Supporting Information for the Paper

Metal-Free [3+2] Cycloaddition of Azides with Tf₂C=CH₂ for the Regioselective Preparation of Elusive 4(Trifluoromethylsulfonyl)- 1,2,3-triazoles

Benito Alcaide, *1 Pedro Almendros, *2 and Carlos Lázaro-Milla¹

¹Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain

²Instituto de Química Orgánica General, IQOG-CSIC, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006-Madrid, Spain

E-mail: alcaideb@quim.ucm.es; Palmendros@iqog.csic.es

Table of Contents

General Methods	2
Experimental Section	2–14
¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	15–64

General Methods: ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AMX-500, Bruker Avance-300, or Varian VRX-300S. NMR spectra were recorded in CDCl₃ solutions, except otherwise stated. Chemical shifts are given in ppm relative to TMS (¹H, 0.0 ppm), or CDCl₃ (¹³C, 76.9 ppm). Low and high resolution mass spectra were taken on an AGILENT 6520 Accurate-Mass QTOF LC/MS spectrometer using the electronic impact (EI) or electrospray modes (ES) unless otherwise stated. IR spectra were recorded on a Bruker Tensor 27 spectrometer. All commercially available compounds were used without further purification.

Azolium salt 2 was easily synthesized according to a convenient literature procedure: Yanai, H.; Takahashi, Y.; Fukaya, H.; Dobashi, Y.; Matsumoto, T. *Chem. Commun.* **2013**, *49*, 10091.

2. **Procedure** for the synthesis of azolium salt To solution of bis[(trifluoromethyl)sulfonyl]methane (1.0)in 1,2-dichloroethane (6.0)mmol) mL), paraformaldehyde (90% purity, 2.0 mmol) and 2-fluoropyridine (2 mmol) were sequentially added at room temperature. After being stirred at 60 °C (typically 4-8 h), the reaction mixture was concentrated under reduced pressure. The resulting residue was washed with CHCl₃ (1.0 mL x 3) to give the corresponding azolium salt 2 as solid.

Azides **3m** and **3t** were commercially available. Azides **3a–i**, **3k**, **3l**, **3o–s**, and **3v** were readily obtained as described in the literature: **3a** and **3v** (L. Hong, W. Lin, F. Zhang, R. Liu, X. Zhou, *Chem. Commun.* **2013**, *49*, 5589); **3b** and **3c** (P. Ramírez-López, M. C. de la Torre, H. E. Montenegro, M. Asenjo, M. A. Sierra, *Org. Lett.* **2008**, *10*, 3555); **3d** (W. Wu, G. Xu, C. Li, G. Yu, Y. Liu, C. Ye, J. Qin, Z. Li, *Chem. Eur. J.* **2013**, *19*, 6874); **3e** (A. Cuetos, F. R. Bisogno, I.

Lavandera, V. Gotor, Chem. Commun. 2013, 49, 2625); 3f (Z. Wang, Y.-T. Cui, Z.-B. Xu, J. Qu, J. Org. Chem. 2008, 73, 2270); 3g (K. Shin, Y. Baek, S. Chang, Angew. Chem. Int. Ed. 2013, 52, 8031); 3h (M. Rueping, C. Vila, U. Uria, Org. Lett. 2012, 14, 768); 3i (J.-C. Lee, S.-W. Chang, C.-C. Liao, F.-C. Chi, C.-S. Chen, Y.-S. Wen, C.-C. Wang, S. S. Kulkarni, R. Puranik, Y.-H. Liu, S.-C. Hung, Chem. Eur. J. 2004, 10, 399); 3j (D. R. Wagle, C. Garai, J. Chiang, M. G. Monteleone, B. E. Kurys, T. W. Strohmeyer, V. R. Hegde, M. S. Manhas, A. K. Bose, J. Org. Chem. 1988, 53, 4229); 3k (D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil, Y. Yamamoto, Angew. Chem. Int. Ed. 2007, 46, 4764); 3l (H.-Y. Hsieh, W.-C. Lee, G. C. Senadi, W.-P. Hu, J.-J. Liang, T.-R. Tsai, Y.-W. Chou, K.-K. Kuo, C.-Y. Chen, J.-J. Wang, J. Med. Chem. 2013, 56, 5422); 3o (K. Barral, A. D. Moorhouse, J. E. Moses, Org. Lett. 2007, 9, 1809); 3p (Q. Zhang, J. P. Shrestha, C.-W. T. Chang, Tetrahedron Lett. 2014, 55, 1839); 3q and 3r (S. Pagoti, S. Surana, A. Chauhan, B. Parasar, J. Dash, Catal. Sci. Technol. 2013, 3, 584); 3s (S. W. Kwok, J. R. Fotsing, R. J. Fraser, V. O. Rodionov, V. V. Fokin, Org. Lett. 2010, 12, 4217).

