Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Construction of dibenzo-fused seven- to nine-membered carbocycles via Brønsted acid promoted intramolecular Friedel–Crafts type alkenylation

Takashi Otani,*^a Kanako Ueki,^b Kinryo Cho,^b Kan Kanai,^b Kotaro Tateno^b and Takao Saito*^{ab}

^a Research Center for Chirality, Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.

^b Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.

E-mail: totani@rs.tus.ac.jp (T.O.) E-mail: tsaito@rs.kagu.tus.ac.jp (T.S.)

(Submitted to Chem. Commun.)

Contents

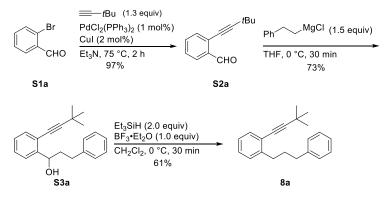
1. Synthesis

•••• S 2

- 1.1. General information ••••• S2
- 1.2. Synthesis of *o*-alkynyl(arylalkyl)benzenes 8 ••••• S2
- 1.3. Synthesis of *o*-alkynyl(arylalkyl)benzenes 7 ••••• S8
- 1.4. Synthesis of *o*-alkynyl(arylalkyl)benzenes **9** ••••• S11
- 1.5. Synthesis of alkylidenedibenzo[a,d]cycloheptenes 1, -octenes 2, and -nonenes 3 ••••• S14

•••• \$24

- 1.6. Preparation of 5,6,7,8-tetrahydro-13*H*-dibenzo[a,d][9]annulen-13-one (**6**) ••••• S23
- 2. NMR spectra


1. Synthesis

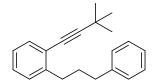
1.1. General information

All melting points were determined on a Yanaco melting point apparatus and are uncorrected. Infrared spectra were recorded on a Horiba FT-710 model spectrophotometer. ¹H and ¹³C NMR spectral data were recorded at 25 °C unless otherwise noted, on one of the following instruments: Bruker Avance-600, Bruker Avance DPX-400, JEOL JNM-LA 500, or JEOL JNM-AL 300. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet, br = broad, app = apparent), coupling constant (*J*) in Hertz (Hz), and integration. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane (TMS, δ = 0 for ¹H NMR) or CDCl₃ (δ = 77.0, center line, for ¹³C NMR). HRMS analysis were performed on Bruker Daltonics microTOF or JEOL JMS-700.

1.2. Synthesis of o-alkynyl(arylalkyl)benzenes 8

1.2.1. Synthesis of 8a (typical synthetic procedure for 8a and 8i-l).

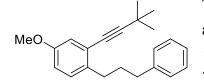
Scheme S1. Preparation of 1-(3,3-dimethylbut-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8a).


To a mixture of $PdCl_2(PPh_3)_2$ (71.0 mg, 101 µmol, 1 mol%), CuI (40.1 mg, 211 µmol, 2 mol%), 2-bromobenzaldehyde (**S1a**) (1.20 mL, 10.0 mmol), and triethylamine (50 mL) at room temperature was added 3,3-dimethyl-1-butyne (1.60 mL, 13.0 mmol). The mixture was then heated at 75°C for 2 h, cooled to room temperature, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using ethyl acetate/hexane = 1/50 to give 2-(3,3-dimethylbut-1-yn-1-yl)benzaldehyde (**S2a**)¹ as a yellow liquid (1.80 g, 9.66 mmol, 97%).

To a solution of S2a (192 mg, 1.0 mmol) in THF (1.0 mL) at 0 °C was added 1.0 M THF solution of benzylmagnesium chloride (1.50 mL, 1.50 mmol). The mixture was stirred for 30 min at 0 °C, quenched with saturated aqueous NH₄Cl, and then extracted with ethyl acetate (3×10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel column chromatography using ethyl acetate/hexane = 1/16as an eluent to give 1-(2-(3,3-dimethylbut-1-yn-1-yl)phenyl)-3-phenylpropan-1-ol (S3a) as a colorless liquid (213 mg, 730 µmol, 73%): ¹H NMR (500 MHz, CDCl₃) δ 1.31 (s, 9H, Me (*t*-Bu)), 2.00–2.18 (m, 2H, CH₂), 2.26 (d, J = 4.5 Hz,

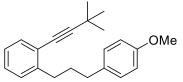
¹ A. S. K. Hashmi, M. Bührle, R. Salathé and J. W. Bats, Adv. Synth. Catal., 2008, **350**, 2059.

1H, OH), 2.64–2.79 (m, 1H, CH₂), 2.79–2.94 (m, 1H, CH₂), 5.12 (td, J = 5.0, 7.6 Hz, 1H, CHOH), 7.15–7.31 (m, 7H, Ar), 7.36 (dd, J = 1.1, 7.7 Hz, 1H, Ar), 7.44 (d, J = 7.7 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 28.1 (C), 30.9 (3CH₃), 32.4 (CH₂), 39.4 (CH₂), 72.0 (CH), 76.9 (C), 103.6 (C), 121.1 (C), 125.2 (CH), 125.7 (CH), 126.8 (CH), 127.9 (CH), 128.3 (2CH), 128.3 (2CH), 132.1 (CH), 142.0 (C), 146.1 (C); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₁H₂₄NaO: 315.1719, found: 315.1717.


1-(3,3-Dimethylbut-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8a). To a CH₂Cl₂ solution (3 mL) of

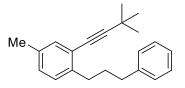
1-(2-(3,3-dimethylbut-1-yn-1-yl)phenyl)-3-phenylpropan-1-ol (**S3a**) (112 mg, 0.38 mmol) at 0 °C were added triethylsilane (110 μ L, 0.76 mmol) and boron trifluoride etherate (50 μ L, 0.35 mmol). The mixture was then stirred at 0 °C for 30 min, quenched with saturated aqueous NaHCO₃, and then extracted with ethyl acetate (2

× 3 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using hexane as an eluent to give 1-(3,3-dimethylbut-1-yn-1-yl)-2-(3-phenylpropyl)benzene (**8a**) as a colorless liquid (64.4 mg, 0.23 mmol, 61%): ¹H NMR (300 MHz, CDCl₃) δ 1.32 (s, 9H, Me (*t*-Bu)), 1.90–2.05 (m, 2H, CH₂), 2.68 (t, *J* = 7.8 Hz, 2H, CH₂), 2.80 (t, *J* = 7.8 Hz, 2H, CH₂), 7.10–7.32 (m, 8H, Ar), 7.35 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 28.1 (C), 31.1 (3CH₃), 32.1 (CH₂), 34.5 (CH₂), 35.9 (CH₂), 77.7 (C), 102.1 (C), 123.3 (C), 125.6 (CH), 125.7 (CH), 127.5 (CH), 128.3 (2CH), 128.4 (2CH), 128.6 (CH), 132.0 (CH), 142.4 (C), 144.1 (C); HRMS-ESI *m/z* [M+Na]⁺ calcd for C₂₁H₂₄Na: 299.1770, found: 299.1771.


1.2.2. 2-(3,3-Dimethylbut-1-yn-1-yl)-4-methoxy-1-(3-phenylpropyl)benzene (8i).

