Electronic Supplementary Information

Copper(I)-catalyzed heteroannulation of [60]fullerene with

ketoxime acetates: preparation of novel 1-fulleropyrrolines

Sheng-Peng Jiang,^a Yi-Tan Su,^a Kai-Qing Liu,^a Qing-Hua Wu^a and Guan-Wu Wang^{*,a,b}

 ^a CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China E-mail: <u>gwang@ustc.edu.cn</u>; Fax: +86 551 3607864; Tel: +86 551 3607864
^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

Table of contents

Experimental procedures and spectral data of 2a-k	S2–7
NMR spectra of compounds 2a-k	S8–29
CVs and DPVs of compounds $2a-k$ along with C_{60}	S30-41
Mechanism study	S42
Calculated energies for optimized C ₆₀ , D-1a , TS1 and E-1a	S43
Calculated energies for optimized C ₆₀ , G-1a, TS2 and H-1a	S44
The xyz coordinates and energies for the lowest structure	
of C ₆₀ , D-1a , TS1 , E-1a , G-1a , TS2 and H-1a	S45–54

General procedure for the synthesis of 2a–k from the CuBr-catalyzed reaction of C_{60} with 1a–k. A mixture of C_{60} (0.05 mmol), oxime acetates 1 (0.075 mmol), CuBr (0.01 mmol), and NaHSO₃ (0.5 mmol) was dissolved in CB (8 mL). Then the solution was vigorously stirred at 150 °C and stopped at the designated time. The resulting solution was directly separated on a silica gel column with CS_2/CH_2Cl_2 as the eluent to give recovered C_{60} and then the desired product 2.

Preparation of **2a**: By following the general procedure, the reaction of C₆₀ (35.9 mg, 0.05 mmol) with **1a** (14.3 mg, 0.075 mmol), CuBr (1.4 mg, 0.01 mmol), and NaHSO₃ (52.3 mg, 0.5 mmol) at 150 °C afforded **2a** (12.8 mg, 30%) and recovered C₆₀ (14.7 mg, 41%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.16 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 5.13 (s, 2H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ all 2C unless indicated) δ 172.58 (1C, C=N), 155.54, 150.18, 147.59 (1C), 147.43 (1C), 146.40, 146.28, 146.16, 146.03, 145.97, 145.70 (4C), 145.26, 145.22, 145.20, 144.98, 144.46, 144.36, 142.96, 142.60, 142.59, 142.53, 142.27, 142.16 (1C, aryl *C*), 142.09, 141.89 (4C), 141.72, 140.21, 139.73, 136.14, 135.16, 130.65 (1C, aryl *C*), 129.65 (aryl *C*), 128.59 (aryl *C*), 100.81 (1C, sp³-*C* of C₆₀), 65.20 (1C, sp³-*C* of C₆₀), 50.87 (1C), 21.84 (1C); FT-IR ν/cm^{-1} (KBr) 3027, 2913, 2853, 1795, 1611, 1567, 1506, 1420, 1334, 1177, 1108, 1043, 810, 770, 555, 522; UV–vis (CHCl₃) $\lambda_{\text{max}/\text{nm}} (\log \varepsilon)$ 257 (5.06), 311 (4.58), 429 (3.47); MALDI-TOF MS *m/z* calcd for C₆₉H₉N [M]⁺ 851.0730, found 851.0742.

Preparation of **2b**. By following the general procedure, the reaction of C₆₀ (36.0 mg, 0.05 mmol) with **1b** (15.6 mg, 0.075 mmol), CuBr (1.6 mg, 0.01 mmol), and NaHSO₃ (52.3 mg, 0.5 mmol) at 150 °C afforded **2b** (11.5 mg, 27%) and recovered C₆₀ (16.9 mg, 47%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.21 (d, J = 8.8 Hz, 2H), 7.08 (d, J = 8.8 Hz, 2H), 5.11 (s, 2H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 2C unless indicated) δ 171.92 (1C, C=N), 162.48 (1C, aryl *C*), 155.63, 150.34, 147.59 (1C), 147.42 (1C), 146.38, 146.26, 146.15, 146.02, 145.96, 145.71, 145.68, 145.25, 145.21, 145.19, 144.98, 144.46, 144.36, 142.95, 142.59, 142.58, 142.52, 142.26, 142.08, 141.92, 141.89, 141.71, 140.20, 139.70, 136.10, 135.19, 130.26 (aryl *C*), 125.99 (1C, aryl *C*), 114.25 (aryl *C*), 100.73 (1C, sp³-*C* of C₆₀), 65.30 (1C, sp³-*C* of C₆₀), 55.18 (1C), 50.80 (1C); FT-IR ν /cm⁻¹ (KBr) 2990, 2953, 2917, 2830, 1795, 1603, 1567, 1506, 1458, 1421, 1336, 1310, 1248, 1172, 1109, 1027, 900, 830, 796, 773, 727, 603, 556, 523; UV–vis (CHCl₃) λ_{max}/nm (log ε) 257 (5.08), 310 (4.74), 429 (3.53); MALDI-TOF MS *m*/*z* calcd for C₆₉H₉NO [M]⁺ 867.0679, found

Preparation of **2c**. By following the general procedure, the reaction of C₆₀ (35.8 mg, 0.05 mmol) with **1c** (14.5 mg, 0.075 mmol), CuBr (1.6 mg, 0.01 mmol), and NaHSO₃ (51.9 mg, 0.5 mmol) at 150 °C afforded **2c** (10.4 mg, 24%) and recovered C₆₀ (16.1 mg, 45%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) *δ* 8.16 (s, 1H), 8.04 (d, *J* = 7.6 Hz, 1H), 7.49 (dd, *J* = 7.6 Hz, 7.6 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 5.14 (s, 2H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 2C unless indicated) *δ* 172.98 (1C, C=N), 155.44, 150.02, 147.58 (1C), 147.41 (1C), 146.36, 146.27, 146.14, 146.02, 145.96, 145.69 (4C), 145.25, 145.21, 145.19, 144.95, 144.44, 144.35, 142.94, 142.59, 142.58, 142.51, 142.25, 142.08, 141.88 (4C), 141.71, 140.22, 139.72, 138.51 (1C, aryl *C*), 136.15, 135.12, 133.19 (1C, aryl *C*), 132.65 (1C, aryl *C*), 129.09 (1C, aryl *C*), 128.85 (1C, aryl *C*), 125.79 (1C, aryl *C*), 100.79 (1C, sp³-*C* of C₆₀), 65.13 (1C, sp³-*C* of C₆₀), 50.90 (1C), 21.64 (1C); FT-IR *v*/cm⁻¹ (KBr) 3028, 2913, 2853, 1795, 1618, 1507, 1425, 1337, 1180, 1109, 1041, 1001, 782, 692, 566, 525; UV–vis (CHCl₃) λ_{max}/nm (log *ε*) 257 (5.12), 310 (4.64), 429 (3.55); MALDI-TOF MS *m*/*z* calcd for C₆₉H₉N [M]⁺ 851.0730, found 851.0741.