Azide **3n** has been previously described in the literature through a multistep procedure. We have prepared compound **3n** using a more direct protocol:

- i) Anthranilic acid (200 mg, 1.46 mmol) was solved in CH₃CN (4 mL) and cooled to 0°C in an ice bath. t-BuONO (226 mg, 260 μ L, 2.18 mmol) was added to this stirred mixture, followed by the dropwise addition of TMS-N₃ (200 mg, 230 μ L, 1.75 mmol). The resulting solution was stirred at room temperature for 2 h. The reaction mixture was concentrated under vacuum. The resulting precipitate was filtered off, and washed with water and hexane to give 2-azidobenzoic acid as a beige solid (192 mg, 81%).
- ii) A solution of 2-azidobenzoic acid (163 mg, 1.0 mmol) and concentrated H₂SO₄ (three drops) in metanol (10 mL) was heated at 80°C for 12h in a sealed tube. The mixture was allowed to cool at RT and was concentrated under reduced pressure. Chromatography of the residue on silica gel using

hexanes/ethyl acetate (95:5) as eluent gave analytically pure methyl 2-azidobenzoate (159 mg, 90%) **3n** as a yellow oil.

Azide 3u was synthesized using the following procedure:

- i) To a stirred and cooled solution of 4-iodoaniline (200 mg, 0.91 mmol) in CH₃CN (2 mL) at 0°C, was added *t*-BuONO (141 mg, 162 μL, 1.36 mmol). Next, it was followed by the dropwise addition of TMS-N₃ (125 mg, 145 μL, 1.09 mmol). The resulting solution was stirred at room temperature for 2 h. The reaction mixture was concentrated under vacuum and the crude product was purified by chromatography on silica gel using hexanes as eluent to give 1-azido-4-iodobenzene (200 mg, 90%) as a brown solid.
- ii) A solution of 1-azido-4-iodobenzene (200 mg, 0.81 mmol) and 1-hexyne (0.11 ml, 0.97 mmol) in anhydrous Et_3N (1 ml) was stirred under argon. $Pd(PPh_3)_2Cl_2$ (5 mg) and CuI (2 mg) were sequentially added and the resulting mixture was stirred for 4 h at 35°C. The reaction mixture was concentrated under vacuum and the crude product was purified by chromatography on silica gel using hexanes as eluent to give 1-azido-4-(hex-1-yn-1-yl)benzene (81 mg, 50%) $\bf 3u$ as a dark orange oil.

Azide 3u. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.96$ (t, 3H, J = 7.2 Hz, CH₃), 1.48 (m, 2H, CH₂), 1.59 (m, 2H, CH₂), 2.41 (t, 2H, J = 7.0 Hz, CH₂), 6.94 (m, 2H, 2CH^{Ar}), 7.38 (m, 2H, 2CH^{Ar}); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 139.1$ (C^{Ar-q}-N₃), 132.9 (2CH^{Ar}), 120.7 (C^{Ar-q}), 118.8 (2CH^{Ar}), 90.7 ($C \equiv C$), 79.8 ($C \equiv C$), 30.8 (CH₂), 22.0 (CH₂), 19.1 (CH₂), 13.6 (CH₃); IR

(CHCl₃): v = 2125, 2092 (N₃-asymmetric stretching), 1294 (N₃-symmetric stretching) cm⁻¹; HRMS (ES): calcd for C₁₂H₁₃N₃ [M]⁺: 199.1109; found: 199.1122.

General experimental procedure for the 4-triflyl triazole formation. 2-(2-Fluoropyridin-1-ium-1-yl)-1,1-bis[(trifluoromethyl)sulfonyl]ethan-1-ide **2** (1.0 mmol) was added at room temperature to a solution of the appropriate organic azide **3** (1.0 mmol) in acetonitrile (8.0 mL). After disappearance of the starting material (TLC) the mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired heterocycle **4**. Spectroscopic and analytical data for 4-triflyl triazoles **4** follow.

4-Triflyl triazole 4a. From 40 mg (0.30 mmol) of azide **3a**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **4a** (79 mg, 91%) as a colorless solid; mp 81–83 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 5.67$ (s, 2H, CH₂), 7.36 (m, 2H, 2CH^{Ar}), 7.45 (m, 3H, 3CH^{Ar}), 8.24 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 139.4$ (C-Tf), 132.2 (C^{Ar-q}), 130.7 (CH-*Triazole*), 129.7 (CH^{Ar}), 129.6 (2CH^{Ar}), 128.6 (2CH^{Ar}), 119.3 (q, $J_{CF} = 324.7$ Hz, CF₃), 55.3 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): $\delta = -78.62$ (s, 3F, CF₃); IR (CHCl₃): $\nu = 1375$, 1118 (O=S=O), 1222 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₀H₈N₃O₂SF₃[M]⁺: 291.0289; found: 291.0286.

