## **Electronic Supplementary Information**

# Highly efficient and stable photocatalytic reduction of CO<sub>2</sub> to CH<sub>4</sub> over Ru loaded NaTaO<sub>3</sub> semiconductor

Mu Li, <sup>ab</sup> Peng Li, <sup>\*b</sup> Kun Chang, <sup>b</sup> Tao Wang, <sup>b</sup> Lequan Liu, <sup>c</sup> Qing Kang, <sup>b</sup> Shuxin Ouyang<sup>c</sup> and Jinhua Ye<sup>\*abc</sup>

a Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan. E-mail: Jinhua.YE@nims.go.jp

b Environmental Remediation Materials Unit and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan) E-mail: LI.Peng@nims.go.jp

c TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, P. R. China.

#### Experimental

#### Preparation of NaTaO<sub>3</sub> nanoparticles

The NaTaO<sub>3</sub> was synthesized via a typical furfural alcohol derived polymerization–oxidation (FAPO) process<sup>8,9</sup>. First, 1.61 g of  $(C_2H_5O)_5$ Ta and 0.29 g of  $C_2H_5O$ Na were added into 15 mL of 2-methoxyethanol and stirred at room temperature to form a clear colloid. After that, 2.0 g of P-123 (M<sub>w</sub> = 5800) dissolved in 30 mL of furfuryl alcohol was added. Next, the mixture was stirred for 60 min and then heated to 95°C with a rate of 1°C·min<sup>-1</sup> and maintained at this temperature for 120 h in air to form a black solid polymer. Finally, the black solid was oxidized in air at 500°C for 10 h, and a white powder product was obtained.

#### Loading the cocatalysts

The loading process was performed by a photocatalytic reduction method. 0.5wt % of Pt, Au, Cu, Pd and Ru co-catalysts were photodeposited on the NaTaO<sub>3</sub> catalyst by adding a calculated amount of H<sub>2</sub>PtCl<sub>6</sub>, HAuCl<sub>4</sub>, CuNO<sub>3</sub>, Pd(O<sub>2</sub>CCH<sub>3</sub>)<sub>2</sub> and RuCl<sub>3</sub> solution into the reaction solution, respectively. The NaTaO<sub>3</sub> powder (0.2 g) was dispersed by using a magnetic stirrer in CH<sub>3</sub>OH aqueous solution (230 mL of distilled water + 50 mL of CH<sub>3</sub>OH) in a Pyrex cell with a side window. The reactant solution was irradiated by a 300 W UV-enhanced Xe lamp ( $\lambda > 200$ nm) for 4 h. The H<sub>2</sub> evolution was measured with an online gas chromatograph (GC-8A, Shimadzu) with a thermal conductivity detector (TCD) according to the standard curve (Fig.S1). After H<sub>2</sub> evolution achieving a stable linear growth, the resulting NaTaO<sub>3</sub> photocatalyst with cocatalysts was collected after heating and drying in air overnight. The powder was then dried in vacuum at 300 °C for 3 h to remove organic compounds adsorbed on the surface of the catalyst. The obtained samples with different cocatalysts loaded were further tested for the photoactivity of CO<sub>2</sub> reduction.

#### Sample characterization

The crystal structure of NaTaO<sub>3</sub> powder was determined with an X-ray diffractometer (X'Pert Powder, PANalytical B.V., Netherlands) with Cu-K $\alpha$  radiation. Scanning electron microscopy images were recorded with a HITACHI S-4800 field emission scanning electron microscopy. Transmission electron microscopy images were recorded with a field emission transmission electron microscope (2100F, JEOL Co., Japan) operated at 200 kV. The diffuse reflection spectra were measured with an integrating sphere equipped UV–visible recording spectrophotometer (UV-2600, Shimadzu Co., Japan) using BaSO<sub>4</sub> as reference and the optical absorptions were converted from the reflection spectra according to Kubelka-Munk equation. The specific surface areas were determined with a surface-area analyzer (BEL Sorp-II mini, BEL Japan Co., Japan) by the Brunauer–Emmett–Teller (BET) method. X-ray Photoelectron Spectroscopy (XPS) experiments were performed in type Theta probe (ULVAC-PHI, Japan) using monochromatized Al K $\alpha$  at 1.4×0.1 mm 100 W(20 kV, 5 mA) and the peak positions were internally referenced to the C 1s peak at 285.0 eV.