Preparation of 2d. By following the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with 1d (15.4 mg, 0.075 mmol), CuBr (1.5 mg, 0.01 mmol), and NaHSO₃ (52.3 mg, 0.50 mmol) at 150 °C afforded **2d** (11.1 mg, 26%) and recovered C_{60} (15.3 mg, 44%): amorphous brown solid; ¹H NMR (400 MHz, $CS_2/CDCl_3$) δ 8.09 (s, 1H), 7.95 (dd, J = 7.7 Hz, 1.6 Hz, 1H), 7.34 (d, J = 7.7 Hz, 1H), 5.12 (s, 2H), 2.45 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 2C unless indicated) δ 172.75 (1C, C=N), 155.55, 150.17, 147.55(1C), 147.38 (1C), 146.36, 146.24, 146.11, 145.99, 145.93, 145.67, 145.66, 145.22, 145.17, 145.16, 144.95, 144.42, 144.33, 142.91, 142.55 (4C), 142.50, 142.23, 142.05, 141.87, 141.86, 141.68, 140.86 (1C, aryl C), 140.18, 139.68, 137.05 (1C, aryl C), 136.10, 135.13, 130.96 (1C, aryl C), 130.18 (1C, aryl C), 129.62 (1C, aryl C), 126.27 (1C, aryl C), 100.74 (1C, sp³-C of C₆₀), 65.14 (1C, sp³-C of C₆₀), 50.84 (1C), 20.15 (1C), 19.98 (1C); FT-IR v/cm⁻¹ (KBr) 3021, 2932, 2912, 2852, 1794, 1614, 1567, 1503, 1422, 1329, 1248, 1182, 1111, 1040, 1002, 902, 875, 814, 769, 730, 596, 570, 557, 524; UV-vis (CHCl₃) λ_{max}/nm (log ε) 258 (5.06), 309 (4.56), 429 (3.48); ESI FT-ICR MS m/z calcd for $C_{70}H_{12}N$ $[M+H]^+$ 866.0964, found 866.0957.

Preparation of **2e**. By following the general procedure, the reaction of C_{60} (36.0 mg, 0.05 mmol) with **1e** (13.3 mg, 0.075 mmol), CuBr (1.4 mg, 0.01 mmol), and NaHSO₃ (52.5 mg, 0.5 mmol) at 150 °C afforded **2e** (10.7 mg, 26%) and recovered C_{60} (14.7 mg, 41%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.31-8.27 (m, 2H), 7.64-7.58 (m, 3H), 5.16 (s, 2H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 2C unless indicated) δ 172.76 (1C, C=N), 155.42, 150.03, 147.61 (1C), 147.45 (1C), 146.40, 146.30, 146.18, 146.05, 145.99, 145.73, 145.72, 145.29, 145.25, 145.22, 144.97, 144.47, 144.38, 142.97, 142.63, 142.61, 142.53, 142.29, 142.11, 141.91, 141.89, 141.74, 140.25, 139.76, 136.17, 135.15, 133.32 (1C, aryl *C*), 131.82 (1C, aryl *C*), 128.93 (aryl *C*), 128.54 (aryl *C*), 99.84 (1C, sp³-*C* of C₆₀), 65.19 (1C, sp³-*C* of C₆₀), 50.88 (1C); FT-IR ν /cm⁻¹ (KBr) 3056, 2912, 1798, 1617, 1574, 1502, 1425, 1339, 1177, 1109, 1038, 758, 688, 562, 523; UV–vis (CHCl₃) λ_{max} /nm (log ε) 257 (5.03), 310 (4.52), 429 (3.43); MALDI-TOF MS *m*/*z* calcd for C₆₈H₇N [M]⁺ 837.0573, found 837.0621.

Preparation of **2f**. By following the general procedure, the reaction of C₆₀ (35.9 mg, 0.05 mmol) with **1f** (19.3 mg, 0.075 mmol), CuBr (1.5 mg, 0.01 mmol), and NaHSO₃ (52.0 mg, 0.5 mmol) at 150 °C afforded **2f** (11.9 mg, 26%) and recovered C₆₀ (15.8 mg, 44%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 2C unless indicated) δ 172.03 (1C, C=N), 155.16, 149.70, 147.65 (1C), 147.48 (1C), 146.34, 146.31, 146.21, 146.09, 146.03, 145.77, 145.70, 145.32, 145.28, 145.25, 144.90, 144.46, 144.38, 143.00, 142.66 (4C), 142.51, 142.29, 142.12, 141.92, 141.86, 141.76, 140.28, 139.79, 136.22, 135.13, 132.26 (aryl *C*), 132.15 (1C, aryl *C*), 129.97 (aryl *C*), 127.08 (1C, aryl *C*), 100.85 (1C, sp³-*C* of C₆₀), 65.19 (1C, sp³-*C* of C₆₀), 50.73 (1C); FT-IR *v*/cm⁻¹ (KBr) 2961, 2910, 1796, 1617, 1586, 1506, 1486, 1421, 1395, 1331, 1178, 1107, 1067, 1043, 1007, 816, 768, 558, 523; UV–vis (CHCl₃) λ_{max}/nm (log ε) 259 (5.00), 312 (4.63), 428 (3.46); MALDI-TOF MS *m*/*z* calcd for C₆₈H₆N⁷⁹Br [M]⁺ 914.9678, found 914.9717.