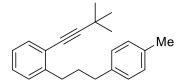
The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 1.32 (s, 9H, Me (*t*-Bu)), 1.93 (quint, J = 8.3 Hz, 2H, CH₂), 2.66 (t, J = 7.7 Hz, 2H, CH₂), 2.74 (t, J = 7.7 Hz, 2H, CH₂), 3.77 (s, 3H, OMe), 6.75 (dd, J = 2.8, 8.5 Hz, 1H, Ar), 6.89

(d, J = 2.7 Hz, 1H, Ar), 7.05 (d, J = 8.4 Hz, 1H, Ar), 7.16 (d, J = 7.4 Hz, 1H, Ar), 7.19 (d, J = 7.3 Hz, 2H, Ar), 7.26 (s, 1H, Ar), 7.28 (d, J = 7.0 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 28.1 (C), 31.1 (3CH₃), 32.4 (CH₂), 33.6 (CH₂), 35.9 (CH₂), 55.3 (CH₃), 77.8 (C), 101.9 (C), 114.3 (CH), 116.3 (CH), 124.0 (C), 125.6 (CH), 128.3 (2CH), 128.4 (2CH), 129.6 (CH), 136.5 (C), 142.5 (C), 157.3 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₂H₂₆O: 306.1984, found: 306.1985.


1.2.3. 1-(3,3-Dimethylbut-1-yn-1-yl)-2-(3-(4-methoxyphenyl)propyl)benzene (8j).

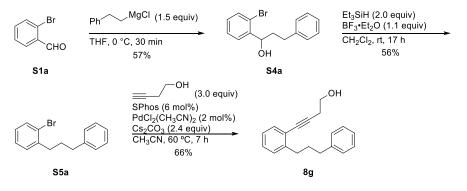
The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 1.32 (s, 9H, Me (*t*-Bu)), 1.93 (quint, J = 7.7 Hz, 2H, CH₂), 2.62 (t, J = 7.7 Hz, 2H, CH₂), 2.78 (t, J = 7.7 Hz, 2H, CH₂), 3.78 (s, 3H, OMe), 6.82 (d, J = 8.1 Hz, 2H, Ar), 7.06–7.20

(m, 5H, Ar), 7.35 (d, J = 7.7 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 28.2 (C), 31.1 (3CH₃), 32.4 (CH₂), 34.5 (CH₂), 35.0 (CH₂), 55.3 (CH₃), 77.7 (C), 102.1 (C), 113.7 (2CH), 123.3 (C), 125.6 (CH), 127.5 (CH), 128.6 (CH), 129.3 (2CH), 132.0 (CH), 134.6 (C), 144.2 (C), 157.7 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₂H₂₆O: 306.1984, found: 306.1984.


1.2.4. 2-(3,3-Dimethylbut-1-yn-1-yl)-4-methyl-1-(3-phenylpropyl)benzene (8k).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 1.31 (s, 9H, Me (*t*-Bu)), 1.91–2.01 (m, 2H, CH₂), 2.26 (s, 3H, CH₃ (*p*-tol)), 2.67 (t, *J* = 8.0 Hz, 2H, CH₂), 2.76 (t, *J* = 8.0 Hz, 2H, CH₂), 6.95–7.07 (m, 2H, Ar), 7.13–7.22 (m, 4H, Ar), 7.24–

7.29 (m, 2H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 20.7 (CH₃), 28.1 (C), 31.1 (3CH₃), 32.3 (CH₂), 34.1 (CH₂), 35.9 (CH₂), 77.8 (C), 101.7 (C), 123.1 (C), 126.6 (CH), 128.2 (2CH), 128.4 (CH), 128.4 (2CH), 128.5 (CH), 132.5 (CH), 135.0 (C), 141.0 (C), 142.5 (C); HRMS-EI *m*/*z* [M]⁺ calcd for C₂₂H₂₆: 290.2035, found: 290.2038.


1.2.5. 1-(3,3-Dimethylbut-1-yn-1-yl)-2-(3-(p-tolyl)propyl)benzene (8l).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 1.31 (s, 9H, Me (*t*-Bu)), 1.94 (quint, J = 7.8 Hz, 2H, CH₂), 2.30 (s, 3H, CH₃ (*p*-tol)), 2.64 (t, J = 7.8 Hz, 2H, CH₂), 2.79 (t, J = 7.8 Hz, 2H, CH₂), 7.05–7.11 (m, 5H, Ar), 7.11–7.18 (m, 2H,

Ar), 7.35 (d, J = 7.7 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 21.0 (CH₃), 28.1 (C), 31.1 (3CH₃), 32.3 (CH₂), 34.5 (CH₂), 35.5 (CH₂), 77.7 (C), 102.1 (C), 123.3 (C), 125.6 (CH), 127.5 (CH), 128.3 (2CH), 128.6 (CH), 129.0 (2CH), 131.9 (CH), 135.0 (C), 139.3 (C), 144.2 (C); HRMS-EI *m*/*z* [M]⁺ calcd for C₂₂H₂₆: 290.2035, found: 290.2036.

1.2.6. Synthesis of 4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-ol (8g) (typical synthetic procedure for 8g and 8b-e).

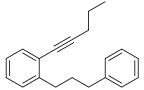
Scheme S2. Preparation of 4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-ol (8g).

To a mixture of 2-bromobenzaldehyde (S1a) (2.30 mL, 20.0 mmol) in THF (150 mL) at 0 °C was added 1.0 M THF solution of benzylmagnesium chloride (30.0 mL, 30.0 mmol). The mixture was stirred at 0 °C for 30 min, quenched with saturated aqueous NH₄Cl, and then extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using ethyl acetate/hexane = 1/8 as an eluent to give 1-(2-bromophenyl)-3-phenylpropan-1-ol (S4a) as a white solid (3.31 g, 11.4 mmol, 57%): ¹H NMR (400 MHz, CDCl₃) δ 1.93–2.15 (m, 3H, CH₂, OH), 2.69–2.93 (m, 2H,

CH₂), 5.08 (dt, *J* = 3.9, 8.9 Hz, 1H, CH), 7.12 (td, *J* = 1.7, 7.7 Hz, 1H, Ar), 7.15–7.30 (m, 5H, Ar), 7.33 (td, *J* = 1.1, 7.7 Hz, 1H, Ar), 7.50 (dd, *J* = 1.0, 8.0 Hz, 1H, Ar), 7.57 (dd, *J* = 1.8, 7.8 Hz, 1H, Ar).

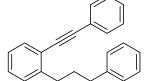
To a CH₂Cl₂ solution (110 mL) of 1-(2-bromophenyl)-3-phenylpropan-1-ol (**S4a**) (3.20 g, 11.0 mmol) at 0 °C were added triethylsilane (3.50 mL, 22.0 mmol) and boron trifluoride etherate (1.72 mL, 12.1 mmol). The mixture was then stirred at room temperature for 17 h, quenched with saturated aqueous NaHCO₃, and then extracted with ethyl acetate (2 × 10 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography using hexane as an eluent to give 1-bromo-2-(3-phenylpropyl)benzene (**S5a**) as a colorless liquid (1.69 g, 6.13 mmol, 56%): ¹H NMR (400 MHz, CDCl₃) δ 1.95 (quint, *J* = 7.1 Hz, 2H, CH₂), 2.69 (t, *J* = 7.5 Hz, 2H, CH₂), 2.77 (t, *J* = 7.5 Hz, 2H, CH₂), 7.03 (td, *J* = 2.4, 6.7 Hz, 1H, Ar), 7.13–7.32 (m, 7H, Ar), 7.51 (d, *J* = 7.5 Hz, 1H, Ar).