Bis(**4-triflyl triazole**) **4b.** From 20 mg (0.10 mmol) of azide **3b**, and after recrystallization (acetonitrile) gave compound **4b** (41 mg, 80%) as a colorless solid; mp 206–208 °C; ¹H NMR (300 MHz, DMSO-d₆, 25 °C): δ = 5.80 (s, 4H, 2CH₂), 7.45 (s, 4H, 4CH^{Ar}), 9.71 (s, 2H, 2CH-*Triazole*); ¹³C NMR (75 MHz, DMSO-d₆, 25 °C): δ = 136.9 (2C-Tf), 134.9 (2C^{Ar-q}), 134.2 (2CH-*Triazole*), 129.0 (4CH^{Ar}), 119.0 (q, J_{CF} = 324.8 Hz, 2CF₃), 53.8 (2CH₂); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -79.14 (s, 6F, 2CF₃); IR (CHCl₃): v = 1376 (O=S=O), 1221 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₄H₁₀N₆O₄S₂F₆ [M] *: 504.0109; found: 504.0123.

Bis(**4-triflyl triazole**) **4c.** From 20 mg (0.10 mmol) of azide **3c**, and after recrystallization (acetonitrile) gave compound **4c** (46 mg, 91%) as a colorless solid; mp 202–204 °C; ¹H NMR (300 MHz, (CD₃)₂CO, 25 °C): δ = 6.16 (s, 4H, 2CH₂), 7.46 (m, 4H, 4CH^{Ar}), 9.26 (s, 2H, 2CH-*Triazole*); ¹³C NMR (75 MHz, (CD₃)₂CO, 25 °C): δ = 139.3 (2C-Tf), 134.4 (2CH-*Triazole*), 134.0 (2C^{Ar-q}), 131.7 (2CH^{Ar}), 131.0 (2CH^{Ar}), 120.5 (q, J_{CF} = 323.8 Hz, 2CF₃), 52.7 (2CH₂); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): δ = -80.34 (s, 6F, 2CF₃); IR (acetone): ν = 1374, 1120 (O=S=O), 1215 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₄H₁₀N₆O₄S₂F₆ [M]⁺: 504.0109; found: 504.0086.

Tris(4-triflyl triazole) 4d. From 20 mg (0.08 mmol) of azide 3d, and after recrystallization (acetonitrile) gave compound 4d (59 mg, quantitative yield) as a colorless solid; mp 228–230 °C; ¹H NMR (300 MHz, (CD₃)₂CO, 25 °C): δ = 5.90 (s, 6H, 3CH₂), 7.67 (s, 3H, 3CH^{Ar}), 9.19 (s, 3H, 3CH-*Triazole*); ¹³C NMR (75 MHz, (CD₃)₂CO, 25 °C): δ = 139.1 (3C-Tf), 137.1 (3C^{Ar-q}), 134.1 (3CH-*Triazole*), 130.4 (3CH^{Ar}), 120.3 (q, J_{CF} = 323.7 Hz, 3CF₃), 54.9 (3CH₂); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): δ = -80.37 (s, 9F, 3CF₃); IR (acetone): v = 1378, 1112 (O=S=O), 1194 (C–F) cm⁻¹; HRMS (ES): calcd for C₁₈H₁₂N₉O₆S₃F₉[M]⁺: 716.9929; found: 716.9913.

4-Triflyl triazole 4e. From 22 mg (0.13 mmol) of azide **3e**, and after flash chromatography of the residue using hexanes/dichloromethane (8:2 \rightarrow 1:1) as eluent gave compound **4e** (42 mg, 96%) as a colorless solid; mp 144–146 °C; ¹H NMR (300 MHz, (CD₃)₂CO, 25 °C): δ = 6.44 (s, 2H, CH₂), 7.59 (t, 2H, J = 7.6 Hz, 2CH^{Ar}), 7.72 (t, 1H, J = 7.4 Hz, CH^{Ar}), 8.11 (d, 2H, J = 7.6 Hz, 2CH^{Ar}), 9.18 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, (CD₃)₂CO, 25 °C): δ = 191.0 (C=O), 139.0 (C-Tf), 135.9 (CH-*Triazole*), 135.4 (CH^{Ar}), 134.9 (C^{Ar-q}), 130.0 (2CH^{Ar}), 129.2 (2CH^{Ar}), 120.5 (q, J_{CF} = 323.8 Hz, CF₃), 57.9 (CH₂); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): δ = -80.37 (s, 3F, CF₃); IR (acetone): v = 1693 (C=O), 1380, 1122 (O=S=O), 1222 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₁H₈N₃O₃SF₃ [M]⁺: 319.0238; found: 319.0239.