Preparation of **2g**. By following the general procedure, the reaction of C_{60} (35.8 mg, 0.05 mmol) with **1g** (16.9 mg, 0.075 mmol), CuBr (1.6 mg, 0.01 mmol), and NaHSO₃

(52.2 mg, 0.5 mmol) at 150 °C afforded **2g** (7.8 mg, 18%) and recovered C₆₀ (20.2 mg, 56%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.51 (d, *J* = 8.9 Hz, 2H), 8.48 (d, *J* = 8.9 Hz, 2H), 5.19 (s, 2H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 2C unless indicated) δ 171.31 (1C, C=N), 154.62, 149.72 (1C, aryl *C*), 149.09, 147.64 (1C), 147.47 (1C), 146.36, 146.21, 146.19, 146.09, 146.03, 145.80, 145.62, 145.33, 145.32, 145.25, 144.76, 144.41, 144.34, 143.00, 142.67 (4C), 142.45, 142.28, 142.10, 141.91, 141.75 (4C), 140.32, 139.84, 138.65 (1C, aryl *C*), 136.24, 135.02, 129.34 (aryl *C*), 124.03 (aryl *C*), 100.99 (1C, sp³-*C* of C₆₀), 65.07 (1C, sp³-*C* of C₆₀), 50.80 (1C); FT-IR ν /cm⁻¹ (KBr) 3071, 2911, 2849, 1794, 1593, 1517, 1421, 1335, 1179, 1106, 1046, 902, 851, 730, 688, 562, 524; UV–vis (CHCl₃) λ_{max}/nm (log ε) 257 (5.03), 311 (4.53), 429 (3.45); ESI FT-ICR MS *m*/*z* calcd for C₆₈H₇N₂O₂ [M+H]⁺ 883.0502, found 883.0516.

Preparation of **2h**. By following the general procedure, the reaction of C_{60} (36.1 mg, 0.05 mmol) with **1h** (17.2 mg, 0.075 mmol), CuBr (1.5 mg, 0.01 mmol), and NaHSO₃ (52.5 mg, 0.50 mmol) at 150 °C afforded **2h** (10.9 mg, 25%) and recovered C_{60} (18.6 mg, 52%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.60-8.58 (m, 1H), 8.56 (dd, J = 8.5 Hz, 1.7 Hz, 1H), 8.06-8.01 (m, 2H), 7.97-7.93 (m, 1H), 7.65-7.56 (m, 2H), 5.29 (s, 2H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 2C unless indicated) § 172.90 (1C, C=N), 155.50, 150.10, 147.65 (1C), 147.48 (1C), 146.44, 146.34, 146.21, 146.09, 146.02, 145.77, 145.75, 145.32, 145.28, 145.25, 145.01, 144.50, 144.41, 143.00, 142.65 (4C), 142.57, 142.31, 142.14, 141.94 (4C), 141.78, 140.29, 139.80, 136.26, 135.21, 135.12 (1C, aryl C), 133.05 (1C, aryl C), 130.90 (1C, aryl C), 129.52 (1C, aryl C), 129.04 (1C, aryl C), 128.86 (1C, aryl C), 128.07 (1C, aryl C), 127.97 (1C, aryl C), 126.91 (1C, aryl C), 125.03 (1C, aryl C), 100.97 (1C, $sp^{3}-C$ of C_{60}), 65.28 (1C, $sp^{3}-C$ of C_{60}), 50.93 (1C); FT-IR v/cm⁻¹ (KBr) 3054, 2916, 2850, 1794, 1613, 1572, 1464, 1425, 1354, 1263, 1185, 1109, 1040, 857, 817, 770, 744, 598, 558, 525 ; UV-vis (CHCl₃) λ_{max}/nm (log ε) 257 (5.19), 310 (4.80), 428 (3.60); MALDI-TOF MS m/z calcd for C₇₂H₉N [M]⁺ 887.0730, found 887.0696.

Preparation of **2i**. By following the general procedure, the reaction of C_{60} (35.8 mg, 0.05 mmol) with **1i** (14.4 mg, 0.075 mmol), CuBr (1.4 mg, 0.01 mmol), and NaHSO₃ (52.2 mg, 0.50 mmol) at 150 °C afforded **2i** (13.5 mg, 31%) and recovered C_{60} (12.7 mg, 35%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 8.25-8.19 (m, 2H), 7.63-7.58 (m, 3H), 5.49 (q, *J* = 7.6 Hz, 1H), 2.09 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 1C unless indicated) δ 177.71 (C=N), 156.18, 152.45,

150.78, 150.44, 147.59, 147.44, 146.57, 146.29 (2C), 146.25 (2C), 146.08, 146.05, 146.00, 145.96, 145.93, 145.78, 145.71, 145.67, 145.62, 145.57, 145.27 (2C), 145.23 (2C), 145.17, 145.06, 144.86, 144.52, 144.41, 144.40, 144.29, 143.00, 142.92, 142.66, 142.61 (2C), 142.56, 142.55, 142.28, 142.25, 142.21, 142.10 (2C), 141.91, 141.87, 141.86, 141.76, 141.74, 141.53, 140.23 (2C), 139.75, 139.56, 136.56 (2C), 135.84, 134.62, 133.03 (aryl *C*), 131.29 (aryl *C*), 128.93 (2C, aryl *C*), 128.85 (2C, aryl *C*), 99.28 (sp³-*C* of C₆₀), 70.36 (sp³-*C* of C₆₀), 55.84, 20.72; FT-IR *v*/cm⁻¹ (KBr) 3056, 2969, 2925, 1806, 1617, 1572, 1506, 1448, 1427, 1379, 1328, 1183, 1109, 1021, 913, 770, 691, 648, 597, 568, 559, 526; UV–vis (CHCl₃) λ_{max}/nm (log *ε*) 257 (5.10), 311 (4.61), 429 (3.52); MALDI-TOF MS *m*/*z* calcd for C₆₉H₉N [M]⁺ 851.0730, found 851.0717.