4-(2-(3-Phenylpropyl)phenyl)but-3-yn-1-ol (8g). A mixture of 1-bromo-2-(3-phenylpropyl)benzene


(S5a) (155 mg, 560 μ mol), SPhos (13.1 mg, 31.9 μ mol, 6 mol%), PdCl₂(CH₃CN)₂ (2.6 mg, 10 μ mol, 2 mol%), Cs₂CO₃ (391 mg, 1.20 mmol), dry CH₃CN (5.0 mL), and 3-butyn-1-ol (114 μ L, 1.50 mmol) was heated at 60 °C for 7 h. After being cooled to room temperature, the reaction mixture was diluted with ethyl acatate and filtered through a pad of celite. The filtrate was concentrated in vacuo and the

residue was chromatographed on silica gel with ethyl acetate/hexane = 1/4 as an eluent to give 4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-ol (**8g**) (98.5 mg, 372 µmol, 66%) as a yellow liquid: ¹H NMR (500 MHz, CDCl₃) δ 1.91–2.01 (m, 3H, CH₂, OH), 2.63 (t, *J* = 7.0 Hz, 2H, CH₂), 2.67 (t, *J* = 7.7 Hz, 2H, CH₂), 2.79 (t, *J* = 8.1 Hz, 2H, CH₂), 3.74 (t, *J* = 6.3 Hz, 2H, CH₂), 7.10 (td, *J* = 1.7, 7.5 Hz, 1H, CH₂), 7.14–7.22 (m, 5H, Ar), 7.27 (t, *J* = 7.5 Hz, 2H, Ar), 7.37 (d, *J* = 7.7 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 23.8 (CH₂), 32.0 (CH₂), 34.2 (CH₂), 35.6 (CH₂), 61.2 (CH₂), 81.0 (C), 89.7 (C), 122.6 (C), 125.7 (2CH), 128.0 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 132.2 (CH), 142.2 (C), 144.2 (C); HRMS-EI *m/z* [M]⁺ calcd for C₁₉H₂₀O: 264.1514, found: 264.1517.

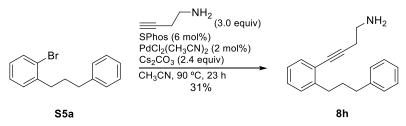
1.2.7. 1-(3-Methylbut-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8b).


The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (400 MHz, CDCl₃) δ 1.25 (d, J = 6.9 Hz, 6H, Me (*i*-Pr)), 1.97 (quint, J = 7.6 Hz, 2H, CH₂), 2.68 (t, J = 7.7 Hz, 2H, CH₂), 2.75–2.85 (m, 3H, CH, CH₂), 7.10 (td, J = 2.1, 7.3 Hz, 1H, Ar), 7.14–7.21 (m, 5H, Ar), 7.27 (t, J = 7.6Hz, 2H, Ar), 7.35 (d, J = 7.6 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 21.3 (CH), 23.1 (2CH₃), 32.1 (CH₂), 34.4 (CH₂), 35.9 (CH₂), 78.4 (C), 99.3 (C), 123.3 (C), 125.6 (CH), 125.7 (CH), 127.5 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 132.0 (CH), 142.4 (C), 144.1 (C); HRMS-ESI *m/z* [M]⁺ calcd for C₂₀H₂₂: 262.1722, found: 262.1726.

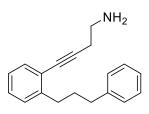
1-(Pent-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8c). 1.2.8.

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 1.10 (t, J = 7.2 Hz, 3H, Me (*n*-Pr)), 1.66 (sext, J = 7.2 Hz, 2H, CH₂ (*n*-Pr)), 2.01 (quint, J = 7.7 Hz, 2H, CH₂), 2.42 (t, J =6.9 Hz, 2H, $CH_2(n-Pr)$), 2.72 (t, J = 7.7 Hz, 2H, CH_2), 2.85 (t, J = 7.7 Hz, 2H, CH_2), 7.14 (dt, J = 1.6, 7.5 Hz, 1H, Ar), 7.18–7.26 (m, 5H, Ar), 7.31 (dd, J = 7.1, 7.3 Hz, 2H, Ar), 7.41 (d, J = 7.5 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 13.6 (CH₃), 21.5 (CH₂), 22.3 (CH₂), 32.2 (CH₂), 34.4 (CH₂), 35.8 (CH₂), 79.3 (C), 93.7 (C), 123.4 (C), 125.6 (CH), 125.7 (CH), 127.5 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 132.2 (CH), 142.4 (C), 144.1 (C); HRMS-EI m/z [M]⁺ calcd for C₂₀H₂₂: 262.1722, found: 262.1721.

1.2.9. 1-(Phenyleth-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8d).


The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (600 MHz, CDCl₃) δ 2.05 (quint, J = 7.7 Hz, 2H, CH₂), 2.72 (d, J = 7.7 Hz, 2H, CH₂), 2.91 (t, J = 7.7 Hz, 2H, CH₂), 7.13–7.29 (m, 8H, Ar), 7.30– 7.40 (m, 3H, Ar), 7.46 (dd, J = 2.0, 6.6 Hz, 2H, Ar), 7.51 (d, J = 7.6 Hz, 1H, Ar); ¹³C

NMR (150 MHz, CDCl₃) δ 32.2 (CH₂), 34.4 (CH₂), 35.8 (CH₂), 88.2 (C), 92.9 (C), 122.6 (C), 123.5 (C), 125.7 (CH), 125.8 (CH), 128.1 (CH), 128.3 (2CH), 128.3 (2CH), 128.4 (CH), 128.5 (2CH), 128.8 (CH), 131.5 (2CH), 132.2 (CH), 142.3 (C), 144.4 (C); HRMS-EI m/z [M]⁺ calcd for C₂₃H₂₀: 296.1565, found: 296.1562.

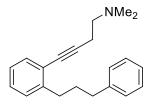

1.2.10. Trimethyl((2-(3-phenylpropyl)phenyl)ethynyl)silane (8e).

The title compound was synthesized using the same procedure described above. TMS Yellow liquid: ¹H NMR (500 MHz, CDCl₃) δ 0.26 (s, 9H, Me (TMS)), 1.98 (quint, J = 7.7 Hz, 2H, CH₂), 2.68 (t, J = 7.7 Hz, 2H, CH₂), 2.83 (t, J = 7.7 Hz, 2H, CH₂), 7.12 (td, J = 1.2, 7.4 Hz, 1H, Ar), 7.17 (d, J = 7.7 Hz, 2H, Ar), 7.20 (d, J = 7.0 Hz, 2H, Ar), 7.23 (td, J = 1.2, 7.5)Hz, 1H, Ar), 7.28 (t, J = 7.6 Hz, 2H, Ar), 7.43 (dd, J = 1.2, 7.7 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 0.0 (3CH₃), 32.2 (CH₂), 34.5 (CH₂), 35.9 (CH₂), 97.8 (C), 103.9 (C), 122.5 (C), 125.7 (CH), 125.7 (CH), 128.3 (2CH), 128.4 (2CH), 128.6 (CH), 128.7 (CH), 132.5 (CH), 142.4 (C), 144.9 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₀H₂₄Si: 292.1647, found: 292.1651.

1.2.11. 4-(2-(3-Phenylpropyl)phenyl)but-3-yn-1-amine (8h).

Preparation of 4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-amine (8h). Scheme S3.

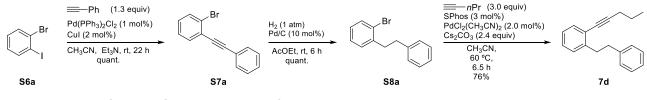
1-Bromo-2-(3-phenylpropyl)benzene (**S5a**) (50.3 mg, 180 μ mol), SPhos (4.1 mg,10 μ mol, 6 mol%), PdCl₂(CH₃CN)₂ (1.0 mg, 3.8 μ mol, 2 mol%), Cs₂CO₃ (144 mg, 440 μ mol) and dry CH₃CN (1.8 mL) and 3-butynylamine (50 μ L, 550 μ mol) were added to a dried shield tube and the mixture was heated with stirring at 90 °C for 23 h. After being cooled to room temperature, the reaction mixture was diluted with ethyl


acetate and filtered through a pad of celite. The filtrate was concentrated in vacuo and the residue was chromatographed on silica gel with methanol/chloroform = 1/5as an eluent to give 4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-amine (8h) (14.5 mg, 55 μmol, 31%) as a yellow liquid: ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 1.63 \text{ (app. br s, 2H, CH}_2), 1.93-2.04 \text{ (m, 2H, CH}_2), 2.54 \text{ (t, } J = 6.4 \text{ Hz}, 2\text{ H}, \text{CH}_2), 2.68$ (t, J = 7.7 Hz, 2H, CH₂), 2.80 (t, J = 7.2 Hz, 2H, CH₂), 2.89 (app. br s, 2H, NH₂), 7.11–7.25 (m, 6H, Ar), 7.28 (t, J = 7.6 Hz, 2H, Ar), 7.38 (d, J = 7.6 Hz, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 24.6 (CH₂), 32.1 (CH₂), 34.2 (CH₂), 35.7 (CH₂), 41.3 (CH₂), 80.6 (C), 91.2 (C), 122.9 (C), 125.7 (2CH), 127.8 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 132.3 (CH), 142.3 (C), 144.1 (C); HRMS-ESI m/z [M+H]⁺ calcd for C₁₉H₂₂N: 264.1752, found: 264.1741.