4-Triflyl triazole (±)-**4f.** From 20 mg (0.12 mmol) of azide (±)-**3f**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1→8:2) as eluent gave compound (±)-**4f** (36 mg, 94%) as a colorless oil; 1 H NMR (300 MHz, CDCl₃, 25 ${}^{\circ}$ C): δ = 2.64 (s, 1H, OH), 4.29 (dd, 1H, J = 12.3, 4.0 Hz, C*H*H), 4.59 (dd, 1H, J = 12.3, 7.7 Hz, CH*H*), 5.85 (dd, 1H, J = 7.7, 3.9 Hz, CH), 7.33 (m, 2H, 2CH^{Ar}), 7.43 (m, 3H, 3CH^{Ar}), 8.45 (s, 1H, CH-*Triazole*); 13 C NMR (75 MHz, CDCl₃, 25 ${}^{\circ}$ C): δ = 139.0 (C-Tf), 134.0 (C^{Ar-q}), 131.7 (CH-*Triazole*), 129.8 (CH^{Ar}), 129.6 (2CH^{Ar}), 127.3 (2CH^{Ar}), 119.3 (q, J_{CF} = 324.7 Hz, CF₃), 68.3 (CH), 64.2 (CH₂); 19 F NMR (282 MHz, CDCl₃, 25 ${}^{\circ}$ C): δ = -78.52 (s, 3F, CF₃); IR (CHCl₃): ν = 3426 (OH), 1381, 1119 (O=S=O), 1217 (C–F) cm⁻¹; HRMS (ES): calcd for C₁₁H₁₀N₃O₃SF₃ [M]*: 321.0395; found: 321.0397.

4-Triflyl triazole 4g. From 20 mg (0.09 mmol) of azide **3g**, and after recrystallization (acetonitrile) gave compound **4g** (30 mg, 86%) as a colorless solid; mp 227–229 °C; ¹H NMR (300 MHz, (CD₃)₂CO, 25 °C): δ = 4.22 (m, 2H, CH₂), 4.95 (m, 2H, CH₂), 7.80 (m, 4H, 4CH^{Ar}), 9.26 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, (CD₃)₂CO, 25 °C): δ = 168.4 (2C=O), 139.2 (C-Tf), 135.4 (2CH^{Ar}), 134.8 (CH-*Triazole*), 132.9 (2C^{Ar-q}), 124.1 (2CH^{Ar}), 120.5 (q, J_{CF} = 323.8 Hz, CF₃), 50.9 (CH₂), 38.7 (CH₂); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): δ = -80.45 (s, 3F, CF₃); IR (CHCl₃): v = 1717 (C=O), 1373, 1134 (O=S=O), 1201 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₃H₉N₄O₄SF₃ [M]⁺: 374.02966; found: 374.03092.

4-Triflyl triazole 4h. From 20 mg (0.16 mmol) of azide **3h**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **4h** (45 mg, 90%) as a colorless solid; mp 113–115 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 5.30 (dd, 2H, J = 7.0, 0.9 Hz, CH₂), 6.37 (dt, 1H, J = 15.7, 7.0 Hz, CH=CH-CH₂), 6.83 (d, 1H, J = 15.8 Hz, CH=CH-CH₂), 7.40 (m, 5H, 5CH^{Ar}), 8.39 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 139.4 (C-Tf), 138.1 (CH=CH-CH₂), 134.6 (C^{Ar-q}), 130.5 (CH-*Triazole*), 129.2 (CH^{Ar}), 128.8 (2CH^{Ar}), 126.9 (2CH^{Ar}), 119.3 (q, J_{CF} = 324.7 Hz, CF₃), 119.0 (CH=CH-CH₂), 53.6 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃, 25

°C): $\delta = -78.56$ (s, 3F, CF₃); IR (CHCl₃): v = 1379, 1118 (O=S=O), 1215 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₂H₁₀N₃O₂SF₃ [M]⁺: 317.0446; found: 317.0450.

4-Trifly1 triazole (+)-**4i.** From 34 mg (0.12 mmol) of azide (+)-**3i**, and after recrystallization (acetonitrile) gave compound (+)-**4i** (40 mg, 82%) as a colorless solid; mp 151–153 °C; [α]_D = +5.1 (c 9.7, acetone); ¹H NMR (300 MHz, (CD₃)₂CO, 25 °C): δ = 1.33 (s, 3H, CH₃), 1.50 (s, 3H, CH₃), 3.08 (ddd, 1H, J = 9.0, 6.0, 5.0 Hz, CHOH), 3.80 (dd, 1H, J = 8.6, 4.9 Hz, C*H*H-OH), 3.94 (dd, 1H, J = 8.6, 6.1 Hz, CH*H*-OH), 4.42 (dd, 1H, J = 9.0, 4.0 Hz, CH), 5.24 (d, 1H, J = 3.6 Hz, CH), 5.47 (d, 1H, J = 4.0 Hz, CH), 6.22 (d, 1H, J = 3.6 Hz, CH), 9.14 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, (CD₃)₂CO, 25 °C): δ = 138.7 (C-Tf), 135.9 (CH-*Triazole*), 120.5 (q, J_{CF} = 323.9 Hz, CF₃), 113.3 (C^q-*Acetonide*), 107.3 (CH), 84.4 (CH), 81.3 (CH), 73.4 (CHOH), 68.2 (CH), 68.1 (CH₂OH), 27.0 (CH₃), 26.4 (CH₃); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): δ = -80.37 (s, 3F, CF₃); IR (acetone): v = 1383, 1028 (O=S=O), 1216 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₂H₁₆N₃O₇SF₃ [M]⁺: 403.0661; found: 403.0681.