Preparation of 2j. By following the general procedure, the reaction of C_{60} (35.7 mg, 0.05 mmol) with 1j (15.7 mg, 0.075 mmol), CuBr (1.4 mg, 0.01 mmol), and NaHSO₃ (52.5 mg, 0.50 mmol) at 150 °C afforded **2j** (15.4 mg, 35%) and recovered C_{60} (15.7 mg, 44%): amorphous brown solid; ¹H NMR (400 MHz, $CS_2/CDCl_3$) δ 8.24-8.18 (m, 2H), 7.64-7.59 (m, 3H), 5.41 (dd, J = 6.3 Hz, 4.1 Hz, 1H), 2.66-2.56 (m, 2H), 1.40 (dd, J = 7.4 Hz, 7.4 Hz, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃, all 1C unless indicated) δ 176.78 (C=N), 156.70, 151.87, 150.80, 150.69, 147.54, 147.42, 146.69, 146.28, 146.27, 146.24, 146.13, 146.09, 146.06, 146.02, 145.98, 145.95, 145.92, 145.76, 145.62, 145.57, 145.56, 145.28 (2C), 145.25, 145.22, 145.13, 145.01, 144.57, 144.49, 144.42, 144.39, 144.26, 143.00, 142.93, 142.69, 142.64 (2C), 142.54, 142.53, 142.28, 142.19, 142.11 (3C), 141.90, 141.85 (2C), 141.69, 141.67, 141.51, 140.29, 140.23, 139.71, 139.14, 137.22, 136.68, 135.44, 134.51, 133.66 (aryl C), 131.19 (aryl C), 128.91 (2C, aryl C), 128.48 (2C, aryl C), 99.65 (sp³-C of C₆₀), 70.47 (sp³-C of C₆₀), 62.15, 26.71, 12.46; FT-IR v/cm⁻¹ (KBr) 3052, 3025, 2965, 2926, 2871, 1780, 1617, 1571, 1509, 1426, 1380, 1350, 1329, 1183, 1103, 1026, 799, 766, 690, 647, 597, 568, 559, 525; UV-vis (CHCl₃) λ_{max} /nm (log ε) 259 (5.11), 312 (4.66), 429 (3.53); MALDI-TOF MS m/z calcd for C₇₀H₁₁N [M]⁺ 865.0886, found 865.0911.

Preparation of **2k**. By following the general procedure, the reaction of C₆₀ (36.2 mg, 0.05 mmol) with **1k** (11.0 μ L, 0.075 mmol), CuBr (1.5 mg, 0.01 mmol), and NaHSO₃ (51.9 mg, 0.50 mmol) at 150 °C afforded **2k** (6.8 mg, 17%) and recovered C₆₀ (12.6 mg, 35%): amorphous brown solid; ¹H NMR (400 MHz, CS₂/CDCl₃) δ 4.82 (q, *J* = 7.6 Hz, 1H), 2.99 (dq, *J* = 16.7 Hz, 7.4 Hz, 1H), 2.86 (dq, *J* = 16.7 Hz, 7.4 Hz, 1H), 2.01 (d, *J* = 7.6 Hz, 3H), 1.63 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃),

all 1C unless indicated) δ 182.17 (C=N), 156.64, 152.24, 151.24, 150.52, 147.53, 147.38, 146.51, 146.26, 146.22, 146.21 (2C), 146.03 (2C), 145.95, 145.92, 145.88 (2C), 145.71, 145.61, 145.59, 145.57, 145.26, 145.23, 145.20 (2C), 145.03, 145.02, 144.75, 144.47, 144.41, 144.32, 144.27, 142.96, 142.90, 142.55 (4C), 142.53, 142.32, 142.22, 142.18, 142.05, 142.03, 141.84, 141.79 (3C), 141.64, 141.58, 140.15, 140.11, 139.75, 139.56, 136.46, 135.97, 135.83, 134.34, 99.23 (sp³-*C* of C₆₀), 70.26 (sp³-*C* of C₆₀), 58.35, 25.52, 18.33, 11.09; FT-IR *v*/cm⁻¹ (KBr) 2962, 2926, 2867, 1796, 1509, 1453, 1426, 1375, 1184, 1115, 1006, 766, 611, 574, 556, 526; UV–vis (CHCl₃) λ_{max} /nm (log ε) 258 (5.00), 312 (4.51), 429 (3.45); MALDI-TOF MS *m*/*z* calcd for C₆₅H₉N [M]⁺ 803.0730, found 803.0759.

¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2a

Expanded ¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2a

Expanded ¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2a

¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2b

S10

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2b

S11

¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2c

Expanded ¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2c

¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2d

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2d

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2d

S16

Expanded ¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2e

INES INE& 148.5 148.2 148.1 148.0 145.9 145.8 145.7 145.6 145.3 145.4 145.3 145.2 145.1 145.0 146.9 146.8 146.7 146.8 146.4 146.5

140.0 139.5 139.0 139.5 139.0 137.5 137.0 139.5 139.0 139.5 139.0 134.5 154.0 139.5 139.5 139.0 139.5 139.5 139.0 139.5 1

¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2f

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2f

13C NMR (100 MHz, CS2/CDCI3) of compound 2g

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2g

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2g

S21

13C NMR (100 MHz, CS2/CDCI3) of compound 2h

S22

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2h

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2h

¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2i

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2i

¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2j

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2j

¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2k

Expanded ¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2k

Expanded ¹³C NMR (100 MHz, CS₂/CDCI₃) of compound 2k

Cyclic voltammogram of compound **2a** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2a

Cyclic voltammogram of compound **2b** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2b

Cyclic voltammogram of compound 2c (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2c

Cyclic voltammogram of compound **2d** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2d

Cyclic voltammogram of compound **2e** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2e

Cyclic voltammogram of compound **2f** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2f

Cyclic voltammogram of compound **2g** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2g

Cyclic voltammogram of compound **2h** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2h

Cyclic voltammogram of compound **2i** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2i

Cyclic voltammogram of compound **2j** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2j

Cyclic voltammogram of compound **2k** (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of compound 2k

Cyclic voltammogram of C_{60} (scanning rate: 20 mV s⁻¹)

Differential pulse voltammogram of C₆₀

ESI-TOF-MS for the reaction mixture of 1a, AIBN, CuBr and NaHSO3

species	formula	calculated	found	error
3 a	C ₁₃ H ₁₇ N ₂ [M+H]	201.1392	201.1397	2.5 ppm

