# Metal-Free [3+2] Cycloaddition of Azides with $\mathrm{Tf}_{2} \mathrm{C}=\mathbf{C H}_{2}$ for the Regioselective Preparation of Elusive 4-(Trifluoromethylsulfonyl)- 1,2,3-triazoles 

Benito Alcaide, ${ }^{* 1}$ Pedro Almendros, ${ }^{* 2}$ and Carlos Lázaro-Milla ${ }^{1}$<br>${ }^{1}$ Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain<br>${ }^{2}$ Instituto de Química Orgánica General, IQOG-CSIC, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006-Madrid, Spain

E-mail: alcaideb@quim.ucm.es; Palmendros@iqog.ssic.es

## Table of Contents

General Methods ..... 2
Experimental Section ..... 2-14
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR Spectra ..... 15-64

General Methods: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX-500, Bruker Avance-300, or Varian VRX-300S. NMR spectra were recorded in $\mathrm{CDCl}_{3}$ solutions, except otherwise stated. Chemical shifts are given in ppm relative to TMS $\left({ }^{1} \mathrm{H}, 0.0 \mathrm{ppm}\right)$, or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}\right.$, 76.9 ppm ). Low and high resolution mass spectra were taken on an AGILENT 6520 Accurate-Mass QTOF LC/MS spectrometer using the electronic impact (EI) or electrospray modes (ES) unless otherwise stated. IR spectra were recorded on a Bruker Tensor 27 spectrometer. All commercially available compounds were used without further purification.

Azolium salt 2 was easily synthesized according to a convenient literature procedure: Yanai, H.; Takahashi, Y.; Fukaya, H.; Dobashi, Y.; Matsumoto, T. Chem. Commun. 2013, 49, 10091.

Procedure for the synthesis of azolium salt 2. To a solution of bis[(trifluoromethyl)sulfonyl]methane (1.0 mmol) in 1,2-dichloroethane (6.0 mL), paraformaldehyde ( $90 \%$ purity, 2.0 mmol ) and 2-fluoropyridine ( 2 mmol ) were sequentially added at room temperature. After being stirred at $60^{\circ} \mathrm{C}$ (typically $4-8 \mathrm{~h}$ ), the reaction mixture was concentrated under reduced pressure. The resulting residue was washed with $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL} \times 3)$ to give the corresponding azolium salt $\mathbf{2}$ as solid.

Azides $\mathbf{3 m}$ and $\mathbf{3 t}$ were commercially available. Azides $\mathbf{3 a - i}, \mathbf{3 k}, \mathbf{3 l}, \mathbf{3 o}-\mathbf{s}$, and $\mathbf{3 v}$ were readily obtained as described in the literature: 3a and $\mathbf{3 v}$ (L. Hong, W. Lin, F. Zhang, R. Liu, X. Zhou, Chem. Commun. 2013, 49, 5589); 3b and 3c (P. Ramírez-López, M. C. de la Torre, H. E. Montenegro, M. Asenjo, M. A. Sierra, Org. Lett. 2008, 10, 3555); 3d (W. Wu, G. Xu, C. Li, G. Yu, Y. Liu, C. Ye, J. Qin, Z. Li, Chem. Eur. J. 2013, 19, 6874); 3e (A. Cuetos, F. R. Bisogno, I.

Lavandera, V. Gotor, Chem. Commun. 2013, 49, 2625); $3 f$ (Z. Wang, Y.-T. Cui, Z.-B. Xu, J. Qu, J. Org. Chem. 2008, 73, 2270); 3g (K. Shin, Y. Baek, S. Chang, Angew. Chem. Int. Ed. 2013, 52, 8031); 3 (M. Rueping, C. Vila, U. Uria, Org. Lett. 2012, 14, 768); 3i (J.-C. Lee, S.-W. Chang, C.-C. Liao, F.-C. Chi, C.-S. Chen, Y.-S. Wen, C.-C. Wang, S. S. Kulkarni, R. Puranik, Y.-H. Liu, S.-C. Hung, Chem. Eur. J. 2004, 10, 399); 3j (D. R. Wagle, C. Garai, J. Chiang, M. G. Monteleone, B. E. Kurys, T. W. Strohmeyer, V. R. Hegde, M. S. Manhas, A. K. Bose, J. Org. Chem. 1988, 53, 4229); 3k (D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil, Y. Yamamoto, Angew. Chem. Int. Ed. 2007, 46, 4764); 31 (H.-Y. Hsieh, W.-C. Lee, G. C. Senadi, W.-P. Hu, J.-J. Liang, T.-R. Tsai, Y.W. Chou, K.-K. Kuo, C.-Y. Chen, J.-J. Wang, J. Med. Chem. 2013, 56, 5422); 3 (K. Barral, A. D. Moorhouse, J. E. Moses, Org. Lett. 2007, 9, 1809); 3p (Q. Zhang, J. P. Shrestha, C.-W. T. Chang, Tetrahedron Lett. 2014, 55, 1839); 3q and 3r (S. Pagoti, S. Surana, A. Chauhan, B. Parasar, J. Dash, Catal. Sci. Technol. 2013, 3, 584); 3s (S. W. Kwok, J. R. Fotsing, R. J. Fraser, V. O. Rodionov, V. V. Fokin, Org. Lett. 2010, 12, 4217).

