absence of base, even in the presence of the catalyst. The voltammograms were collected in 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s.

Kinetic Data

Figure S4. A linear trend in the plot of catalytic current (i_{cat}) versus catalyst concentration for **1**-^{*t*}**Bu** indicates a first-order dependence with respect to catalyst concentration. Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s with 57 mM BnOH and 115 mM Et₃N.

Figure S5. The plot of i_{cat}/i_p versus Et₃N concentration (mM) indicates an approximate independence with respect to base concentration. Et₃N concentration was examined from 0.0072 M to 0.22 M. Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s with 0.37 mM **1-**^{*t*}Bu and 42 mM BnOH.

Figure S6. The plot of i_{cat}/i_p versus benzyl alcohol concentration (mM). Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s with 0.37 mM **1-'Bu** and 84 mM Et₃N.

Figure S7. The plot of $[BnOH]^{1/2}$ (M^{1/2}) versus TOF (s⁻¹) resulting in a roughly linear trend indicating a half-order dependence with respect to [BnOH]. Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s with 0.37 mM **1-'Bu** and 84 mM Et₃N.

Figure S8. The plot of i_{cat}/i_p versus iPr₂EtN (mM) concentration indicates an initial dependence on iPr₂EtN concentration followed by independence with respect to base concentration. Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s with 0.38 mM 1-^{*t*}Bu and 42 mM BnOH.

Alcohol	$i_{\rm cat}/i_p$	
iPrOH	2.22, 2.70	
iPrOD	2.48, 2.41	
iPrOD-d8	2.28, 2.46	

Table S1. Currents Enhancements of the Catalytic Oxidation of 2-Propanol Isotopologs by $Ni(P^{tBu}_2N^{tBu}_2)(CH_3CN)_2(BF_4)_2$ with Et₃N.^a

^{a.} Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s with 0.37 mM **1-**^{*t*}Bu, 42 mM alcohol, and 84 mM Et₃N.

Figure S9. Cyclic voltammograms of complex $1^{-t}Bu$ in the presence of Et₃N and BnOH to determine catalysts stability under these conditions, in the absence of applied potential. The cyclic voltammograms were collected at 1 hour intervals. The decrease in oxidative current may be due to catalyst deactivation. The arrows indicate the starting potential and direction of each scan. Conditions: 0.1 M nBu₄NPF₆ in CH₃CN scanning at 50 mV/s, 0.55 mM $1^{-t}Bu$, 57 mM MeOH, and 115 mM Et₃N. Potentials are referenced versus Cp₂Fe^{+/0} (0.0 V).

Figure S10. Cyclic voltammogram of complex 1-^{*t*}**Bu** (black, 2.7 mM) and complex 1-^{*t*}**Bu** with upon addition of MeOH and Et₃N (blue). The arrows indicate the starting potential and direction of each scan. Conditions: 0.1 M nBu₄NPF₆ in CH₃CN scanning at 50 mV/s, 3.7 mM 1-^{*t*}**Bu**, 42 mM MeOH, and 84 mM Et₃N. Potentials are referenced versus $Cp_2Fe^{+/0}$ (0.0 V).

Figure S11. Cyclic voltammogram of complex **1-**^{*t*}**Bu** (black), the resulting catalytic wave after addition of Et₃N and BnOH (blue), and the catalytic wave upon addition of 39 mM benzaldehyde (BzH). The arrows indicate the starting potential and direction of each scan. The addition of benzaldehyde results in a minor decrease in catalytic current possibly due to product inhibition. Conditions: 0.1 M ⁿBu₄NPF₆ in CH₃CN scanning at 50 mV/s, 0.37 mM **1-**^{*t*}**Bu**, 42 mM BnOH, 84 mM Et₃N, and 39 mM benzaldehyde. Potentials are referenced versus Cp₂Fe^{+/0} (0.0 V).

References

1. (a) C. J. Weiss, P. Das, D. L. Miller, M. L. Helm, A. M. Appel, *ACS Catal.* 2014, 4, 2951–2958. (b) E. S. Wiedner, J. Y. Yang, W. G. Dougherty, W. S. Kassel, R. M. Bullock, M. Rakowski DuBois, D. L. DuBois, *Organometallics* 2010, 29, 5390–5401.

2. T. Liu, X. Wang, C. Hoffmann, D. L. DuBois, R. M. Bullock, Angew. Chem., Int. Ed. 2014, 53, 5300–5304.