4-Triflyl triazole (−)-**4j.** From 30 mg (0.09 mmol) of azide (−)-**3j**, and after flash chromatography of the residue using hexanes/ethyl acetate (8:2→1:1) as eluent gave compound (−)-**4j** (25 mg, 63%) as a colorless solid; mp 115–117 °C; [α]_D = −27.8 (*c* 3.5, acetone); ¹H NMR (500 MHz, (CD₃)₂CO, 25 °C): δ = 3.16 (s, 2H, 2OH), 3.77 (s, 3H, OCH₃), 4.00 (dd, 1H, J = 9.0, 5.9 Hz, C*H*H-OH), 4.24 (dd, 1H, J = 9.0, 6.8 Hz, CH*H*-OH), 4.73 (m, 1H, CH-OH), 4.93 (dd, 1H, J = 6.1, 2.4 Hz, CH-N), 6.15 (d, 1H, J = 2.4 Hz, CH-C=O), 6.94 (m, 2H, 2CH^{Ar}), 7.56 (m, 2H, 2CH^{Ar}), 9.44 (s, 1H, CH-*Triazole*); ¹³C NMR (125 MHz, (CD₃)₂CO, 25 °C): δ = 158.7 (C=O), 158.4 (C^{Ar-q}-OCH₃), 139.6 (C-Tf), 134.5 (CH-*Triazole*), 131.1 (C^{Ar-q}), 121.7 (2CH^{Ar}), 120.5 (q, J_{CF} = 323.8 Hz, CF₃), 115.1 (2CH^{Ar}), 76.5 (CHOH), 67.1 (CH-C=O), 66.4 (CH₂OH), 63.4 (CH-N), 55.9 (OCH₃); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): δ = −80.26 (s, 3F, CF₃); IR (acetone): v = 3450 (OH), 1757 (C=O),

1381, 1102 (O=S=O), 1207 (C-F) cm⁻¹; HRMS (ES): calcd for $C_{15}H_{15}N_4O_6SF_3$ [M]⁺: 436.0664; found: 436.0664.

4-Triflyl triazole 4k. From 20 mg (0.12 mmol) of azide **3k**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5 \rightarrow 9:1) as eluent gave compound **4k** (33 mg, 87%) as a colorless solid; mp 85–87 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.42 (s, 1H, C \equiv CH), 5.84 (s, 2H, CH₂), 7.44 (m, 3H, 3CH^{Ar}), 7.63 (m, 1H, CH^{Ar}), 8.30 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 139.3 (C-Tf), 134.2 (C^{Ar-q}), 133.8 (CH^{Ar}), 130.8 (CH-*Triazole*), 130.1 (CH^{Ar}), 129.9 (CH^{Ar}), 129.8 (CH^{Ar}), 122.2 (C^{Ar-q}), 119.3 (q, J_{CF} = 324.7 Hz, CF₃), 83.7 (C \equiv CH), 80.2 ($C\equiv$ CH), 53.6 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -78.56 (s, 3F, CF₃); IR (CHCl₃): v = 3288 (\equiv C-H), 1381, 1119 (O=S=O), 1217 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₂H₈N₃O₂SF₃[M] *: 315.0289; found: 315.0285.

4-Triflyl triazole 4l. From 20 mg (0.10 mmol) of azide **3l**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5 \rightarrow 85:15) as eluent gave compound **4l** (30 mg, 87%) as a colorless solid; mp 99–101 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 2.31 (m, 2H, J = 6.8 Hz, CH₂), 2.53 (t, 2H, J = 6.6 Hz, CH₂), 4.74 (t, 2H, J = 6.9 Hz, CH₂), 7.33 (m, 3H, 3CH^{Ar}), 7.41 (m, 2H, 2CH^{Ar}), 8.40 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 139.2 (C-Tf), 131.6 (2CH^{Ar}), 131.1 (CH-*Triazole*), 128.4 (2CH^{Ar}), 128.3 (CH^{Ar}), 122.8 (C^{Ar-q}), 119.4 (q, J_{CF} = 324.8 Hz, CF₃), 86.2 (C=C), 83.0 (C=C), 50.3 (CH₂), 28.4 (CH₂), 16.4 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -78.58 (s, 3F, CF₃); IR (CHCl₃): v = 1381, 1120 (O=S=O), 1217 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₄H₁₂N₃O₂SF₃ [M][†]: 343.0602; found: 343.0604.