1.2.12. N,N-Dimethyl-4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-amine (8f).

Scheme S4. Preparation of N,N-dimethyl-4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-amine (8f).

To a mixture of 4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-ol (8g) (36.1 mg, 140 µmol), triethylamine (40 µL,

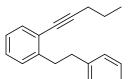

270 μ mol) and CH₂Cl₂ (1.5 mL) at 0 °C was added methanesulfonyl chloride (30 μ L, 400 μ mol). The mixture was stirred at 0 °C for 2 h, quenched with saturated aqueous NaHCO₃, and extracted with CH₂Cl₂ (2 × 5 mL). The combined organic layers were washed with brine and dried over Na₂SO₄, and evaporated. To the residue was added 50% aqueous solution of dimethylamine (1.00 mL, 11 mmol) and ethanol (1 mL).

The mixture was stirred at 50 °C for 2.5 h, cooled to room temperature and then extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica acetate column chromatography ethyl eluent gel using an to give as *N.N*-dimethyl-4-(2-(3-phenylpropyl)phenyl)- but-3-yn-1-amine (8f) as a yellow liquid (38.9 mg, 130 µmol, 93%): ¹H NMR (500 MHz, CDCl₃) δ 1.97 (quint, J = 8.0 Hz, 2H, CH₂), 2.30 (s, 6H, NMe₂), 2.55–2.60 (m, 4H, CH₂), 2.68 (t, J = 7.7 Hz, 2H, CH₂), 2.80 (t, J = 8.0 Hz, 2H, CH₂), 7.10 (td, J = 1.4, 7.3 Hz, 1H, Ar), 7.13–7.23 (m, 5H, Ar), 7.28 (t, J = 7.5 Hz, 2H, Ar), 7.36 (d, J = 7.8 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 18.5 (CH₂), 32.1 (CH₂), 34.2 (CH₂), 35.7 (CH₂), 45.2 (2CH₃), 58.5 (CH₂), 79.9 (C), 91.7 (C),

123.1 (C), 125.6 (CH), 125.7 (CH), 127.7 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 132.2 (CH), 142.4 (C), 144.2 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₁H₂₅N: 291.1987, found: 291.1983.

1.3. Synthesis of o-alkynyl(arylalkyl)benzenes 7

1.3.1. Synthesis of 7d (typical synthetic procedure for 7c–e and 7g–i).

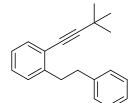


Scheme S5. Preparation of 1-(pent-1-yn-1-yl)-2-phenethylbenzene (7d).

To a mixture of 1-bromo-2-iodobenzene (**S6a**) (1.25 mL, 10.0 mmol), triethylamine (40 mL) and CH₃CN (40 mL) were added PdCl₂(PPh₃)₂ (70.2 mg, 100 µmol, 1 mol%) and CuI (38.5 mg, 202 µmol, 2 mol%). The mixture was cooled to 0 °C, to which ethynylbenzene (1.43 mL, 13.0 mmol) was added. The mixture was stirred at room temperature for 22 h, quenched with saturated aqueous NaHCO₃, and the mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel column chromatography using ethyl acetate/hexane = 1/50 as an eluent to give 1-bromo-2-(phenylethynyl)benzene (**S7a**)² as a colorless liquid (2.57 g, 9.98 mmol, 100%).

A suspension of **S7a** (974 mg, 3.78 mmol) and 10% Pd/C (200 mg, 188 μ mol) in ethyl acetate (15 mL) was stirred under a balloon of hydrogen for 6 h at room temperature. The reaction mixture was diluted with ethyl acetate and filtered through a pad of celite. The filtrate was evaporated, and the residue was chromatographed on silica gel with hexane as an eluent to give 1-bromo-2-phenethylbenzene (**S8a**)³ (988 mg, 3.78 mmol, 100%) as a colorless liquid.

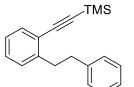
1-(Pent-1-yn-1-yl)-2-phenethylbenzene (7d). To a mixture of 1-bromo-2-phenethylbenzene (S8a)


(131 mg, 500 μ mol), SPhos (12.3 mg, 30.0 μ mol, 6 mol%), PdCl₂(CH₃CN)₂ (2.6 mg, 10 μ mol, 2 mol%), Cs₂CO₃ (391 mg, 1.20 mmol) and dry CH₃CN (5 mL) were added 1-pentyne (146 μ L, 1.5 mmol), and the mixture was stirred at 60 °C for 6.5 h. After being cooled to room temperature, the reaction mixture was diluted with ethyl acetate

and filtered through a pad of celite. The filtrate was concentrated in vacuo and the residue was chromatographed on silica gel with hexane as an eluent to give 1-(pent-1-yn-1-yl)-2-phenethylbenzene (**7d**) (93.9 mg, 378 µmol, 76%) as an orange liquid: ¹H NMR (300 MHz, CDCl₃) δ 1.05 (td, J = 2.3, 7.4 Hz, 3H, Me (*n*-Pr)), 1.64 (sext, J = 7.1 Hz, 2H, CH₂ (*n*-Pr)), 2.44 (td, J = 2.3, 7.0 Hz, 2H, CH₂ (*n*-Pr)), 2.86–2.96 (m, 2H, CH₂), 2.99–3.11 (m, 2H, CH₂), 7.07–7.29 (m, 8H, Ar), 7.36–7.45 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 13.6 (CH₃), 21.6 (CH₂), 22.3 (CH₂), 37.0 (2CH₂), 79.3 (C), 93.9 (C), 123.4 (C), 125.8 (2CH), 127.5 (CH), 128.2 (2CH), 128.4 (2CH), 128.7 (CH), 132.2 (CH), 142.1 (C), 143.4 (C); HRMS-EI *m/z* [M]⁺ calcd for C₁₉H₂₀: 248.1565, found: 248.1569.

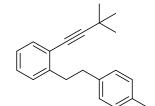
² Z. U. Levi and T. D. Tilley, J. Am. Chem. Soc., 2009, **131**, 2796.

³ D. S. Roman, Y. Takahashi and A. B. Charette, Org. Lett., 2011, **13**, 3242.


1.3.2. 1-(3,3-Dimethylbut-1-yn-1-yl)-2-phenethylbenzene (7c).

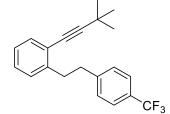
The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (500 MHz, CDCl₃) δ 1.35 (s, 9H, Me (*t*-Bu)), 2.91 (d, *J* = 7.4 Hz, 1H, CH₂), 2.93 (d, *J* = 5.2 Hz, 1H, CH₂), 3.04 (d, *J* = 5.2 Hz, 1H, CH₂), 3.06 (d, *J* = 7.4 Hz, 1H, CH₂), 7.10–7.26 (m, 6H, Ar), 7.29 (t, *J* = 7.5 Hz, 2H, Ar), 7.39 (dd, *J* = 1.9, 7.5 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 28.2 (C), 31.2 (3CH₃),

37.0 (2CH₂), 77.6 (C), 102.2 (C), 123.2 (C), 125.8 (2CH), 127.6 (CH), 128.3 (2CH), 128.4 (2CH), 128.9 (CH), 132.2 (CH), 142.1 (C), 143.4 (C); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₀H₂₂Na: 285.1614, found: 285.1614.