Azide $3 n$ has been previously described in the literature through a multistep procedure. We have prepared compound $\mathbf{3 n}$ using a more direct protocol:
i) Anthranilic acid ( $200 \mathrm{mg}, 1.46 \mathrm{mmol}$ ) was solved in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. $t$-BuONO ( $226 \mathrm{mg}, 260 \mu \mathrm{~L}, 2.18 \mathrm{mmol}$ ) was added to this stirred mixture, followed by the dropwise addition of TMS- $\mathrm{N}_{3}$ ( $200 \mathrm{mg}, 230 \mu \mathrm{~L}, 1.75 \mathrm{mmol}$ ). The resulting solution was stirred at room temperature for 2 h . The reaction mixture was concentrated under vacuum. The resulting precipitate was filtered off, and washed with water and hexane to give 2-azidobenzoic acid as a beige solid (192 mg, 81\%).
ii) A solution of 2-azidobenzoic acid ( $163 \mathrm{mg}, 1.0 \mathrm{mmol}$ ) and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (three drops) in metanol ( 10 mL ) was heated at $80^{\circ} \mathrm{C}$ for 12 h in a sealed tube. The mixture was allowed to cool at RT and was concentrated under reduced pressure. Chromatography of the residue on silica gel using
hexanes/ethyl acetate (95:5) as eluent gave analytically pure methyl 2-azidobenzoate (159 mg, 90\%) 3n as a yellow oil.

Azide 3u was synthesized using the following procedure:

i) To a stirred and cooled solution of 4-iodoaniline ( $200 \mathrm{mg}, 0.91 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added $t$-BuONO ( $141 \mathrm{mg}, 162 \mu \mathrm{~L}, 1.36 \mathrm{mmol}$ ). Next, it was followed by the dropwise addition of TMS $-\mathrm{N}_{3}$ ( $125 \mathrm{mg}, 145 \mu \mathrm{~L}, 1.09 \mathrm{mmol}$ ). The resulting solution was stirred at room temperature for 2 h . The reaction mixture was concentrated under vacuum and the crude product was purified by chromatography on silica gel using hexanes as eluent to give 1-azido-4-iodobenzene ( $200 \mathrm{mg}, 90 \%$ ) as a brown solid.
ii) A solution of 1-azido-4-iodobenzene ( $200 \mathrm{mg}, 0.81 \mathrm{mmol}$ ) and 1-hexyne ( $0.11 \mathrm{ml}, 0.97 \mathrm{mmol}$ ) in anhydrous $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{ml})$ was stirred under argon. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{mg})$ and $\mathrm{CuI}(2 \mathrm{mg})$ were sequentially added and the resulting mixture was stirred for 4 h at $35^{\circ} \mathrm{C}$. The reaction mixture was concentrated under vacuum and the crude product was purified by chromatography on silica gel using hexanes as eluent to give 1-azido-4-(hex-1-yn-1-yl)benzene ( $81 \mathrm{mg}, 50 \%$ ) $3 \mathbf{u}$ as a dark orange oil.

Azide 3u. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=0.96\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.48(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.41\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.94\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 7.38(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 \mathrm{CH}^{\mathrm{Ar}}\right)$; ${ }^{13} \mathrm{C}$ NMR ( $\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=139.1\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}-\mathrm{N}_{3}\right), 132.9\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 120.7\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right)$, $118.8\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $90.7(\mathrm{C} \equiv \mathrm{C}), 79.8(\mathrm{C} \equiv \mathrm{C})$, $30.8\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right)$; IR
$\left(\mathrm{CHCl}_{3}\right): v=2125,2092\left(\mathrm{~N}_{3}\right.$-asymmetric stretching), $1294\left(\mathrm{~N}_{3}\right.$-Symmetric stretching) $\mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}[M]^{+}: 199.1109$; found: 199.1122.

General experimental procedure for the 4-triflyl triazole formation. 2-(2-Fluoropyridin-1-ium-1-yl)-1,1-bis[(trifluoromethyl)sulfonyl]ethan-1-ide $2(1.0 \mathrm{mmol})$ was added at room temperature to a solution of the appropriate organic azide 3 ( 1.0 mmol ) in acetonitrile ( 8.0 mL ). After disappearance of the starting material (TLC) the mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired heterocycle 4. Spectroscopic and analytical data for 4-triflyl triazoles 4 follow.

4-Triflyl triazole 4a. From $40 \mathrm{mg}(0.30 \mathrm{mmol})$ of azide 3a, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound $\mathbf{4 a}$ ( $79 \mathrm{mg}, 91 \%$ ) as a colorless solid; mp 81-83 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=5.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.36(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{CH}^{\mathrm{Ar}}$ ), $7.45\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}^{\mathrm{Ar}}\right.$ ), $8.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\right.$ Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=$ 139.4 (C-Tf), $132.2\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 130.7(\mathrm{CH}-$ Triazole $), 129.7\left(\mathrm{CH}^{\mathrm{Ar}}\right), 129.6\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 128.6\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $119.3\left(\mathrm{q}, J_{C F}=324.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 55.3\left(\mathrm{CH}_{2}\right)$; ${ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=-78.62(\mathrm{~s}, 3 \mathrm{~F}$, $\mathrm{CF}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}\right): v=1375,1118(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1222(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}: 291.0289$; found: 291.0286 .
$\mathbf{B i s}(4$-triflyl triazole) $\mathbf{4 b}$. From $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of azide $\mathbf{3 b}$, and after recrystallization (acetonitrile) gave compound $\mathbf{4 b}(41 \mathrm{mg}, 80 \%)$ as a colorless solid; mp $206-208{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.{ }_{6}, 25^{\circ} \mathrm{C}\right): \delta=5.80\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.45\left(\mathrm{~s}, 4 \mathrm{H}, 4 \mathrm{CH}^{\mathrm{Ar}}\right), 9.71(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{CH}-$ Triazole $) ;$ ${ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d $_{6}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=136.9$ (2C-Tf), 134.9 ( $2 \mathrm{C}^{\text {Ar-q }}$ ), 134.2 (2CH-Triazole), $129.0\left(4 \mathrm{CH}^{\mathrm{Ar}}\right), 119.0\left(\mathrm{q}, J_{\mathrm{CF}}=324.8 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 53.8\left(2 \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=-79.14\left(\mathrm{~s}, 6 \mathrm{~F}, 2 \mathrm{CF}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=1376(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1221(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~F}_{6}[M]^{+}: 504.0109$; found: 504.0123.