4-Triflyl triazole 4m. From 50 mg (0.42 mmol) of azide **3m**, and after flash chromatography of the residue using hexanes/ethyl acetate (90:10) as eluent gave compound **4m** (83 mg, 72%) as a colorless solid; mp 135–137 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.62 (m, 3H, 3CH^{Ar}), 7.79 (m, 2H, 2CH^{Ar}), 8.76 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 140.0 (C-Tf),

135.4 (C^{Ar-q}), 130.7 (CH^{Ar}), 130.3 ($2CH^{Ar}$), 128.8 (CH-Triazole), 121.1 ($2CH^{Ar}$), 119.4 (q, $J_{CF} = 324.8$ Hz, CF_3); ^{19}F NMR (282 MHz, $CDCl_3$, 25 $^{\circ}C$): $\delta = -78.38$ (s, 3F, CF_3); IR ($CHCl_3$): v = 1382, 1111 (O=S=O), 1213 (C-F) cm $^{-1}$; HRMS (ES): calcd for $C_9H_6N_3O_2SF_3$ [M] $^+$: 277.0133; found: 277.0136.

4-Triflyl triazole 4n. From 26 mg (0.14 mmol) of azide **3n**, and after flash chromatography of the residue using hexanes/dichloromethane (1:1) as eluent gave compound **4n** (46 mg, 94%) as a colorless solid; mp 119–121 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 3.73 (s, 3H, CH₃), 7.57 (dd, 1H, J = 7.5, 1.5 Hz, CH^{Ar}), 7.77 (m, 2H, 2CH^{Ar}), 8.19 (dd, 3H, J = 7.2, 2.1 Hz, CH^{Ar}), 8.64 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 164.2 (C=O), 138.9 (C-Tf), 134.6 (C^{Ar-q}), 133.5 (CH^{Ar}), 133.4 (CH-*Triazole*), 132.1 (CH^{Ar}), 131.6 (CH^{Ar}), 127.5 (CH^{Ar}), 126.8 (C^{Ar-q}), 119.4 (q, J_{CF} = 324.8 Hz, CF₃), 52.8 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -78.59 (s, 3F, CF₃); IR (CHCl₃): v = 1725 (C=O), 1381, 1108 (O=S=O), 1216 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₁H₈N₃O₄SF₃ [M] *: 335.0188; found: 335.0176.

4-Triflyl triazole 4o. From 23 mg (0.09 mmol) of azide **3o**, and after flash chromatography of the residue using hexanes/dichloromethane (8:2 \rightarrow 1:1) as eluent gave compound **4o** (37 mg, 99%) as a colorless solid; mp 158–160 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.56 (m, 2H, 2CH^{Ar}), 7.97 (m, 2H, 2CH^{Ar}), 8.76 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 140.3 (C-Tf), 139.4 (2CH^{Ar}), 135.0 (C^{Ar-q}), 128.6 (CH-*Triazole*), 122.5 (2CH^{Ar}), 119.3 (q, J_{CF} = 324.8 Hz, CF₃), 96.2 (C^{Ar-q}-I); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -78.27 (s, 3F, CF₃); IR (CHCl₃): v = 1382, 1110 (O=S=O), 1217 (C-F) cm⁻¹; HRMS (ES): calcd for C₉H₅N₃O₂SIF₃ [M]⁺: 402.9099; found: 402.9115.

4-Triflyl triazole 4p. From 25 mg (0.14 mmol) of azide **3p**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **4p** (42 mg, 89%) as a colorless solid; mp 103–105 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 3.90$ (s, 3H, OCH₃), 3.92 (s, 3H,

OCH₃), 6.65 (m, 2H, 2CH^{Ar}), 7.77 (m, 1H, CH^{Ar}), 8.83 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): $\delta = 162.3$ (C^{Ar-q}-OCH₃), 152.0 (C^{Ar-q}-OCH₃), 138.5 (C-Tf), 132.3 (CH-*Triazole*), 126.0 (CH^{Ar}), 119.5 (q, $J_{CF} = 324.7$ Hz, CF₃), 118.0 (C^{Ar-q}), 105.3 (CH^{Ar}), 99.5 (CH^{Ar}), 56.2 (OCH₃), 55.8 (OCH₃); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): $\delta = -78.62$ (s, 3F, CF₃); IR (CHCl₃): v = 1380, 1106 (O=S=O), 1213 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₁H₁₀N₃O₄SF₃ [*M*]⁺: 337.0344; found: 337.0341.

4-Triflyl triazole 4q. From 20 mg (0.16 mmol) of azide **3q**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1 \rightarrow 8:2) as eluent gave compound **4q** (23 mg, 50%) as a colorless solid; mp 132–133 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.23 (d, 1H, J = 4.6 Hz, CH^{Ar}), 7.64 (d, 1H, J = 4.6 Hz, CH^{Ar}), 8.36 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 152.8 (C^{Ar-q}), 136.7 (C-Tf), 121.3 (CH-*Triazole*), 119.6 (q, J_{CF} = 325.2 Hz, CF₃), 118.4 (CH^{Ar}), 118.2 (CH^{Ar}); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -78.32 (s, 3F, CF₃); IR (CHCl₃): v = 1364, 1101 (O=S=O), 1206 (C–F) cm⁻¹; HRMS (ES): calcd for C₆H₃N₄O₂S₂F₃ [M]⁺: 283.9649; found: 283.9637.