1.3.3. Trimethyl((2-phenethylphenyl)ethynyl)silane (7e).

The title compound was synthesized using the same procedure described above. Light brown liquid: ¹H NMR (300 MHz, CDCl₃) δ 0.08 (s, 9H, TMS), 2.67–2.77 (m, 2H, CH₂), 2.78–2.94 (m, 2H, CH₂), 6.89–7.10 (m, 8H, Ar), 7.27 (d, *J* = 7.7 Hz, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 15.5 (3CH₃), 45.1 (CH₂), 45.1 (CH₂), 93.7 (C), 98.4 (C), 113.4 (C), 116.1 (2CH), 118.0 (2CH), 118.1 (2CH), 118.3 (CH), 118.5 (CH), 121.5

(CH), 129.0 (C), 130.7 (C); HRMS-EI m/z [M]⁺ calcd for C₁₉H₂₂Si: 278.1491, found: 278.1489.

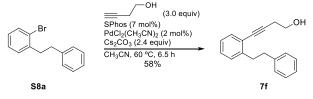

1.3.4. 1-(3,3-Dimethylbut-1-yn-1-yl)-2-(4-methylphenethyl)benzene (7g).

The title compound was synthesized using the same procedure described above. Yellow solid: mp 34.0–34.5 °C: ¹H NMR (300 MHz, CDCl₃) δ 1.34 (s, 9H, CH₃ (*t*-Bu)), 2.30 (s, 3H, CH₃ (*p*-tol)), 2.80–2.92 (m, 2H, CH₂), 2.96–3.09 (m, 2H, CH₂), 7.01–7.16 (m, 7H, Ar), 7.33–7.41 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 21.0 (CH₃), 28.1 (C), 31.1 (3CH₃), 36.6 (CH₂), 37.1 (CH₂), 77.7 (C), 102.0 (C), 123.2 (CH₃)

(C), 125.8 (CH), 127.6 (CH), 128.2 (2CH), 128.8 (CH), 129.0 (2CH), 132.1 (CH), 135.1 (C), 139.0 (C), 143.5 (C); HRMS-EI m/z [M]⁺ calcd for C₂₁H₂₄: 276.1878, found: 276.1877.

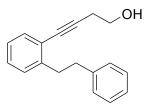
1.3.5. 1-(3,3-Dimethylbut-1-yn-1-yl)-2-(4-(trifluoromethyl)phenethyl)benzene (7h).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 9H, CH₃ (*t*-Bu)), 2.95– 3.02 (m, 2H, CH₂), 3.02–3.09 (m, 2H, CH₂), 7.08 (dd, J = 1.5, 7.2 Hz, 1H, Ar), 7.11–7.20 (m, 2H, Ar), 7.29 (d, J = 8.0 Hz, 2H, Ar), 7.39 (dd, J = 1.9, 7.2 Hz, 1H, Ar), 7.53 (d, J = 8.2 Hz, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 28.2 (C), 31.1


(3CH₃), 36.5 (CH₂), 36.7 (CH₂), 77.5 (C), 102.3 (C), 123.3 (C), 124.5 (q, ${}^{1}J = 268.4$ Hz, CF₃), 125.2 (q, ${}^{3}J = 3.6$ Hz, 2CH), 126.0 (CH), 127.6 (CH), 128.2 (q, ${}^{2}J = 32.4$ Hz, C), 128.7 (2CH), 128.8 (CH), 132.3 (CH), 142.6 (C), 146.1 (C); HRMS-EI *m*/*z* [M]⁺ calcd for C₂₁H₂₁F₃: 330.1595, found: 330.1599.

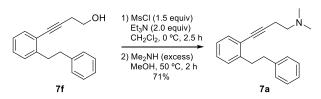
1.3.6. 1-(4-Methylphenethyl)-2-(pent-1-yn-1-yl)benzene (7i).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR

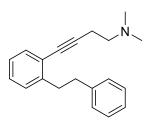

(300 MHz, CDCl₃) δ 1.06 (td, J = 1.6, 7.3 Hz, 3H, Me (*n*-Pr)), 1.65 (sext, J = 7.2 Hz, 2H, CH₂ (*n*-Pr)), 2.31 (s, 3H, CH₃ (*p*-tol)), 2.44 (td, J = 1.3, 7.0 Hz, 2H, CH₂ (*n*-Pr)), 2.82–2.94 (m, 2H, CH₂), 2.97–3.10 (m, 2H, CH₂), 7.02–7.17 (m, 7H, Ar), 7.36–7.45 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 13.6 (CH₃), 21.0 (CH₃), 21.6 (CH₂), 22.3 (CH₂), 36.6 (CH₂), 37.1 (CH₂), 79.3 (C), 93.8 (C), 123.4 (C), 125.8 (CH), 127.6 (CH), 128.3 (2CH), 128.7 (CH), 129.0 (2CH), 132.2 (CH), 135.2 (C), 139.0 (C), 143.6 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₀H₂₂: 262.1722, found: 262.1714.

1.3.7. 4-(2-Phenethylphenyl)but-3-yn-1-ol (7f).

Scheme S6. Preparation of 4-(2-phenethylphenyl)but-3-yn-1-ol (7f).

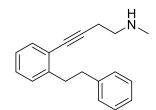

To a mixture of 1-bromo-2-phenethylbenzene (S8a) (261 mg, 1.00 mmol), SPhos (27.6 mg, 67.2 µmol, 7

mol%), $PdCl_2(CH_3CN)_2$ (5.2 mg, 20 µmol, 2 mol%), Cs_2CO_3 (793 mg, 2.43 mmol) and dry CH_3CN (10 mL) were added 3-butyn-1-ol (230 µL, 3.00 mmol), and the mixture was stirred at 60 °C for 6.5 h. After being cooled to room temperature, the reaction mixture was diluted with ethyl acetate and filtered through a pad of celite. The filtrate was concentrated in vacuo, and the residue was chromatographed on


silica gel with ethyl acetate/hexane = 1/4 as an eluent to give 4-(2-phenethylphenyl)but-3-yn-1-ol (**7f**) (144 mg, 575 µmol, 58%) as a colorless liquid: ¹H NMR (300 MHz, CDCl₃) δ 1.93 (app. br s, 1H, OH), 2.72 (t, *J* = 6.4 Hz, 2H, CH₂), 2.86–2.98 (m, 2H, CH₂), 2.99–3.11 (m, 2H, CH₂), 3.73–3.86 (m, 2H, CH₂), 7.08–7.34 (m, 8H, Ar), 7.37–7.45 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 23.9 (CH₂), 36.8 (CH₂), 37.0 (CH₂), 61.2 (CH₂), 81.0 (C), 89.9 (C), 122.7 (C), 125.9 (2CH), 128.0 (CH), 128.3 (2CH), 128.4 (2CH), 128.8 (CH), 132.4 (CH), 141.9 (C), 143.6 (C); HRMS-EI *m/z* [M]⁺ calcd for C₁₈H₁₈O: 250.1358, found: 250.1358.

1.3.8. N,N-Dimethyl-4-(2-phenethylphenyl)but-3-yn-1-amine (7a).

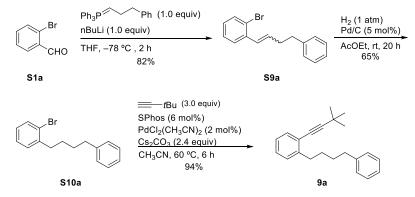
Scheme S7. Preparation of N,N-dimethyl-4-(2-phenethylphenyl)but-3-yn-1-amine (7a).