Bis(4-triflyl triazole) 4c. From 20 mg ( 0.10 mmol ) of azide 3c, and after recrystallization (acetonitrile) gave compound $4 \mathrm{c}(46 \mathrm{mg}, 91 \%)$ as a colorless solid; mp $202-204{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25^{\circ} \mathrm{C}\right): \delta=6.16\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 7.46\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{CH}^{\mathrm{Ar}}\right), 9.26(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{CH}$-Triazole $)$; ${ }^{13} \mathrm{C}$ NMR ( $\left.75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=139.3$ (2C-Tf), 134.4 (2CH-Triazole), $134.0\left(2 \mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right)$, $131.7\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 131.0\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 120.5\left(\mathrm{q}, J_{C F}=323.8 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 52.7\left(2 \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25^{\circ} \mathrm{C}\right): \delta=-80.34$ (s, 6F, 2CF ${ }_{3}$ ); IR (acetone): $v=1374,1120(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1215(\mathrm{C}-\mathrm{F})$ $\mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~F}_{6}[M]^{+}: 504.0109$; found: 504.0086.

Tris(4-triflyl triazole) 4d. From 20 mg ( 0.08 mmol ) of azide 3d, and after recrystallization (acetonitrile) gave compound $\mathbf{4 d}$ ( 59 mg , quantitative yield) as a colorless solid; mp $228-230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=5.90\left(\mathrm{~s}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 7.67\left(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{CH}^{\mathrm{Ar}}\right.$ ), $9.19(\mathrm{~s}, 3 \mathrm{H}$, 3CH-Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=139.1$ (3C-Tf), $137.1\left(3 \mathrm{C}^{\mathrm{Ar-q}}\right), 134.1$ (3CH-Triazole), $130.4\left(3 \mathrm{CH}^{\mathrm{Ar}}\right)$, $120.3\left(\mathrm{q}, J_{C F}=323.7 \mathrm{~Hz}, 3 \mathrm{CF}_{3}\right), 54.9\left(3 \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=-80.37\left(\mathrm{~s}, 9 \mathrm{~F}, 3 \mathrm{CF}_{3}\right)$; IR (acetone): $v=1378,1112(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1194$ (C-F) $\mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~S}_{3} \mathrm{~F}_{9}\left[\mathrm{M}^{+}\right.$: 716.9929; found: 716.9913.

4-Triflyl triazole $\mathbf{4 e}$. From $22 \mathrm{mg}(0.13 \mathrm{mmol})$ of azide $\mathbf{3 e}$, and after flash chromatography of the residue using hexanes/dichloromethane ( $8: 2 \rightarrow 1: 1$ ) as eluent gave compound $\mathbf{4 e}(42 \mathrm{mg}, 96 \%)$ as a colorless solid; mp $144-146{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=6.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $7.59\left(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 7.72\left(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{Ar}}\right), 8.11\left(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right)$, 9.18 (s, 1H, CH-Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 2{ }^{\circ} \mathrm{C}$ ): $\delta=191.0(\mathrm{C}=\mathrm{O}), 139.0$ (C-Tf), $135.9(\mathrm{CH}$-Triazole $), 135.4\left(\mathrm{CH}^{\mathrm{Ar}}\right), 134.9\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 130.0\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 129.2\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 120.5\left(\mathrm{q}, J_{C F}=\right.$ $323.8 \mathrm{~Hz}, \mathrm{CF}_{3}$ ), $57.9\left(\mathrm{CH}_{2}\right)$; ${ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=-80.37\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR (acetone): $v=1693(\mathrm{C}=\mathrm{O}), 1380,1122$ ( $\mathrm{O}=\mathrm{S}=\mathrm{O}$ ), 1222 (C-F) cm ${ }^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SF}_{3}[M]^{+}$: 319.0238; found: 319.0239.