4-Triflyl triazole 4r. From 27 mg (0.22 mmol) of azide **3r**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound **4r** (35 mg, 57%) as a colorless solid; mp 102–104 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 7.53 (ddd, 1H, J = 7.5, 4.9, 0.9 Hz, CH^{Ar}), 8.06 (td, 1H, J = 7.9, 1.8 Hz, CH^{Ar}), 8.28 (d, 1H, J = 8.2 Hz, CH^{Ar}), 8.59 (m, 1H, CH^{Ar}), 9.35 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 149.2 (CH^{Ar}), 147.6 (C-Tf), 139.9 (CH^{Ar}), 128.2 (CH-*Triazole*), 125.5 (CH^{Ar}), 119.4 (q, J_{CF} = 324.7 Hz, CF₃), 114.3 (CH^{Ar}), (the signal for a C^{Ar-q} was not detected because of the quadropole effect of the two nitrogen atoms bonded to it); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = –78.43 (s, 3F, CF₃); IR (CHCl₃): ν = 1381, 1111 (O=S=O), 1213 (C-F) cm⁻¹; HRMS (ES): calcd for C₈H₅N₄O₂SF₃ [M]⁺: 278.0085; found: 278.0086.

4-Triflyl triazole 4t. From 20 mg (0.17 mmol) of azide **3t**, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound **4t** (25 mg, 73%) as a colorless solid; mp 107–109 °C; ¹H NMR (300 MHz, CD₃CN, 25 °C): δ = 8.79 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CD₃CN, 25 °C): δ = 138.8 (C-Tf), 134.1 (CH-*Triazole*), 120.2 (q, J_{CF} = 323.6 Hz, CF₃); ¹⁹F NMR (282 MHz, CD₃CN, 25 °C): δ = -80.39 (s, 3F, CF₃); IR (acetone): ν = 1379, 1105 (O=S=O), 1214 (C-F) cm⁻¹; HRMS (ES): calcd for C₃H₂N₃O₂SF₃ [M]⁺: 200.9820; found: 200.9827.

4-Triflyl triazole 4u. From 20 mg (0.10 mmol) of azide **3u**, and after flash chromatography of the residue using hexanes/ethyl acetate (97:3 \rightarrow 9:1) as eluent gave compound **4u** (21 mg, 55%) as a colorless solid; mp 144–146 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 0.98 (t, 3H, J = 7.2 Hz, CH₃), 1.47 (m, 2H, CH₂), 1.63 (m, 2H, CH₂), 2.46 (t, 2H, J = 7.0 Hz, CH₂), 7.61 (d, 2H, J = 8.7 Hz, 2CH^{Ar}), 7.72 (d, 2H, J = 8.7 Hz, 2CH^{Ar}), 8.71 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 140.2 (C-Tf), 134.0 (C^{Ar-q}), 133.3 (2CH^{Ar}), 128.5 (CH-*Triazole*), 127.1 (C^{Ar-q}), 120.7 (2CH^{Ar}), 119.4 (q, J_{CF} = 324.8 Hz, CF₃), 94.3 (C≡C), 78.9 (C≡C), 30.5 (CH₂), 22.0 (CH₂), 19.1 (CH₂), 13.6 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -78.31 (s, 3F, CF₃); IR (CHCl₃): v = 1362, 1111 (O=S=O), 1204 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₅H₁₄N₃O₂SF₃ [M]⁺: 357.0759; found: 357.0748.

4-Triflyl triazole 4v. From 20 mg (0.10 mmol) of azide **3u**, and after flash chromatography of the residue using hexanes/ethyl acetate (97:3 \rightarrow 9:1) as eluent gave compound **4v** (45 mg, 70%) as a colorless oil; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 0.97 (t, 3H, J = 7.2 Hz, CH₃), 1.46 (m, 2H, CH₂), 1.61 (m, 2H, CH₂), 2.63 (t, 2H, J = 7.6 Hz, CH₂), 3.43 (s, 2H, CH₂-*Cyclobutene*), 7.82 (d, 2H, J = 8.9 Hz, 2CH^{Ar}), 7.88 (d, 2H, J = 8.9 Hz, 2CH^{Ar}), 8.78 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 160.3 (C=C-nBu), 140.4 (C-Tf), 135.5 (C^{Ar-q}), 132.0 (C^{Ar-q}), 130.0 (C=C-nBu), 129.9 (2CH^{Ar}), 128.6 (CH-*Triazole*), 121.2 (2CH^{Ar}), 119.7 (q, J_{CF} = 331.2 Hz, 2CF₃), 119.4

(q, $J_{CF} = 324.8$ Hz, CF₃), 86.3 (CTf₂), 36.7 (CH₂-Cyclobutene), 29.7 (CH₂), 28.0 (CH₂), 22.5 (CH₂), 13.7 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): $\delta = -70.48$ (s, 6F, 2CF₃), -70.28 (s, 3F, CF₃); IR (CHCl₃): $\nu = 1382$, 1107 (O=S=O), 1216 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₉H₁₆N₃O₆S₃F₉ [M]⁺: 649.0058; found: 649.0066.