To a mixture of 4-(2-phenethyl- phenyl)but-3-yn-1-ol (**7f**) (53.6 mg, 214 μ mol), triethylamine (60 μ L, 400 μ mol) and CH₂Cl₂ (2.0 mL) was added methanesulfonyl chloride (40.0 μ L, 300 μ mol) at 0 °C. The mixture was stirred at 0 °C for 2.5 h, quenched with saturated aqueous NaHCO₃, and extracted with CH₂Cl₂ (2 × 5.0

mL). The combined organic layers were washed with brine and dried over Na₂SO₄. Then the solvent was removed under reduced pressure. To the residue were added 50% aqueous solution of dimethylamine (400 μ L, 5.0 mmol) and ethanol (1.6 mL), and the mixture was stirred at 50 °C for 2 h. The mixture was extracted with CH₂Cl₂, and the organic layer was washed with brine and dried over Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by silica

gel column chromatography using ethyl acetate as an eluent to give N,N-dimethyl-4-(2-phenethylphenyl)but-3-yn-1-amine (7a) as a yellow liquid (41.8 mg, 151 µmol, 71%): ¹H NMR (400 MHz, CDCl₃) δ 2.30 (s, 6H, CH₃ (NMe₂)), 2.63 (app. br s, 4H, CH₂ (Bn)), 2.88–2.96 (m, 2H, CH₂), 3.01–3.10 (m, 2H, CH₂), 7.09–7.23 (m, 6H, Ar), 7.26–7.32 (m, 2H, Ar), 7.37–7.41 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) & 30.2 (CH₂), 44.9 (CH₂), 45.0 (CH₂), 51.5 (2CH₃), 62.2 (CH₂), 79.3 (C), 88.8 (C), 113.8 (C), 116.1 (2CH), 117.6 (CH), 118.0 (2CH), 118.1 (2CH), 118.4 (CH), 121.2 (CH), 129.1 (C), 130.3 (C); HRMS-EI m/z [M]⁺ calcd for C₂₀H₂₃N: 277.1830, found: 277.1825.

1.3.9. N-Methyl-4-(2-phenethylphenyl)but-3-yn-1-amine (7b).



The title compound was synthesized using the same procedure described above. Light brown liquid: ¹H NMR (500 MHz, CDCl₃) δ 2.46 (s, 3H, CH₃), 2.69 (dd, J = 6.5, 13.2 Hz, 2H, CH₂ (Bn)), 2.85 (t, J = 6.5 Hz, 2H, CH₂ (Bn)), 2.91 (d, J = 7.1 Hz, 1H, CH₂), 2.93 (d, J = 5.3 Hz, 1H, CH₂), 3.04 (d, J = 5.3 Hz, 1H, CH₂), 3.06 (d, J = 7.1 Hz, 1H, CH₂), 3.10–3.22 (m, 1H, NHCH₃), 7.11–7.16 (m, 2H, Ar), 7.17–7.22 (m,

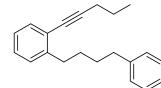
4H, Ar), 7.26–7.31 (m, 2H, Ar), 7.38–7.43 (m, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 31.6 (CH₂), 43.9 (CH₃), 44.9 (CH₂), 44.9 (CH₂), 55.5 (CH₃), 79.7 (C), 88.4 (C), 113.7 (C), 116.1 (2CH), 117.7 (CH), 118.1 (2CH), 118.1 (2CH), 118.4 (CH), 121.3 (CH), 129.0 (C), 130.2 (C); HRMS-EI *m/z* [M]⁺ calcd for C₁₉H₂₁N: 263.1674, found: 263.1672.

1.4. Synthesis of o-alkynyl(arylalkyl)benzenes 9

1.4.1. 1-(3,3-Dimethylbut-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9a) (typical synthetic procedure for 9a–c).

Scheme S8. Preparation of 1-(3,3-dimethylbut-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9a).

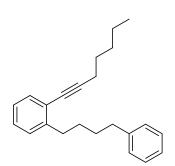
A mixture of (3-iodopropyl)benzene (670 μ L, 4.16 mmol), triphenylphosphine (1.13 g, 4.32 mmol) and toluene (1.0 mL) was stirred at 100 °C for 7.5 h and cooled to room temperature. The resulting precipitate


was collected by filtration and washed with dry Et₂O to give the phosphonium salt (1.81 g, 3.56 mmol, 86%) as white needles. To a cold solution of the salt (762 mg, 1.50 mmol) in dry THF (15 mL) at 0 °C was added 1.63 M hexane solution of *n*BuLi (920 μ L, 1.50 mmol). The mixture was stirred at 0 °C for 2 h, cooled to – 78 °C, and 2-bromobenzaldehyde (**S1a**) (173 μ L, 1.50 mmol) was added. The resulting mixture was stirred at –78 °C for 2 h and then allowed to warm to room temperature over 30 min. Water was added and the mixture was then extracted with CHCl₃. The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography using hexane as an eluent to give a mixture of *E*- and *Z*-alkenes **S9a** as a yellow liquid (352 mg, 1.23 mmol, 82%).

A suspension of the mixure of *E*- and *Z*-alkenes **S9a** (352 mg, 1.23 mmol) and 10% Pd/C (63.8 mg, 60.0 μ mol) in ethyl acetate (12 mL) was stirred under a balloon of hydrogen for 20 h at room temperature. The reaction mixture was diluted with ethyl acetate and filtered through a pad of celite. The filtrate was concentrated in vacuo and the residue was chromatographed on silica gel with hexane as an eluent to give 1-bromo-2-(4-phenylbutyl)benzene (**S10a**) (230 mg, 795 μ mol, 65%) as a colorless liquid.

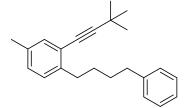
1-(3,3-Dimethylbut-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9a). To a mixture of 1-bromo-2-(4-phenylbutyl)benzene (S10a) (86.7 mg, 300 μ mol), SPhos (7.4 mg, 18 μ mol, 6 mol%), PdCl₂(CH₃CN)₂ (1.6 mg, 6.2 μ mol, 2 mol%), Cs₂CO₃ (235 mg, 720 mmol) and dry CH₃CN (3.0 mL) were added 3,3-dimethyl-1-butyne (110 μ L, 900 μ mol), and the mixture was stirred at 60 °C for 6 h. After being cooled to room temperature, the reaction mixture was diluted with ethyl acetate and filtered

through a pad of celite. The filtrate was concentrated in vacuo and the residue was chromatographed on silica gel with hexane as an eluent to give 1-(3,3-dimethylbut-1-yn-1-yl)-2-(4-phenylbutyl)benzene (**9a**) (82 mg, 282 µmol, 94%) as a colorless liquid: ¹H NMR (300 MHz, CDCl₃) δ 1.31 (s, 9H, Me (*t*-Bu)), 1.62–1.74 (m, 4H, CH₂), 2.58–2.69 (m, 2H, CH₂), 2.72–2.83 (m, 2H, CH₂), 7.05–7.20 (m, 6H, Ar), 7.21–7.30 (m, 2H, Ar), 7.34 (d, *J* = 7.4 Hz, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 28.1 (C), 30.2 (CH₂), 31.1 (3CH₃), 31.5 (CH₂), 34.7 (CH₂), 35.9 (CH₂), 77.8 (C), 102.0 (C), 123.2 (C), 125.5 (CH), 125.6 (CH), 127.5 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 131.9 (CH), 142.6 (C), 144.3 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₂H₂₆: 290.2035, found: 290.2028.


1.4.2. 1-(Pent-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9b).