4-Triflyl triazole ( $\pm$ )-4f. From $20 \mathrm{mg}(0.12 \mathrm{mmol})$ of azide $( \pm)$ - $\mathbf{3 f}$, and after flash chromatography of the residue using hexanes/ethyl acetate $(9: 1 \rightarrow 8: 2)$ as eluent gave compound $( \pm)-4 f(36 \mathrm{mg}, 94 \%)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=2.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.29(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.3$, $4.0 \mathrm{~Hz}, \mathrm{CHH}$ ), 4.59 (dd, $1 \mathrm{H}, \mathrm{J}=12.3,7.7 \mathrm{~Hz}, \mathrm{CHH}$ ), $5.85(\mathrm{dd}, 1 \mathrm{H}, J=7.7,3.9 \mathrm{~Hz}, \mathrm{CH}), 7.33(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}$ ), $7.43\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}^{\mathrm{Ar}}\right.$ ), 8.45 (s, $1 \mathrm{H}, \mathrm{CH}$-Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta$ $=139.0(\mathrm{C}-\mathrm{Tf}), 134.0\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 131.7(\mathrm{CH}-$ Triazole $), 129.8\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $129.6\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 127.3\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $119.3\left(\mathrm{q}, J_{C F}=324.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 68.3(\mathrm{CH}), 64.2\left(\mathrm{CH}_{2}\right)$; ${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-$ $78.52\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v=3426(\mathrm{OH}), 1381,1119(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1217(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SF}_{3}[M]^{+}$: 321.0395; found: 321.0397.

4-Triflyl triazole $\mathbf{4 g}$. From 20 mg ( 0.09 mmol ) of azide $\mathbf{3 g}$, and after recrystallization (acetonitrile) gave compound $\mathbf{4 g}$ ( $30 \mathrm{mg}, 86 \%$ ) as a colorless solid; mp 227-229 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25^{\circ} \mathrm{C}\right): \delta=4.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.80\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{CH}^{\mathrm{Ar}}\right), 9.26(\mathrm{~s}, 1 \mathrm{H}$, CH-Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=168.4$ (2C=O), 139.2 (C-Tf), 135.4 $\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 134.8(\mathrm{CH}-$ Triazole $), 132.9\left(2 \mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 124.1\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 120.5\left(\mathrm{q}, J_{C F}=323.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 50.9$ $\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR ( $\left.282 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=-80.45\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right):$ $v=1717(\mathrm{C}=\mathrm{O})$, 1373, $1134(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1201(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{SF}_{3}$ $[M]^{+}: 374.02966$; found: 374.03092.

4-Triflyl triazole $\mathbf{4 h}$. From $20 \mathrm{mg}(0.16 \mathrm{mmol})$ of azide $\mathbf{3 h}$, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound $\mathbf{4 h}(45 \mathrm{mg}, 90 \%$ ) as a colorless solid; mp 113-115 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=5.30$ (dd, $2 \mathrm{H}, \mathrm{J}=7.0,0.9 \mathrm{~Hz}, \mathrm{CH}_{2}$ ), $6.37\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=15.7,7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}\right), 6.83\left(\mathrm{~d}, 1 \mathrm{H}, J=15.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}\right), 7.40(\mathrm{~m}$, $5 \mathrm{H}, 5 \mathrm{CH}^{\mathrm{Ar}}$ ), 8.39 (s, 1H, CH-Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$ ): $\delta=139.4$ (C-Tf), 138.1 $\left(\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}\right), 134.6\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 130.5(\mathrm{CH}-$ Triazole $), 129.2\left(\mathrm{CH}^{\mathrm{Ar}}\right), 128.8\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 126.9\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $119.3\left(\mathrm{q}, J_{C F}=324.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 119.0\left(\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}\right), 53.6\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$
$\left.{ }^{\circ} \mathrm{C}\right): \delta=-78.56\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v=1379,1118(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1215(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}: 317.0446$; found: 317.0450.

4-Triflyl triazole (+)-4i. From $34 \mathrm{mg}(0.12 \mathrm{mmol})$ of azide ( + )-3i, and after recrystallization (acetonitrile) gave compound (+)-4i (40 mg, 82\%) as a colorless solid; mp $151-153{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+5.1$ (c 9.7, acetone); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25^{\circ} \mathrm{C}$ ): $\delta=1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 3.08 (ddd, 1H, $J=9.0,6.0,5.0 \mathrm{~Hz}, \mathrm{CHOH}$ ), 3.80 (dd, $1 \mathrm{H}, J=8.6,4.9 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{OH}$ ), 3.94 (dd, 1H, $J=8.6,6.1 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{OH}), 4.42$ (dd, $1 \mathrm{H}, J=9.0,4.0 \mathrm{~Hz}, \mathrm{CH}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, \mathrm{CH}), 5.47$ (d, 1H, $J=4.0 \mathrm{~Hz}, \mathrm{CH}), 6.22$ (d, 1H, $J=3.6 \mathrm{~Hz}, \mathrm{CH}), 9.14$ (s, 1H, CH-Triazole); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25^{\circ} \mathrm{C}\right): \delta=138.7(\mathrm{C}-\mathrm{Tf}), 135.9(\mathrm{CH}-$ Triazole $), 120.5\left(\mathrm{q}, J_{\mathrm{CF}}=323.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $113.3\left(\mathrm{C}^{\mathrm{q}}\right.$-Acetonide), $107.3(\mathrm{CH}), 84.4(\mathrm{CH}), 81.3(\mathrm{CH}), 73.4(\mathrm{CHOH}), 68.2(\mathrm{CH}), 68.1\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $27.0\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=-80.37\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR (acetone): $v=1383,1028(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1216(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SF}_{3}$ $[M]^{+}: 403.0661$; found: 403.0681.