Figure S1. Mechanism study

C₆₀ and **D-1a** 0.0 kcal/mol

TS1 (from **D-1a** to **E-1a**) 6.1 kcal/mol

E-1a -14.3 kcal/mol

Figure S2. Relative energies (kcal/mol) for optimized C_{60} , D-1a, TS1 and E-1a at the B3LYP/6-31G (d)

C₆₀ and **G-1a** 0.2 kcal/mol

TS2 (from **G-1a** to **H-1a**) 9.7 kcal/mol

H-1a -3.2 kcal/mol

Figure S3. Relative energies (kcal/mol) for optimized C_{60} , G-1a, TS2 and H-1a at the B3LYP/6-31G (d)

The yv	z coordinates	for the lo	west energy	/ structure	of C.
тис лу	2 coordinates	101 the fe	west energy	suucture	$01 C_{60}$

С	-0.88158800	0.67024300	3.37263400
С	0.55213000	0.45528500	3.47640500
С	1.43848900	1.38641100	2.93371100
С	0.92821800	2.57143200	2.26453600
С	-0.44833400	2.77766500	2.16457300
С	-1.37149700	1.80779900	2.72970300
С	-1.51403800	-0.61925900	3.15040700
С	-0.47118800	-1.63097900	3.11735000
С	0.80577400	-0.96700100	3.31905100
С	1.93576300	-1.40165200	2.62486300
С	2.61537300	0.93387700	2.21117000
С	1.78982600	2.85126400	1.12796000
С	1.24004100	3.32576700	-0.06374300
С	-0.19356800	3.54023700	-0.16788000
С	-1.02069400	3.27204800	0.92358800
С	-2.29782900	2.60821800	0.72182800
С	-2.51415200	1.70278100	1.83791100
С	-3.12152600	0.46464700	1.62476900
С	-2.61168600	-0.72008300	2.29455900
С	-0.56722600	-2.70330500	2.22951400
С	-1.71032800	-2.80839000	1.33796400
С	-2.71149900	-1.83678300	1.36954900
С	-3.28399100	-1.34219100	0.12854500
С	-3.53763300	0.08019300	0.28636600
С	-3.32937900	0.94924700	-0.78543800
С	-2.69717000	2.23902400	-0.56341500
С	-1.83572600	2.51849400	-1.70023500
С	-0.60939800	3.15573300	-1.50632600
С	2.83216900	1.83889800	1.09480600
С	1.51403900	0.61925700	-3.15040700
С	2.61168500	0.72008100	-2.29455900
С	3.12152500	-0.46464600	-1.62476900
С	2.51415200	-1.70278100	-1.83791200
С	1.37149800	-1.80780000	-2.72970400
С	-0.55213000	-0.45528500	-3.47640500
С	-0.80577400	0.96700200	-3.31905100
С	0.47118600	1.63098000	-3.11735000
С	0.56722500	2.70330600	-2.22951400
С	1.71032800	2.80839000	-1.33796300
С	2.71149800	1.83678300	-1.36954800
С	3.53763200	-0.08019300	-0.28636600
С	3.32937800	-0.94924700	0.78543700
С	2.69716900	-2.23902400	0.56341600

С	2.29782900	-2.60821900	-0.72182800	
С	1.02069500	-3.27204900	-0.92358900	
С	0.44833400	-2.77766600	-2.16457300	
С	-0.92821700	-2.57143100	-2.26453500	
С	-1.43848800	-1.38641000	-2.93371000	
С	-1.93576400	1.40165300	-2.62486300	
С	-2.85875400	0.43189600	-2.05952200	
С	-2.61537300	-0.93387700	-2.21116900	
С	-2.83216900	-1.83889700	-1.09480500	
С	-1.78982400	-2.85126300	-1.12795900	
С	-1.24004100	-3.32576700	0.06374200	
С	0.19356800	-3.54023700	0.16788100	
С	0.60939800	-3.15573300	1.50632500	
С	1.83572600	-2.51849400	1.70023400	
С	3.28399000	1.34219200	-0.12854600	
С	2.85875400	-0.43189600	2.05952200	
С	0.88158900	-0.67024200	-3.37263400	

Energy = -2286.17423945 a.u.

The yyz coordinates for	the lowest energy	structure of D_19
The xyz coordinates for	the lowest energy	situcture of D-Ia

С	-0.73230900	-0.00619500	0.01268100
С	-0.01717300	1.18992600	0.15849600
С	1.37730400	1.19484800	0.15515200
С	2.10538800	0.00952700	0.00385700
С	1.38596600	-1.18738600	-0.12954600
С	-0.00467300	-1.19880400	-0.12267600
Н	-0.54378600	2.12859300	0.30558800
Н	1.90743700	2.13645100	0.27985700
Н	1.92631000	-2.12537900	-0.23963600
Н	-0.55029200	-2.13130800	-0.21869500
С	-2.22770000	-0.04985000	0.01679300
Ν	-2.79277800	-1.21452800	0.29171100
Н	-3.81379800	-1.11318000	0.25132600
С	-2.97610000	1.10633100	-0.29674600
Н	-4.06116100	1.07716900	-0.25568900
Н	-2.51686300	2.03364900	-0.61929700
С	3.61535000	0.01621300	-0.03202300
Н	4.03318600	-0.83778800	0.51288900
Н	3.98874900	-0.04580500	-1.06304500
Н	4.02335100	0.93163300	0.40879600
F	102 (2121220		

Energy = -403.67471738 a.u.