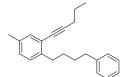
The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (300 MHz, CDCl₃) δ 1.05 (td, J = 3.7, 7.2 Hz, 3H, Me (*n*-Pr)), 1.61 (sext, J = 3.7 Hz, 2H, CH₂ (*n*-Pr)), 1.66–1.75 (m, 4H, CH₂), 2.40 (td, J = 3.5, 6.9 Hz, 2H, CH₂ (*n*-Pr)), 2.55–2.71 (m, 2H, CH₂), 2.73–2.90 (m, 2H,

CH₂), 7.12–7.28 (m, 8H, Ar), 7.34–7.41 (m, 1H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 13.6 (CH₃), 21.5 (CH₂), 22.3 (CH₂), 30.2 (CH₂), 31.3 (CH₂), 34.5 (CH₂), 35.8 (CH₂), 79.4 (C), 93.6 (C), 123.4 (C), 125.5 (CH), 125.6 (CH), 127.5 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 132.1 (CH), 142.7 (C), 144.3 (C); HRMS-EI *m*/*z* [M]⁺ calcd for C₂₁H₂₄: 276.1878, found: 276.1880.


1.4.3. 1-(Hept-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9c).

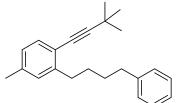
The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (500 MHz, CDCl₃) δ 0.94 (dt, J = 1.0, 7.4 Hz, 3H, Me), 1.36–1.42 (m, 2H, CH₂), 1.45–1.51 (m, 2H, CH₂), 1.60–1.66 (m, 2H, CH₂), 1.71–1.74 (m, 4H, 2CH₂), 2.44 (t, J = 7.0 Hz, 2H, Me), 2.67 (t, J = 6.6 Hz, 2H, CH₂), 2.82 (t, J = 6.9 Hz, 2H, CH₂), 7.11–7.13 (m, 1H, Ar), 7.15–7.22 (m, 5H, Ar), 7.27 (t, J = 8.3 Hz, 2H, Ar), 7.39 (d, J = 8.0 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 14.0 (CH₃), 19.5 (CH₂), 22.2 (CH₂), 28.5 (CH₂), 30.2 (CH₂), 31.1

(CH₂), 31.3 (CH₂), 34.5 (CH₂), 35.8 (CH₂), 79.3 (C), 93.9 (C), 123.4 (C), 125.5 (CH), 125.6 (CH), 127.5 (CH), 128.2 (2CH), 128.4 (2CH), 128.6 (CH), 132.1 (CH), 142.7 (C), 144.3 (C); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₃H₂₈Na: 327.2083, found: 327.2092.


1.4.4. 2-(3,3-Dimethylbut-1-yn-1-yl)-4-methyl-1-(4-phenylbutyl)benzene (9d).

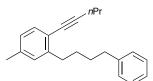
The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (400 MHz, CDCl₃) δ 1.30 (s, 9H, Me (*t*-Bu)), 1.62–1.72 (m, 4H, CH₂), 2.25 (s, 3H, Me (*p*-tol)), 2.63 (t, *J* = 6.9 Hz, 2H, CH₂), 2.73 (t, *J* = 6.9 Hz, 2H, CH₂), 6.96 (dd, *J* = 1.4, 7.7 Hz, 1H, Ar), 7.02 (d, *J* = 7.7 Hz, 1H, Ar), 7.12–7.20 (m, 4H, Ar), 7.25 (t, *J* = 8.3 Hz, 2H, Ar); ¹³C NMR (75.5

MHz, CDCl₃) δ 20.7 (CH₃), 28.1 (C), 30.4 (CH₂), 31.1 (3CH₃), 31.5 (CH₂), 34.2 (CH₂), 35.9 (CH₂), 77.9 (C), 101.6 (C), 123.0 (C), 125.6 (CH), 128.2 (2CH), 128.3 (CH), 128.4 (2CH), 128.5 (CH), 132.4 (CH), 135.0 (C), 141.3 (C), 142.7 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₃H₂₈: 304.2191, found: 304.2188.


1.4.5. 4-Methyl-2-(pent-1-yn-1-yl)-1-(4-phenylbutyl)benzene (9e).

The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (400 MHz, CDCl₃) δ 1.03 (t, J = 7.4 Hz, 3H, CH₃), 1.55–1.70 (m, 6H, CH₂), 2.25 (s, 3H, Me (*p*-tol)), 2.38 (t, J = 6.9 Hz, 2H, CH₂), 2.62 (br t, J = 5.8 Hz, 2H, CH₂), 2.73 (br t, J = 5.8 Hz, 2H, CH₂), 6.96 (br d, J = 7.7 Hz, 1H, Ar), 7.01 (br d, J = 7.7

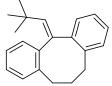
Hz, 1H, Ar), 7.12–7.18 (m, 4H, Ar), 7.23 (d, J = 7.4 Hz, 2H, Ar); ¹³C NMR (76 MHz, CDCl₃) δ 13.6 (CH₃), 20.7 (CH₃), 21.5 (CH₂), 22.3 (CH₂), 30.4 (CH₂), 31.3 (CH₂), 34.0 (CH₂), 35.8 (CH₂), 79.5 (C), 93.2 (C), 123.1 (C), 125.6 (CH), 128.2 (2CH), 128.4 (3CH), 128.5 (CH), 132.6 (CH), 135.0 (C), 141.3 (C), 142.8 (C); HRMS-ESI *m*/*z* [M+Na]⁺ calcd for C₂₂H₂₆Na: 313.1927, found: 313.1927.


1.4.6. 1-(3,3-Dimethylbut-1-yn-1-yl)-4-methyl-2-(4-phenylbutyl)benzene (9f).

The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (500 MHz, CDCl₃) δ 1.22 (s, 9H, Me (*t*-Bu)), 1.58– 1.63 (m, 4H, CH₂), 2.21 (s, 3H, Me), 2.53–2.61 (m, 2H, CH₂), 2.61–2.70 (m, 2H, CH₂), 6.80–6.84 (m, 1H, Ar), 6.85–6.88 (m, 1H, Ar), 7.07–7.11 (m, 3H, Ar), 7.14–7.21 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 21.4 (CH₃), 28.1

(C), 30.3 (CH₂), 31.1 (3CH₃), 31.6 (CH₂), 34.7 (CH₂), 36.0 (CH₂), 77.8 (C), 101.2 (C), 120.2 (C), 125.6 (CH), 126.3 (CH), 128.2 (2CH), 128.4 (2CH), 129.5 (CH), 131.8 (CH), 137.3 (C), 142.7 (C), 144.2 (C); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₃H₂₈: 327.2083, found: 327.2089.

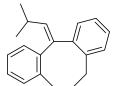
1.4.7. 4-Methyl-1-(pent-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9g).



The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (500 MHz, CDCl₃) δ 1.06 (t, J = 7.6 Hz, 3H, CH₃), 1.63 (sext, J = 7.6 Hz, 2H, CH₂), 1.68–1.72 (m, 4H, CH₂), 2.31 (s, 3H, Me), 2.43 (t, J = 7.8 Hz, 2H, CH₂), 2.66 (t, J = 7.4 Hz, 2H, CH₂), 2.77 (t, J = 7.4 Hz, 2H, CH₂), 6.93

(dd, J = 1.4, 7.7 Hz, 1H, Ar), 6.97 (br s, J = 7.7 Hz, 1H, Ar), 7.17–7.20 (m, 3H, Ar), 7.26–7.30 (m, 3H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 13.6 (CH₃), 21.4 (CH₃), 21.5 (CH₂), 22.4 (CH₂), 30.3 (CH₂), 31.4 (CH₂), 34.4 (CH₂), 35.9 (CH₂), 79.4 (C), 92.8 (C), 120.3 (C), 125.6 (CH), 126.4 (CH), 128.2 (2CH), 128.4 (2CH), 129.4 (CH), 132.0 (CH), 137.4 (C), 142.8 (C), 144.2 (C); HRMS-ESI *m*/*z* [M+H]⁺ calcd for C₂₂H₂₇: 291.2107, found: 291.2108.