### CO<sub>2</sub> photoreduction

The CO<sub>2</sub> photoreduction experiments were carried out in a gas-closed circulation system. The NaTaO<sub>3</sub> powder as well as 0.5 wt% cocatalysts loaded samples (0.07 g) were located in a Pyrex reaction cell equipped with an upside window, respectively. In the case of using H<sub>2</sub>O as the reducing agent, 3 mL of distilled water was added into the gas-closed reaction system. Then, the whole system was evacuated and filled with 80 kPa of pure CO<sub>2</sub> gas. In the case of using H<sub>2</sub> gas, the whole system was also firstly evacuated and then filled with 40 kPa of pure CO<sub>2</sub> gas and 40 kPa of pure H<sub>2</sub> gas. The light source was a

300 W UV-enhanced Xe lamp ( $\lambda > 200$ nm) without filter. The CO, CO<sub>2</sub> and organic products were sampled and measured with a gas chromatograph (GC-14B, Shimadzu) equipped with a flame ionization detector (FID) according to the standard curves. The GC column is Porapak Q-methanizer for CO and CO<sub>2</sub> measurement (CH=1), PEG1000 for organic products measurement (CH=2). The H<sub>2</sub> evolution was measured with an online gas chromatograph (GC-8A, Shimadzu) with a TCD detector according to the standard curve. The GC column is 5A molecular sieve.



Fig. S1 Photocatalytic  $H_2$  evolution from the aqueous methanol solution over NaTaO<sub>3</sub> samples with 0.5 wt% cocatalysts loading under the irradiation of a 300 W UV-enhanced Xe lamp (0.20 g catalyst).



Initial period (Fig.S2a):  $CO_2 + D_2O \rightarrow CD_4 + O_2^*$ 

 $\mathrm{H_2} + \mathrm{O_2}^* \rightarrow \mathrm{H_2O}$ 

After several hours (Fig.S2b):  $CO_2 + D_2O + H_2O \rightarrow CD_3H + CD_2H_2 + O_2*$ 

O<sub>2</sub>\*: peroxide intermediates

Fig. S2 Original data of GC-MS spectra of photocatalytic  $CO_2$  reduction products over Ru/NaTaO<sub>3</sub> under H<sub>2</sub> atmosphere in the present of D<sub>2</sub>O: (a) Sampling at the initial period of the reaction, (b) sampling several hours after the reaction start.

Here 
$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$
  
 $CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$   
 $CO_2 + 6H^+ + 2e^- \rightarrow CO + H_2O$   
 $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$   
 $CO_2 + 2H^+ + 2e^- \rightarrow HCO_2H$   
 $CO_2 + 2H^+ + 2e^- \rightarrow HCO_2H$   
 $CO_2 + e^- \rightarrow CO_2^{--}$   
 $CO_2 + e^- \rightarrow CO_2^{--}$   
 $E^\circ = -0.61 V$ 

Fig. S3 Thermodynamic potentials for various  $\rm CO_2$  reduction products. (pH 7 vs NHE, 25 °C, 1 atm gas pressure.)



Fig. S4 An overnight prolonging text under the irradiation of a 300W UV-enhanced Xe lamp within  $H_2$  atmosphere: (a)  $CH_4$  evolution over Ru/NaTaO<sub>3</sub>, (b) CO evolution over Pt/NaTaO<sub>3</sub>.



Fig. S5 UV-light responds text by inserting a cutoff 420 nm filter (L42) under the irradiation of a300W UV-enhanced Xe lamp within  $H_2$  atmosphere: (a) CH<sub>4</sub> evolution over Ru/NaTaO<sub>3</sub>, (b) CO evolution over Pt/NaTaO<sub>3</sub>.



Fig. S6 Original data of GC-MS spectra of photocatalytic CO<sub>2</sub> reduction products over Ru/NaTaO<sub>3</sub> under  $H_2$  atmosphere in the present of <sup>13</sup>CO<sub>2</sub>.



Fig. S7 (a)  $CH_4$  evolution comparison of Ru loaded NaTaO<sub>3</sub>, commercial SrTiO<sub>3</sub> (Nano-sized, Wako Pure Chemical Industries, Japan) and TiO<sub>2</sub> (ST01, ISHIHARA SANGYO KAISHA, Japan) under the irradiation of a 300W UVenhanced Xe lamp within H<sub>2</sub> atmosphere. (b) Valence band XPS of NaTaO<sub>3</sub>, SrTiO<sub>3</sub> and TiO<sub>2</sub>. (c) Schematic model of energy levels of NaTaO<sub>3</sub>, SrTiO<sub>3</sub> and TiO<sub>2</sub> under UV irradiation.