4-Triflyl triazole (-)-4j. From $30 \mathrm{mg}(0.09 \mathrm{mmol})$ of azide (-)-3j, and after flash chromatography of the residue using hexanes/ethyl acetate ( $8: 2 \rightarrow 1: 1$ ) as eluent gave compound ( - ) $\mathbf{- 4} \mathbf{j}(25 \mathrm{mg}, 63 \%$ ) as a colorless solid; mp $115-117^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-27.8$ (c 3.5, acetone); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta=3.16(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{OH}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0,5.9 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{OH}), 4.24$ (dd, $1 \mathrm{H}, J=9.0,6.8 \mathrm{~Hz}, \mathrm{CHH}-\mathrm{OH}$ ), $4.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{OH}), 4.93(\mathrm{dd}, 1 \mathrm{H}, J=6.1,2.4 \mathrm{~Hz}, \mathrm{CH}-\mathrm{N})$, $6.15(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{CH}-\mathrm{C}=\mathrm{O}), 6.94\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 7.56\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 9.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$ Triazole); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=158.7(\mathrm{C}=\mathrm{O})$, $158.4\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}-\mathrm{OCH}_{3}\right), 139.6$ (C-Tf), 134.5 (CH-Triazole), $131.1\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 121.7\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 120.5\left(\mathrm{q}, J_{C F}=323.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 115.1$ $\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 76.5(\mathrm{CHOH}), 67.1(\mathrm{CH}-\mathrm{C}=\mathrm{O}), 66.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 63.4(\mathrm{CH}-\mathrm{N}), 55.9\left(\mathrm{OCH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25^{\circ} \mathrm{C}\right): \delta=-80.26\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR (acetone): $v=3450(\mathrm{OH}), 1757(\mathrm{C}=\mathrm{O})$,

1381, 1102 ( $\mathrm{O}=\mathrm{S}=\mathrm{O}$ ), 1207 (C-F) $\mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SF}_{3}[M]^{+}: 436.0664$; found: 436.0664.

4-Triflyl triazole $\mathbf{4 k}$. From 20 mg ( 0.12 mmol ) of azide $\mathbf{3 k}$, and after flash chromatography of the residue using hexanes/ethyl acetate $(95: 5 \rightarrow 9: 1)$ as eluent gave compound $\mathbf{4 k}(33 \mathrm{mg}, 87 \%)$ as a colorless solid; mp $85-87^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=3.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 5.84$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ), $7.44\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}^{\mathrm{Ar}}\right), 7.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Ar}}\right.$ ), $8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-T r i a z o l e) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=139.3(\mathrm{C}-\mathrm{Tf}), 134.2\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right)$, $133.8\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $130.8(\mathrm{CH}-$ Triazole $), 130.1$ $\left(\mathrm{CH}^{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}^{\mathrm{Ar}}\right), 129.8\left(\mathrm{CH}^{\mathrm{Ar}}\right), 122.2\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 119.3\left(\mathrm{q}, J_{C F}=324.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 83.7(\mathrm{C} \equiv \mathrm{CH})$, $80.2(\mathrm{C} \equiv \mathrm{CH}), 53.6\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.56\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v=3288(\equiv \mathrm{C}-\mathrm{H}), 1381,1119(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1217(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}$: 315.0289; found: 315.0285.

4-Triflyl triazole 41 . From $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of azide 31, and after flash chromatography of the residue using hexanes/ethyl acetate $(95: 5 \rightarrow 85: 15)$ as eluent gave compound $\mathbf{4 l}(30 \mathrm{mg}, 87 \%)$ as a colorless solid; mp 99-101 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=2.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 2.53\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.33\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}^{\mathrm{Ar}}\right), 7.41(\mathrm{~m}$, $2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}$ ), 8.40 (s, 1H, CH-Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=139.2$ (C-Tf), 131.6 $\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $131.1(\mathrm{CH}-$ Triazole $)$, $128.4\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}^{\mathrm{Ar}}\right), 122.8\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 119.4\left(\mathrm{q}, J_{C F}=324.8\right.$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 86.2(\mathrm{C} \equiv \mathrm{C}), 83.0(\mathrm{C} \equiv \mathrm{C}), 50.3\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{2}\right)$; ${ }^{19} \mathrm{~F}$ NMR ( 282 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.58\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v=1381,1120(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1217(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}: 343.0602$; found: 343.0604.

4-Triflyl triazole $\mathbf{4 m}$. From 50 mg ( 0.42 mmol ) of azide $\mathbf{3 m}$, and after flash chromatography of the residue using hexanes/ethyl acetate ( $90: 10$ ) as eluent gave compound $\mathbf{4 m}(83 \mathrm{mg}, 72 \%$ ) as a colorless solid; mp $135-137{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.62\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{CH}^{\mathrm{Ar}}\right.$ ), 7.79 (m, 2H, $2 \mathrm{CH}^{\mathrm{Ar}}$ ), 8.76 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-$ Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=140.0(\mathrm{C}-\mathrm{Tf})$,
$135.4\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 130.7\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $130.3\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 128.8(\mathrm{CH}-$ Triazole $), 121.1\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 119.4\left(\mathrm{q}, J_{C F}=\right.$ $324.8 \mathrm{~Hz}, \mathrm{CF}_{3}$ ); ${ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=-78.38\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v=$ 1382, 1111 ( $\mathrm{O}=\mathrm{S}=\mathrm{O}$ ), 1213 (C-F) $\mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}$: 277.0133; found: 277.0136.