4-Triflyl triazole 4w. From 20 mg (0.11 mmol) of azide **3v**, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5 \rightarrow 9:1) as eluent gave compound **4w** (37 mg, 98%) as a colorless solid; mp 102–104 °C; ¹H NMR (300 MHz, CDCl₃, 25 °C): δ = 5.65 (s, 2H, CH₂), 7.10 (d, 2H, J = 8.0 Hz, 2CH^{Ar}), 7.36 (d, 2H, J = 8.5 Hz, 2CH^{Ar}), 8.22 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, CDCl₃, 25 °C): δ = 141.9 (C^{Ar-q}), 139.6 (C-Tf), 130.5 (CH-*Triazole*), 130.3 (2CH^{Ar}), 128.6 (C^{Ar-q}), 120.1 (2CH^{Ar}), 119.3 (q, J_{CF} = 324.6 Hz, CF₃), 54.7 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃, 25 °C): δ = -78.55 (s, 3F, CF₃); IR (CHCl₃): v = 2114 (N₃), 1379, 1114 (O=S=O), 1216 (C–F) cm⁻¹; HRMS (ES): calcd for C₁₀H₇N₆O₂SF₃ [M]⁺: 332.0303; found: 332.0310.

Bis(**4-triflyl triazole**) **4x.** From 20 mg (0.11 mmol) of azide **3v**, and after recrystallization (acetonitrile) gave compound **4x** (42 mg, 78%) as a colorless solid; mp 181–183 °C; ¹H NMR (300 MHz, (CD₃)₂CO, 25 °C): δ = 6.02 (s, 2H, CH₂), 7.79 (d, 2H, J = 8.6 Hz, 2CH^{Ar}), 8.09 (d, 2H, J = 8.6 Hz, 2CH^{Ar}), 9.33 (s, 1H, CH-*Triazole*), 9.74 (s, 1H, CH-*Triazole*); ¹³C NMR (75 MHz, (CD₃)₂CO, 25 °C): δ = 140.0 (C-Tf), 139.3 (C-Tf), 137.6 (C^{Ar-q}), 137.3 (C^{Ar-q}), 134.4 (CH-*Triazole*), 132.6 (CH-*Triazole*), 131.4 (2CH^{Ar}), 123.0 (2CH^{Ar}), 120.52 (q, J_{CF} = 323.9 Hz, CF₃), 120.49 (q, J_{CF} = 323.9 Hz, CF₃), 54.9 (CH₂); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): δ = -80.18 (s, 3F, CF₃), -80.38 (s, 3F, CF₃); IR (CHCl₃): v = 1379, 1108 (O=S=O), 1216 (C-F) cm⁻¹; HRMS (ES): calcd for C₁₃H₈N₆O₄S₂F₆[M] *: 489.9953; found: 489.9955.

Bis(4,5-dihydro-1*H***-1,2,3-triazole) 5s.** From 21 mg (0.17 mmol) of azide **3s**, and after recrystallization (acetonitrile) gave compound **5s** (72 mg, quantitative yield) as a colorless solid; mp

147–149 °C; ¹H NMR (300 MHz, (CD₃)₂CO, 25 °C): $\delta = 5.44$ (s, 2H, CH₂), 7.79 (d, 2H, J = 7.3 Hz, 2CH^{Ar}), 8.88 (d, 2H, J = 7.3 Hz, 2CH^{Ar}); ¹³C NMR (75 MHz, (CD₃)₂CO, 25 °C): $\delta = 159.3$ (C^{Ar-q}), 145.6 (2CH^{Ar}), 121.7 (q, $J_{CF} = 326.0$ Hz, 2CF₃), 118.4 (2CH^{Ar}), 69.1 (CTf₂), 61.3 (CH₂); ¹⁹F NMR (282 MHz, (CD₃)₂CO, 25 °C): $\delta = -81.03$ (s, 6F, 2CF₃); IR (CHCl₃): $\nu = 2124$ (N–N=N), 1339, 1116 (O=S=O), 1167 (C–F) cm⁻¹; HRMS (ES): calcd for C₉H₆N₄O₄S₂F₆ [*M*]⁺: 411.9735; found: 411.9742.

2D-HMQC NMR (Acetone)

¹⁹F NMR (282 MHz, Acetone)

-80 -82 ō (ppm)

-78 -80 δ (ppm)

¹⁹F NMR (282 MHz, Acetone)