 $NaTaO_3$  possess the most negative CB energy level, thus it could provide the most energetic photogenerated electrons to overcome the activation barrier and fulfill the 8e- reaction during the  $CO_2$  reductionprocess.



Fig. S8 (a) UV-vis absorption spectra comparison of NaTaO<sub>3</sub>, SrTiO<sub>3</sub> and TiO<sub>2</sub>; (b) the corresponding band gap obtained from  $(\alpha h\nu)^{1/2}$ - hv curves: (b) SrTiO<sub>3</sub>, (c) TiO<sub>2</sub>.



Fig. S9 CH<sub>4</sub> evolution comparison of Ru/NaTaO<sub>3</sub> with and without  $H_2O$  in presence of electron donor  $H_2$ .

The  $CO_2$  reduction over Ru/NaTaO<sub>3</sub> without specifically adding the distilled water into the reaction system was compared with the water-using sample. The activity deceased obviously without water, but there is still a little amount of  $CH_4$  could be detected. It is could be considered that these  $CH_4$  was comes from the water remained in the system as well as the gas atmosphere, because we cannot make it an extreme anhydrous condition in our reaction system.



Fig. S10 Back reaction of CH<sub>4</sub> over Ru/NaTaO<sub>3</sub> under illumination.

The amount of  $CH_4$  exhibited a fluctuation under illumination. Besides the disturbance of sampling and circulated cooling water system, there was a slightly decease of the  $CH_4$  amount. It can be deduced that there was a small amount of back reaction took place. Because there were large amounts of  $CO_2$ ,  $H_2O$  and  $H_2$  as electron donor in our system to carry out the  $CO_2$  reduction, the reaction equilibrium should be mainly driven to the positive direction. Thus, this small amount of back reaction could be depressed and neglected reasonably.

| C-R8A CHROMATOPAC                                                                 | CH=1 DA                                                 | TA=1:@CHRM                                    | 11. C00                      | ATTEN= 3 SPEE                                 | D= 5.0     |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------|------------|--|--|
| - 0.2                                                                             | CH4                                                     |                                               | CU                           |                                               | 1 165      |  |  |
| - 2.2                                                                             | 989                                                     |                                               |                              |                                               | 3: 373     |  |  |
| - 4.2                                                                             |                                                         |                                               |                              | R                                             |            |  |  |
| - 6.2                                                                             |                                                         | C                                             | H = 1                        |                                               | CO2        |  |  |
| - 8.2 /                                                                           |                                                         |                                               |                              |                                               |            |  |  |
| C-R8A CHROMATOPAC                                                                 | CH=1 Report M                                           | No. =869                                      | DATA=1:@CHR                  | M1.COO 14/01/0                                | 7 12:55:54 |  |  |
| ** CALCULATION REPO<br>CH PKNO TIME<br>1 2 1.465<br>3 1.989<br>4 3.122<br>5 3.375 | ORT **<br>AREA<br>60635<br>7749<br>18726326<br>13240766 | HE1GHT<br>10330<br>1268<br>1102894<br>1102888 | MK IDNO<br>E<br>E<br>E<br>VE | CONC<br>0.1893<br>0.0242<br>58.455<br>41.3316 | NAME       |  |  |
| TOTAL                                                                             | 32035474                                                | 2217380                                       |                              | 100                                           |            |  |  |
| C-R8A CHROMATOPAC                                                                 | CH=2 Report                                             | No.=966                                       | DATA=1:@CHRM                 | 12.000 14/01/07                               | 12:56:16   |  |  |
| - 2.0 1.686                                                                       | 1.953                                                   |                                               |                              | 1                                             | 1.404      |  |  |
| - 4.0                                                                             |                                                         |                                               | $CH_4$                       |                                               |            |  |  |
| - 6.0                                                                             |                                                         |                                               |                              |                                               |            |  |  |
| - <sub>8.0</sub> CH = 2                                                           |                                                         |                                               |                              |                                               |            |  |  |
| ** CALCULATION REPO<br>CH PKNO TIME<br>2 1 1.464<br>2 1.686<br>3 1.953            | ORT **<br>AREA<br>24110<br>194<br>113                   | HEIGHT<br>6965<br>35<br>17                    | MK IDNO<br>V<br>V            | CONC<br>98.7435<br>0.7925<br>0.464            | NAME       |  |  |
| TOTAL                                                                             | 24416                                                   | 7016                                          |                              | 100                                           |            |  |  |

Fig. S11 An example of the original sampling data for the  $CO_2$  reduction products over Ru-NaTaO<sub>3</sub>, CH=1 for CO measurement; CH=2 for CH<sub>4</sub> measurement.