4-Triflyl triazole $4 \mathbf{n}$. From $26 \mathrm{mg}(0.14 \mathrm{mmol})$ of azide $\mathbf{3 n}$, and after flash chromatography of the residue using hexanes/dichloromethane (1:1) as eluent gave compound $\mathbf{4 n}$ ( $46 \mathrm{mg}, 94 \%$ ) as a colorless solid; mp 119-121 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.57$ (dd, $\left.1 \mathrm{H}, J=7.5,1.5 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{Ar}}\right), 7.77\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 8.19\left(\mathrm{dd}, 3 \mathrm{H}, J=7.2,2.1 \mathrm{~Hz}^{2} \mathrm{CH}^{\mathrm{Ar}}\right), 8.64(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}-$ Triazole $) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=164.2$ (C=O), 138.9 (C-Tf), 134.6 ( $\mathrm{C}^{\text {Ar- }}$ $\left.{ }^{q}\right)$, $133.5\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $133.4(\mathrm{CH}$-Triazole $)$, $132.1\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $131.6\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $127.5\left(\mathrm{CH}^{\mathrm{Ar}}\right), 126.8\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right)$, $119.4\left(\mathrm{q}, J_{C F}=324.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right)$; ${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.59(\mathrm{~s}, 3 \mathrm{~F}$, $\mathrm{CF}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}\right): v=1725(\mathrm{C}=\mathrm{O}), 1381,1108(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1216(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SF}_{3}[M]^{+}$: 335.0188; found: 335.0176.

4-Triflyl triazole 40. From $23 \mathrm{mg}(0.09 \mathrm{mmol})$ of azide 3o, and after flash chromatography of the residue using hexanes/dichloromethane $(8: 2 \rightarrow 1: 1)$ as eluent gave compound $\mathbf{4 0}(37 \mathrm{mg}, 99 \%)$ as a colorless solid; mp $158-160{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.56\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}^{\text {Ar }}\right.$ ), 7.97 ( $\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}$ ), 8.76 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-$ Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$ ): $\delta=140.3(\mathrm{C}-\mathrm{Tf})$, $139.4\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 135.0\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 128.6(\mathrm{CH}$-Triazole $), 122.5\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 119.3\left(\mathrm{q}, J_{C F}=324.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $96.2\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}-\mathrm{I}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.27\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=1382$, $1110(\mathrm{O}=\mathrm{S}=\mathrm{O})$, $1217(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SIF}_{3}[M]^{+}$: 402.9099; found: 402.9115.

4-Triflyl triazole $\mathbf{4}$ p. From $25 \mathrm{mg}(0.14 \mathrm{mmol})$ of azide $\mathbf{3 p}$, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound $\mathbf{4} \mathbf{p}$ ( $42 \mathrm{mg}, 89 \%$ ) as a colorless solid; mp 103-105 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{OCH}_{3}\right), 6.65\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 7.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Ar}}\right), 8.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$-Triazole); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=162.3\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}-\mathrm{OCH}_{3}\right), 152.0\left(\mathrm{C}^{\mathrm{Ar-q}}-\mathrm{OCH}_{3}\right), 138.5(\mathrm{C}-\mathrm{Tf}), 132.3(\mathrm{CH}-$ Triazole $)$, $126.0\left(\mathrm{CH}^{\mathrm{Ar}}\right), 119.5\left(\mathrm{q}, J_{C F}=324.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.0\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 105.3\left(\mathrm{CH}^{\mathrm{Ar}}\right), 99.5\left(\mathrm{CH}^{\mathrm{Ar}}\right), 56.2$ $\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{OCH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=-78.62\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right): v$ $=1380,1106(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1213(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SF}_{3}[M]^{+}: 337.0344$; found: 337.0341.

4-Triflyl triazole 4q. From 20 mg ( 0.16 mmol ) of azide $\mathbf{3 q}$, and after flash chromatography of the residue using hexanes/ethyl acetate $(9: 1 \rightarrow 8: 2)$ as eluent gave compound $\mathbf{4 q}(23 \mathrm{mg}, 50 \%)$ as a colorless solid; mp $132-133{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}$, $\mathrm{CH}^{\mathrm{Ar}}$ ), $7.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{Ar}}\right.$ ), $8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-$ Triazole $) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ $\left.{ }^{\circ} \mathrm{C}\right): \delta=152.8\left(\mathrm{C}^{\text {Ar-q }}\right), 136.7(\mathrm{C}-\mathrm{Tf}), 121.3(\mathrm{CH}-$ Triazole $), 119.6\left(\mathrm{q}, J_{C F}=325.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 118.4$ $\left(\mathrm{CH}^{\mathrm{Ar}}\right), 118.2\left(\mathrm{CH}^{\mathrm{Ar}}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.32\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v$ $=1364,1101(\mathrm{O}=\mathrm{S}=\mathrm{O})$, $1206(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{~F}_{3}\left[\mathrm{M}^{+}\right.$: 283.9649; found: 283.9637.