The xyz coordinates for the lowest energy structure of **TS1** 1.56858200 0.97558800 1.97564700

С	0.55837100	0.74646200	2.99535300
С	0.09831200	-0.54684900	3.24569400
С	0.62874200	-1.66683900	2.48681200
С	1.59509900	-1.44630300	1.50114700
С	2.07439600	-0.09974500	1.24027200
С	1.25641900	2.22379400	1.30720200
С	0.05213300	2.76937700	1.91026100
С	-0.37955300	1.85578500	2.95478800
С	-1.74052900	1.62813400	3.16426900
С	-1.31869500	-0.78433700	3.46511700
С	-0.45718700	-2.59451900	2.23724600
С	-0.53067900	-3.26558800	1.01530300
С	0.48010000	-3.03756100	-0.00130200
С	1.52514600	-2.15077900	0.23995800
С	2.04063800	-1.27094500	-0.82690100
С	2.30255400	0.03027900	-0.18259800
С	1.99663900	1.22627400	-0.82458000
С	1.46427400	2.34474900	-0.06786500
С	-0.89451000	3.41694900	1.11496400
С	-0.67577900	3.54638700	-0.31661300
С	0.47950900	3.02012400	-0.89536700
С	0.40343900	2.31979400	-2.16708700
С	1.34025400	1.21379300	-2.12631200
С	1.00682400	-0.00639300	-2.71990700
С	1.32185800	-1.25239400	-2.05668800
С	0.23527400	-2.17513500	-2.30078800
С	-0.17915000	-3.05978300	-1.30205600
С	-1.66224700	-2.05074000	2.84048300
С	-3.74607800	-2.10409300	-1.27365100
С	-3.95614200	-2.22930300	0.10106600
С	-4.48745500	-1.11007600	0.85988800
С	-4.78800000	0.09051200	0.21522600
С	-4.57078200	0.22102900	-1.21613000
С	-3.05170500	-0.62548300	-2.96571600
С	-2.11318700	-1.73427400	-2.92246200
С	-2.54370400	-2.64845100	-1.87831400
С	-1.59317500	-3.29544100	-1.08361400
С	-1.81167300	-3.42384000	0.34810600
С	-2.96883600	-2.90287500	0.92782100
С	-3.83029600	-1.09336200	2.15683900
С	-3.50103400	0.12327300	2.75729500
С	-3.81368400	1.37297500	2.08484600
С	-4.44369200	1.35658800	0.83910800
С	-4.01324400	2.27016700	-0.20547700

С	-4.09169900	1.56858700	-1.47631000
С	-3.12194900	1.78759500	-2.45516300
С	-2.59152900	0.66825800	-3.21545100
С	-0.75331100	-1.50454900	-3.13155300
С	-0.27518200	-0.15975100	-3.39111100
С	-1.17426800	0.90597300	-3.43243100
С	-0.82958400	2.17206700	-2.80815300
С	-2.03203400	2.71645700	-2.20382400
С	-1.95783500	3.39093500	-0.98353900
С	-2.96792300	3.16292100	0.03532700
С	-2.31080700	3.17954700	1.33229900
С	-2.72559200	2.30259700	2.33609100
С	-2.89245000	-2.20141500	2.19907700
С	-2.21974600	0.28068800	3.42454900
С	-4.06121800	-0.85375700	-1.94533500
С	5.83605900	-0.86316200	-0.12121400
С	5.79767000	0.19054000	-1.04495400
С	6.67679400	1.26865000	-0.94017400
С	7.62722100	1.33188100	0.08341200
С	7.65964400	0.27864300	1.01132900
С	6.78400500	-0.79529300	0.91479600
Н	5.06986100	0.19534700	-1.84969300
Н	6.61970400	2.07451800	-1.66832900
Н	8.38494000	0.30432000	1.82198300
Н	6.81519500	-1.60329200	1.63730200
С	4.92223600	-2.04414500	-0.19645900
Ν	4.92827000	-2.87743300	0.80866200
Н	4.25851400	-3.63528500	0.63877900
С	4.06625900	-2.22340800	-1.34636400
Н	4.23640200	-1.66785400	-2.26103200
Н	3.60237900	-3.19589600	-1.47791900
С	8.59949900	2.48297500	0.18237600
Н	8.68485900	2.84804500	1.21242300
Н	9.60631100	2.18102200	-0.13547800
Н	8.29314600	3.32256100	-0.44970300

Energy = -2689.84021959 a.u.

The xyz coordinates	for the lowest energy	structure of F-19
The Ayl coordinates	for the lowest energy	situation D-1a

С	1.62970500	1.33888100	1.68057900
С	0.68526300	1.20987400	2.77775800
С	0.29607800	-0.05422200	3.22069600
С	0.83412800	-1.24635700	2.58795900
С	1.72950100	-1.12571600	1.51686800
С	2.13681200	0.19165200	1.05448800

С	1.23352300	2.47043200	0.87711200
С	0.03884900	3.04845100	1.46683100
С	-0.29989900	2.26926100	2.64651600
С	-1.63795600	2.02025000	2.95857700
С	-1.09432400	-0.31273900	3.55156300
С	-0.21448500	-2.23659800	2.52872400
С	-0.31772900	-3.05870800	1.40293700
С	0.63273100	-2.93482700	0.31791700
С	1.65504100	-2.00481000	0.38509300
С	2.25594000	-1.32064800	-0.86402200
С	2.31729200	0.14192600	-0.36865200
С	1.90987500	1.21708600	-1.13889500
С	1.36163000	2.40124000	-0.51312400
С	-0.97516900	3.54393200	0.64498900
С	-0.83510200	3.48316700	-0.80200300
С	0.30902900	2.92148200	-1.36728100
С	0.20200400	2.05717800	-2.53236600
С	1.18658200	1.00991000	-2.40477200
С	0.86929200	-0.29630600	-2.80161500
С	1.27666300	-1.42693600	-2.02508700
С	0.22377400	-2.39566600	-2.06503400
С	-0.09769900	-3.16639400	-0.93961500
С	-1.41092900	-1.66445100	3.12069000
С	-3.69696600	-2.34860200	-0.83419000
С	-3.83040000	-2.29453900	0.55658500
С	-4.36993500	-1.10554300	1.18899300
С	-4.75832800	-0.01370300	0.41033300
С	-4.62162500	-0.06889200	-1.03615300
С	-3.16456600	-1.08485100	-2.74609500
С	-2.17631200	-2.14150600	-2.60934700
С	-2.50846700	-2.92250200	-1.42979500
С	-1.48099200	-3.41537000	-0.61192100
С	-1.62081000	-3.35284600	0.83470400
С	-2.77097800	-2.81069100	1.40691600
С	-3.64944700	-0.89006500	2.43506200
С	-3.34613200	0.40906900	2.85075000
С	-3.74704300	1.54334200	2.03776200
С	-4.43753800	1.33551200	0.84057500
С	-4.10291400	2.11584600	-0.33705500
С	-4.21592000	1.24872700	-1.49849100
С	-3.31125200	1.37121100	-2.55269500
С	-2.77541700	0.18029100	-3.18956900
С	-0.84264000	-1.88790000	-2.92173000
С	-0.44008300	-0.57773100	-3.38108300