The long chain organic molecules were generated via photocatalytic reforming of  $CH_4$ , and  $CH_4$  was the source of this reaction.<sup>1,2</sup> Thus, these trace amount of organic compounds could be reasonably neglected as the products of  $CO_2$  reduction.

- (1) Yuliati, L.; Hattori, T.; Itoh, H.; Yoshida, H. J. Catal. 2008, 257, 396.
- (2) Yuliati, L.; Hattori, T.; Yoshida, H. Phys. Chem. Chem. Phys. 2005, 7, 195.

| Materials          | Band gap / eV <sup>a</sup> | VB / V <sup>b</sup> | CB / V <sup>c</sup> | Surface area<br>/ m <sup>2</sup> g <sup>-1 d</sup> | CH4 productivity<br>/ μmol g <sup>-1</sup> h <sup>-1 e</sup> | Normalized productivity<br>/ µmol h <sup>-1</sup> m <sup>-2 f</sup> |
|--------------------|----------------------------|---------------------|---------------------|----------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|
| NaTaO <sub>3</sub> | 4.2                        | 2.7                 | -1.5                | 29.2                                               | 51.8                                                         | 1.72                                                                |
| SrTiO <sub>3</sub> | 3.7                        | 2.6                 | -1.1                | 14.4                                               | 5.4                                                          | 0.38                                                                |
| TiO <sub>2</sub>   | 3.5                        | 3.0                 | -0.5                | 302.2                                              | 29.2                                                         | 0.10                                                                |

Table S1. Comparison of the band gaps, BET surface areas and productivities among NaTaO<sub>3</sub>, SrTiO<sub>3</sub> and TiO<sub>2</sub>.

<sup>a</sup>The band gap were obtained from UV-vis absorption spectra and the corresponding  $(\alpha hv)^{1/2}$ – hv curves as shown in Fig.1c and Fig. S8. <sup>b</sup>The valence band positions were obtained from valence band XPS as shown in Fig. S7. <sup>c</sup>The conduction band positions were calculated from the data of band gap (E<sub>g</sub>) and valence band by using the equation CB = VB - E<sub>g</sub>. <sup>d</sup>The surface area were determined by the Brunauer– Emmett–Teller (BET) method. <sup>e</sup>The apparent productivity within 8 hours. <sup>f</sup>Calculated from dividing the apparent productivity by BET surface area.

| Motorials             | CH <sub>4</sub> productivity / μmol g <sup>-1</sup> h <sup>-1</sup> |                                                  | CO product                        | ivity / µmol g-1h-1                              | H <sub>2</sub> productivity / µmol g <sup>-1</sup> h <sup>-1</sup> |                                                  |
|-----------------------|---------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|
| Materials             | CO <sub>2</sub> +H <sub>2</sub> O                                   | CO <sub>2</sub> +H <sub>2</sub> O+H <sub>2</sub> | CO <sub>2</sub> +H <sub>2</sub> O | CO <sub>2</sub> +H <sub>2</sub> O+H <sub>2</sub> | CO <sub>2</sub> +H <sub>2</sub> O                                  | CO <sub>2</sub> +H <sub>2</sub> O+H <sub>2</sub> |
| NaTaO <sub>3</sub>    | 1.39                                                                | 2.07                                             | 6.49                              | 10.10                                            | 1.36                                                               | N/A                                              |
| Pt-NaTaO <sub>3</sub> | 0.70                                                                | 1.13                                             | 5.95                              | 139.1                                            | 80.23                                                              | N/A                                              |
| Cu-NaTaO <sub>3</sub> | 1.07                                                                | 3.71                                             | 4.95                              | 16.23                                            | 38.94                                                              | N/A                                              |
| Au-NaTaO <sub>3</sub> | 1.43                                                                | 2.44                                             | 7.43                              | 14.47                                            | 53.10                                                              | N/A                                              |
| Pd-NaTaO <sub>3</sub> | 1.73                                                                | 8.61                                             | 7.56                              | 9.71                                             | 76.43                                                              | N/A                                              |
| Ru-NaTaO <sub>3</sub> | 0.11                                                                | 51.8                                             | 0.07                              | 2.16                                             | 6.82                                                               | N/A                                              |

Table S2. Productivities of the series of  $NaTaO_3$  with and without the electron donor  $H_2$ .