4-Triflyl triazole 4 r. From $27 \mathrm{mg}(0.22 \mathrm{mmol})$ of azide $\mathbf{3 r}$, and after flash chromatography of the residue using hexanes/ethyl acetate (95:5) as eluent gave compound $\mathbf{4 r}$ ( $35 \mathrm{mg}, 57 \%$ ) as a colorless solid; mp 102-104 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ): $\delta=7.53(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=7.5,4.9,0.9 \mathrm{~Hz}$, $\left.\mathrm{CH}^{\mathrm{Ar}}\right), 8.06\left(\mathrm{td}, 1 \mathrm{H}, J=7.9,1.8 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{Ar}}\right), 8.28\left(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{CH}^{\mathrm{Ar}}\right), 8.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}^{\mathrm{Ar}}\right)$, 9.35 (s, 1H, CH-Triazole); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=149.2\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $147.6(\mathrm{C}-\mathrm{Tf})$, $139.9\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, $128.2(\mathrm{CH}$-Triazole $)$, $125.5\left(\mathrm{CH}^{\mathrm{Ar}}\right), 119.4\left(\mathrm{q}, J_{C F}=324.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 114.3\left(\mathrm{CH}^{\mathrm{Ar}}\right)$, (the signal for a $C^{A r-q}$ was not detected because of the quadropole effect of the two nitrogen atoms bonded to it); ${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.43\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=1381$, 1111 ( $\mathrm{O}=\mathrm{S}=\mathrm{O}$ ), 1213 (C-F) $\mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}$: 278.0085; found: 278.0086.

4-Triflyl triazole 4t. From $20 \mathrm{mg}(0.17 \mathrm{mmol})$ of azide 3t, and after flash chromatography of the residue using hexanes/ethyl acetate (9:1) as eluent gave compound $\mathbf{4 t}$ ( $25 \mathrm{mg}, 73 \%$ ) as a colorless solid; mp 107-109 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CD}_{3} \mathrm{CN}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=8.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$-Triazole); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CD ${ }_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$ ): $\delta=138.8$ (C-Tf), 134.1 (CH-Triazole), 120.2 (q, $J_{C F}=323.6 \mathrm{~Hz}$, $\mathrm{CF}_{3}$ ); ${ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=-80.39$ (s, 3F, $\mathrm{CF}_{3}$ ); IR (acetone): $v=1379,1105$ ( $\mathrm{O}=\mathrm{S}=\mathrm{O}$ ), 1214 (C-F) cm ${ }^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}$: 200.9820; found: 200.9827.

4-Triflyl triazole $4 \mathbf{u}$. From $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of azide $3 \mathbf{u}$, and after flash chromatography of the residue using hexanes/ethyl acetate $(97: 3 \rightarrow 9: 1)$ as eluent gave compound $\mathbf{4 u}(21 \mathrm{mg}, 55 \%)$ as a colorless solid; mp 144-146 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=0.98(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7$ $\mathrm{Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}$ ), $7.72\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right.$ ), 8.71 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$-Triazole); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=140.2(\mathrm{C}-\mathrm{Tf}), 134.0\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 133.3\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 128.5(\mathrm{CH}-$ Triazole $), 127.1\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right)$, $120.7\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 119.4\left(\mathrm{q}, J_{C F}=324.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 94.3(\mathrm{C} \equiv C), 78.9(\mathrm{C} \equiv \mathrm{C}), 30.5\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right)$, $19.1\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.31\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right):$ $v=1362,1111(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1204(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}$: 357.0759; found: 357.0748.

4-Triflyl triazole $4 \mathbf{v}$. From $20 \mathrm{mg}(0.10 \mathrm{mmol})$ of azide $\mathbf{3 u}$, and after flash chromatography of the residue using hexanes/ethyl acetate $(97: 3 \rightarrow 9: 1)$ as eluent gave compound $4 v(45 \mathrm{mg}, 70 \%)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=0.97\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.46(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), $1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.63\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Cyclobutene), $7.82(\mathrm{~d}$, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}$ ), $7.88\left(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right.$ ), 8.78 ( $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-T r i a z o l e\right) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=160.3(C=\mathrm{C}-n \mathrm{Bu}), 140.4(\mathrm{C}-\mathrm{Tf}), 135.5\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 132.0\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 130.0(\mathrm{C}=C-$ $n B u)$, $129.9\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.6(\mathrm{CH}-$ Triazole $), 121.2\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 119.7\left(\mathrm{q}, J_{C F}=331.2 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 119.4$
$\left(\mathrm{q}, J_{C F}=324.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 86.3\left(\mathrm{CTf}_{2}\right)$, $36.7\left(\mathrm{CH}_{2}-\right.$ Cyclobutene $)$, $29.7\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-70.48\left(\mathrm{~s}, 6 \mathrm{~F}, 2 \mathrm{CF}_{3}\right),-70.28(\mathrm{~s}, 3 \mathrm{~F}$, $\mathrm{CF}_{3}$ ); IR $\left(\mathrm{CHCl}_{3}\right): v=1382,1107(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1216(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{3} \mathrm{~F}_{9}[M]^{+}:$649.0058; found: 649.0066.

4-Triflyl triazole $4 \mathbf{w}$. From $20 \mathrm{mg}(0.11 \mathrm{mmol})$ of azide $\mathbf{3 v}$, and after flash chromatography of the residue using hexanes/ethyl acetate ( $95: 5 \rightarrow 9: 1$ ) as eluent gave compound $\mathbf{4 w}(37 \mathrm{mg}, 98 \%)$ as a colorless solid; mp $102-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=5.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.10$ (d, 2H, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 7.36\left(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-T r i a z o l e) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=141.9\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right)$, $139.6(\mathrm{C}-\mathrm{Tf}), 130.5(\mathrm{CH}-$ Triazole $), 130.3\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $128.6\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 120.1\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $119.3\left(\mathrm{q}, J_{C F}=324.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 54.7\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=-78.55\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v=2114\left(\mathrm{~N}_{3}\right), 1379,1114(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1216$ (C-F) $\mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{SF}_{3}[M]^{+}$: 332.0303; found: 332.0310.