С	-1.38290700	0.43864400	-3.51402800
С	-1.05989500	1.78808800	-3.08294200
С	-2.24819000	2.36333600	-2.48806600
С	-2.14148700	3.19711800	-1.37052800
С	-3.08558600	3.06983900	-0.27649200
С	-2.36471800	3.28594300	0.96936700
С	-2.69099500	2.53808100	2.10354900
С	-2.66330300	-1.94445600	2.57099700
С	-2.04307800	0.70275600	3.42072900
С	-4.10552600	-1.21194700	-1.64611000
С	5.71473600	-0.82197900	-0.12558800
С	5.74889000	0.24921500	-1.02910000
С	6.71966200	1.24703400	-0.92342800
С	7.68960800	1.21114300	0.08147700
С	7.65454600	0.13680000	0.98715500
С	6.69143000	-0.85617600	0.88910500
Н	5.01342900	0.33146000	-1.82187700
Н	6.71844300	2.06700500	-1.63761700
Н	8.39707200	0.08358000	1.78071300
Н	6.67157100	-1.68125700	1.59239400
С	4.70589700	-1.91865600	-0.19055600
Ν	4.75309400	-2.83835900	0.70320500
Н	4.01233100	-3.53061100	0.55329300
С	3.64847400	-1.92099100	-1.29155600
Н	3.98490900	-1.39197900	-2.18660500
Н	3.46944400	-2.95972000	-1.59044000
С	8.74395100	2.28510100	0.19928600
Н	8.69838500	2.78189600	1.17646600
Н	9.75284700	1.86493800	0.10144400
Н	8.62494900	3.05223500	-0.57215200

Energy = -2689.87617243 a.u.

The xyz coordinates for the lowest energy structure of G-1a

С	-2.09481800	0.01619900	-0.01370400
С	-1.38170500	-1.16326300	-0.26652300
С	0.01091000	-1.18012500	-0.25348000
С	0.74356700	-0.01202400	0.00362200
С	0.03228400	1.17159400	0.24665500
С	-1.36111600	1.18206200	0.24108300
Н	-1.92477600	-2.08028600	-0.48423600
Н	0.53701000	-2.10546600	-0.47571800
Н	0.57340600	2.08899700	0.46233400
Н	-1.88837500	2.11226000	0.44119400
С	2.24160000	-0.04517200	0.02757700

Ν	2.93605200	-1.05498400	0.52605300
Н	2.29330600	-1.75834300	0.90900600
С	-3.60517200	0.02447300	0.00652300
Н	-4.01956000	-0.71805000	-0.68377700
Н	-3.99014700	-0.21278100	1.00747100
Н	-4.00512500	1.00552900	-0.27059100
С	2.97001700	1.03466700	-0.51265800
Н	4.05292400	1.00547700	-0.46964400
Н	2.48556800	1.87708000	-0.99297100
Energy = -403.67	440382 a.u.		

The xyz coordinates for the lowest energy structure of TS2

		0.	
С	-0.11891200	1.91733600	2.75819000
С	1.06112500	1.16507900	2.39050200
С	1.71477000	1.43964700	1.18756800
С	1.22661700	2.50299800	0.32400500
С	0.09576000	3.23649300	0.68618600
С	-0.59352800	2.93935000	1.92843900
С	-1.05840300	1.00324000	3.38934700
С	-0.45814000	-0.31932800	3.40543100
С	0.84981900	-0.22771900	2.78270900
С	1.32026200	-1.26380400	1.98770400
С	2.21632400	0.36795600	0.35360000
С	1.40901500	2.07569800	-1.04918000
С	0.45302800	2.39563900	-2.01404400
С	-0.72773300	3.15650600	-1.63885400
С	-0.90265800	3.56805900	-0.31715000
С	-2.21140700	3.47127600	0.30715400
С	-2.01890700	3.08087600	1.69480600
С	-2.92020500	2.20494800	2.30395300
С	-2.42859300	1.14504500	3.16857600
С	-1.25228100	-1.44984100	3.20369100
С	-2.67884800	-1.30321300	2.97128500
С	-3.25468000	-0.03189900	2.95251100
С	-4.25351600	0.29903800	1.95218300
С	-4.04542900	1.68110200	1.55017600
С	-4.22957500	2.05475700	0.21796100
С	-3.29314600	2.96767400	-0.41594700
С	-3.11100400	2.53901600	-1.79301600
С	-1.85419000	2.63140900	-2.39178000
С	2.01101400	0.75176300	-1.02656200
С	-1.55694800	-0.90401300	-3.41982300
С	-0.18789300	-1.04269500	-3.19028600
С	0.29948600	-2.09983800	-2.32219200