Bis(4-triflyl triazole) 4x. From $20 \mathrm{mg}(0.11 \mathrm{mmol})$ of azide $\mathbf{3 v}$, and after recrystallization (acetonitrile) gave compound $\mathbf{4 x}(42 \mathrm{mg}, 78 \%)$ as a colorless solid; $\mathrm{mp} 181-183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25^{\circ} \mathrm{C}\right): \delta=6.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.79\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right), 8.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}$ ), 9.33 (s, 1H, CH-Triazole), 9.74 (s, 1H, CH-Triazole); ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=140.0(\mathrm{C}-\mathrm{Tf}), 139.3(\mathrm{C}-\mathrm{Tf}), 137.6\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 137.3\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 134.4(\mathrm{CH}-$ Triazole), $132.6(\mathrm{CH}-$ Triazole $), 131.4\left(2 \mathrm{CH}^{\mathrm{Ar}}\right)$, $123.0\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 120.52\left(\mathrm{q}, J_{C F}=323.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 120.49 (q, $J_{C F}=323.9 \mathrm{~Hz}, \mathrm{CF}_{3}$ ), $54.9\left(\mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=-80.18$ $\left(\mathrm{s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-80.38\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=1379,1108(\mathrm{O}=\mathrm{S}=\mathrm{O}), 1216(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~F}_{6}[M]^{+}$: 489.9953; found: 489.9955.

Bis(4,5-dihydro-1H-1,2,3-triazole) 5s. From 21 mg ( 0.17 mmol ) of azide 3s, and after recrystallization (acetonitrile) gave compound 5 s ( 72 mg , quantitative yield) as a colorless solid; mp
$147-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.3$ $\mathrm{Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}$ ), $8.88\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{CH}^{\mathrm{Ar}}\right)$; ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}$ ): $\delta=159.3$ $\left(\mathrm{C}^{\mathrm{Ar}-\mathrm{q}}\right), 145.6\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 121.7\left(\mathrm{q}, J_{C F}=326.0 \mathrm{~Hz}, 2 \mathrm{CF}_{3}\right), 118.4\left(2 \mathrm{CH}^{\mathrm{Ar}}\right), 69.1\left(\mathrm{CTf}_{2}\right), 61.3\left(\mathrm{CH}_{2}\right)$; ${ }^{19}$ F NMR ( $\left.282 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 25{ }^{\circ} \mathrm{C}\right): \delta=-81.03\left(\mathrm{~s}, 6 \mathrm{~F}, 2 \mathrm{CF}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right): v=2124(\mathrm{~N}-$ $\mathrm{N}=\mathrm{N}$ ), 1339, $1116(\mathrm{O}=\mathrm{S}=\mathrm{O})$, $1167(\mathrm{C}-\mathrm{F}) \mathrm{cm}^{-1}$; HRMS (ES): calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~F}_{6}\left[\mathrm{M}^{+}\right.$: 411.9735; found: 411.9742.



${ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}, \mathrm{CDCl})$


${ }^{19} \mathrm{FNMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$







${ }^{19} \mathrm{FNMR}(282 \mathrm{MHz}$, DMSO)



| 1 | 1 |  |  | 1 |  |  |  | 1 | 1 |  |  |  | 1 |  | 1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | ${ }_{\delta}^{110}$ | ${ }^{100}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{19} \mathrm{FNMR}\left(282 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$



| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 |  | 1 | 1 | 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

## ${ }^{19} \mathrm{~F}$ NMR ( 282 MHz , Acetone)



${ }^{19} \mathrm{~F}$ NMR ( 282 MHz , Acetone)


${ }^{13} \mathrm{C}$ NMR (75 MHz, CDC1)

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$


${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}\right)$


| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\begin{gathered} 80 \\ \delta(\mathrm{ppm}) \end{gathered}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |



## $\begin{array}{llllllllllllllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$

${ }^{1}{ }^{\circ} \mathrm{F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



2D-HMQC NMR (A cetone)

${ }^{19} \mathrm{~F}$ NMR ( 282 MHz , Acetone)





## ${ }^{19} \mathrm{~F}$ NMR ( 282 MHz , Acetone)


${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}$ )

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



${ }^{19} \mathrm{FNMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}$ )


${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$4 n$




${ }^{19} \mathrm{FNMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{15} \mathrm{CNMR}(75 \mathrm{MHz}, \mathrm{CDCl})$

${ }^{19} \mathrm{FNMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}$ )

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




## ${ }^{1} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (


|  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\begin{gathered} 80 \\ \delta(\mathrm{ppm}) \end{gathered}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$





| T | 1 | , | 1 | - | - | + | + | 1 | 1 | 1 | + |  | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 140 | 130 | 120 | 110 | 100 | 90 |  | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{19} \mathrm{FNMR}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$


${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}, \mathrm{CDCl})$


| + | + | + | T | + | + | 1 | 1 | 1 | 1 | 1 | + | 1 | 1 | + | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\begin{gathered} 80 \\ \delta(\mathrm{gpm}) \end{gathered}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


${ }^{19} \mathrm{~F}$ NMR ( 282 MHz , Acetone)




## ${ }^{19} \mathrm{~F}$ NMR ( 282 MHz , Acetone)