С	-0.60135600	-2.97989700	-1.71854100
С	-2.02731700	-2.83519500	-1.95478200
С	-3.67626300	-1.05901900	-2.41414600
С	-3.46791200	0.32306900	-2.81645700
С	-2.16008800	0.41832800	-3.44093200
С	-1.36694700	1.54852100	-3.23131300
С	0.05891100	1.40668700	-3.00026300
С	0.64036400	0.13409500	-2.97616500
С	1.42479600	-1.57982700	-1.56856300
С	1.61519900	-1.95838800	-0.24617300
С	0.66914400	-2.85025000	0.38437600
С	-0.41155600	-3.36643800	-0.33551200
С	-1.72122900	-3.46362000	0.28950600
С	-2.72031300	-3.13469900	-0.71256100
С	-3.85488100	-2.40460300	-0.35341400
С	-4.34290500	-1.34649500	-1.22117800
С	-3.93492200	1.36164100	-2.00948600
С	-4.62561200	1.06208700	-0.76665800
С	-4.82766600	-0.26447200	-0.38091000
С	-4.63725900	-0.65345400	1.00626200
С	-4.03677800	-1.97620100	1.02340200
С	-3.07667500	-2.29430000	1.98550900
С	-1.89548300	-3.05238800	1.61051200
С	-0.76813500	-2.52658000	2.36433500
С	0.48857900	-2.42271900	1.76191400
С	1.64203200	-0.19477100	-1.98449700
С	2.13372000	-1.00448600	0.76727800
С	-2.49565100	-1.81704000	-2.78682100
С	8.22302800	1.08930800	-0.12717600
С	6.95147300	1.52995000	0.25868000
С	5.88789500	0.63981700	0.39526300
С	6.05501800	-0.72792600	0.13193100
С	7.33058600	-1.17206200	-0.25368600
С	8.39043300	-0.27952200	-0.38146000
Н	6.78810900	2.58765200	0.45248100
Н	4.91061900	1.02153000	0.67798400
Н	7.49641000	-2.23026000	-0.43514300
Н	9.36866300	-0.65260500	-0.67682600
С	4.91854900	-1.68688400	0.26501500
Ν	3.98310200	-1.53084100	1.24821300
Н	4.22048500	-0.73715700	1.84862000
С	9.38400600	2.04879800	-0.23721100
Н	9.04095600	3.07493600	-0.40461000
Н	9.98591100	2.05139700	0.68147200

Н	10.05319500	1.77602000	-1.06052600	
С	4.79750800	-2.76209700	-0.58801400	
Н	3.99862800	-3.48072600	-0.44990700	
Н	5.47421800	-2.90403400	-1.42228500	
Energy = -2689.83431543 a.u.				

The xyz coordinates for the lowest energy structure of \mathbf{H} -1a

С	0.29011400	0.54650500	-3.33368100
С	-0.96670100	0.48568800	-2.62728800
С	-1.30953000	1.51097200	-1.73570100
С	-0.41888300	2.65376800	-1.56460700
С	0.78583600	2.71508000	-2.25936400
С	1.15353900	1.63922700	-3.16460800
С	0.83707000	-0.79948700	-3.39546900
С	-0.08630300	-1.69332500	-2.71827900
С	-1.20754200	-0.91384400	-2.23519600
С	-1.81391900	-1.22313300	-1.02981700
С	-1.92563500	1.22536000	-0.47861800
С	-0.47799500	3.04181000	-0.17318300
С	0.67043000	3.47924700	0.48111300
С	1.93157400	3.54372800	-0.23755500
С	1.98832900	3.16936700	-1.58153000
С	3.09930100	2.36852800	-2.06657100
С	2.58027400	1.42425700	-3.04500900
С	3.10331300	0.12942800	-3.10950200
С	2.21240300	-1.00436200	-3.29222400
С	0.40540600	-2.76429400	-1.96746600
С	1.83813400	-2.97499900	-1.85226700
С	2.72427400	-2.11245900	-2.50017300
С	3.92393800	-1.66008100	-1.82252200
С	4.15790800	-0.27374600	-2.19873100
С	4.65249400	0.63046500	-1.25694200
С	4.11082300	1.97783200	-1.18978700
С	4.05219500	2.36826600	0.20962400
С	2.98423700	3.13408300	0.67646300
С	-1.40530900	2.13496500	0.49353900
С	1.92973100	0.86050800	3.39319700
С	0.55536300	1.05968200	3.26805700
С	-0.33080900	-0.07526600	3.07837700
С	0.19477800	-1.36876700	3.03001600
С	1.62663300	-1.57834600	3.15366000
С	3.73578400	-0.42273600	2.61233200
С	3.97063800	0.96330700	2.23615500
С	2.85717100	1.75624500	2.72225500

С	2.36941800	2.82015300	1.95787200
С	0.94229300	3.03506400	1.83747600
С	0.04403200	2.16854700	2.47839200
С	-1.39415200	0.31844200	2.17742000
С	-1.90982000	-0.58373700	1.26328600
С	-1.31931700	-1.88701700	1.16956300
С	-0.31201000	-2.29876300	2.05043800
С	0.80044800	-3.09702700	1.56447100
С	2.00211500	-2.65104100	2.24719100
С	3.21395100	-2.59068900	1.55646800
С	4.09897700	-1.45456700	1.74269200
С	4.55782200	1.26154700	1.00524100
С	4.92781300	0.18938900	0.09862100
С	4.70472300	-1.14211600	0.46037600
С	4.19428900	-2.08489500	-0.51903900
С	3.27313700	-2.98082400	0.15714400
С	2.11783700	-3.41524900	-0.49543600
С	0.85702700	-3.47146400	0.22244600
С	-0.19754200	-3.06539200	-0.69146900
С	-1.26277800	-2.28001800	-0.23216300
С	-1.15595900	1.72506300	1.80917900
С	-2.48626400	-0.14906200	-0.11459700
С	2.47760900	-0.48602200	3.32995300
С	-8.94626500	0.58343600	-0.05814200
С	-7.88961900	1.36920700	0.41794900
С	-6.58909200	0.87167100	0.48071200
С	-6.29953600	-0.44081900	0.07442500
С	-7.35656700	-1.22756400	-0.40957500
С	-8.65369600	-0.72524400	-0.46678700
Η	-8.08804000	2.38471000	0.75415800
Н	-5.79199000	1.49416000	0.87648400
Н	-7.15061200	-2.23631800	-0.75512800
Н	-9.45354900	-1.35744900	-0.84656300
С	-4.91379900	-0.98711700	0.15317700
Ν	-3.94491400	-0.01914400	-0.14872200
Н	-4.25557700	0.66499500	-0.82668500
С	-10.34908400	1.13523800	-0.15636800
Н	-10.51526000	1.93881500	0.56878900
Η	-10.54495200	1.55143700	-1.15387000
Н	-11.09967500	0.35753000	0.02189200
С	-4.68607500	-2.25975100	0.53254100
Н	-3.70526500	-2.71049300	0.55896700
Н	-5.51453800	-2.87050500	0.87007000
	a (00 0 5 5 0 0 0 1		

Energy = -2689.85733891 a.u.