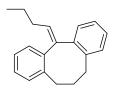
1.5. Synthesis of alkylidenedibenzo[a,d]cycloheptenes, -octenes, and -nonenes


1.5.1. 12-(2,2-Dimethylpropylidene)-5,6,7,12-tetrahydro-dibenzo[*a*,*d*]cyclooctene (2a) (Table 1, entry 4).

TfOH (8.8 μ L, 100 μ mol) was added to a mixture of 1-(3,3-dimethylbut-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8a) (30.0 mg, 109 μ mol) in CH₂Cl₂ (1 mL) at 0 °C. After being stirred at 0 °C for 10 min, the mixture was quenched with saturated aqueous NaHCO₃ and extracted with ethyl acetate (3 × 1 mL). The

combined organic layers were washed with brine and dried over Na₂SO₄ and evaporated. The residue was purified by silica gel column chromatography using ethyl acetate/hexane = 1/8 as an eluent to give **2a** as a colorless solid (29.8 mg, 108 µmol, 99%): mp 53.3–53.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 0.96 (s, 9H, CH₃ (*t*-Bu)), 1.36–2.44 (m, 2H, CH₂), 2.49–3.49 (m, 4H, CH₂), 5.62 (s, 1H, CH (vinyl)), 6.93–7.17 (m, 7H, Ar), 7.23 (d, *J* = 7.1 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 28.9 (C), 30.6 (3CH₃), 34.1 (CH₂), 36.0–38.5 (2CH₂), 125.7 (CH), 126.2 (CH), 126.6 (CH), 126.7 (CH), 128.4 (CH), 128.7 (CH), 129.6 (CH), 129.9 (CH), 139.3 (CH), 140.0 (C), 140.1 (C), 141.9 (C), 146.4 (2C); HRMS-ESI *m/z* [M+Na]⁺ calcd for C₂₁H₂₄Na: 299.1770, found: 299.1771.

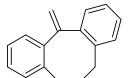
1.5.2. 5,6,7,12-Tetrahydro-12-(2-methylpropylidene)-dibenzo[*a,d*]cyclooctene (2b) (Table 2, entry 1).



The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (600 MHz, CDCl₃, 320K) δ 0.96 (d, J = 6.8 Hz, 6H, CH₃ (*i*-Pr)), 1.97 (app. br s, 2H, CH₂), 2.05–2.15 (m, 1H, CH (*i*-Pr)), 2.66 (app. br s, 2H, CH₂), 2.91 (t, J = 6.5 Hz, 2H, CH₂), 5.60 (d, J = 9.7 Hz, 1H, CH (vinyl)), 7.00 (d, J = 7.2 Hz, 1H, Ar),

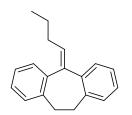
7.05–7.16 (m, 6H, Ar), 7.33 (d, J = 7.6 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃, 320K) δ 22.8 (2CH₃), 28.5 (CH), 29.5 (CH₂), 34.7–35.5 (2CH₂), 126.1 (CH), 126.2 (CH), 126.8 (CH), 127.1 (CH), 128.3 (CH), 128.4 (CH), 129.1 (CH), 130.5 (CH), 138.5 (CH), 140.2 (C), 140.4 (C), 140.7 (C), 141.0 (C), 143.5 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₀H₂₂: 262.1722, found: 262.1719.

1.5.3. 12-Butylidene-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclooctene (2c) (Table 2, entry 2).


The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR

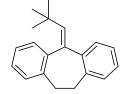
(400 MHz, CDCl₃) δ 0.88 (t, J = 7.3 Hz, 3H, CH₃ (n-Pr)), 1.41 (sext, J = 7.3 Hz, 2H, $CH_2(n-Pr)$), 1.84 (quint, J = 7.3 Hz, 2H, $CH_2(n-Pr)$), 1.96 (app. br s, 2H, CH_2), 2.66 (app. br s, 2H, CH₂), 2.88 (t, J = 6.4 Hz, 2H, CH₂), 5.81 (t, J = 7.2 Hz, 1H, CH (vinyl)), 7.01 (dd, J = 1.2, 7.5 Hz, 1H, Ar), 7.05–7.18 (m, 6H, Ar), 7.35 (d, J = 7.6 Hz, 1H, Ar);

¹³C NMR (150 MHz, CDCl₃, 332K) δ 13.9 (CH₃), 22.6 (CH₂), 29.5 (CH₂), 31.3 (CH₂), 34.8 (CH₂), 35.2 (CH₂), 126.2 (CH), 126.3 (CH), 126.8 (CH), 127.1 (CH), 128.2 (CH), 128.4 (CH), 129.1 (CH), 130.5 (CH), 131.2 (CH), 140.3 (C), 140.5 (C), 140.9 (C), 143.2 (C), 143.8 (C); HRMS-EI m/z [M]⁺ calcd for C₂₀H₂₂: 262.1722, found: 262.1721.


1.5.4. 12-Methylene-5,6,7,12-tetrahydrodibenzo[a,d]cyclooctene (2e') (Table 2, entry 4).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃ 323K) δ 1.82 (quint, J = 6.3 Hz, 2H, CH₂), 2.62 (t, J = 6.3 Hz, 4H, CH₂), 5.47 (s, 2H, C=CH₂), 7.05 (dd, J = 2.0, 6.7 Hz, 2H, Ar), 7.17–7.23 (m, 4H, Ar), 7.49 (dd, J = 1.4, 7.2 Hz, 2H, Ar); ¹³C NMR (150 MHz, CDCl₃,

323K) & 31.4 (CH₂), 32.1 (2CH₂), 118.8 (CH₂), 126.2 (2CH), 127.8 (2CH), 128.0 (2CH), 129.8 (2CH), 139.7 (2C), 141.7 (2C), 150.5 (C); HRMS-EI *m/z* [M]⁺ calcd for C₁₇H₁₆: 220.1252, found: 220.1247.


5-(Butylidene)-10,11-dihydro-5*H*-dibenzo[*a*,*d*]cycloheptene (1d) (Table 2, entry 6). 1.5.5.

To a mixture of 1-(pent-1-yn-1-yl)-2-phenethylbenzene (7d) (24.8 mg, 100 µmol) in CH₂Cl₂ (1 mL) at 0 °C was added TfOH (8.8 µL, 100 µmol). The mixture was stirred at 0 °C for 15 min, quenched with saturated aqueous NaHCO₃, and then extracted with ethyl acetate (3 \times 1.0 mL). The combined organic layers were washed with brine and dried over Na₂SO₄, and evaporated. The residue was purified by silica gel column

chromatography using ethyl acetate/hexane = 1/8 as an eluent to give 5-(butylidene)-10,11-dihydro-5Hdibenzo[a,d]cycloheptene (1d) as a colorless liquid (23.9 mg, 96.2 µmol, 96%): ¹H NMR (600 MHz, CDCl₃) δ 0.88 (t, J = 7.4 Hz, 3H, CH₃ (n-Pr)), 1.43 (app. br s, 2H, CH₂(n-Pr)), 2.06 (app. br s, 1H, CH₂), 2.11 (app. br s, 1H, CH₂), 2.77 (app. br s, 1H, CH₂), 2.95 (app. br s, 1H, CH₂), 3.31 (app. br s, 1H, CH₂), 3.40 (app. br s, 1H, CH₂), 5.86 (t, J = 7.4Hz, 1H, CH (vinyl)), 7.02–7.05 (m, 1H, Ar), 7.10–7.21 (m, 6H, Ar), 7.26–7.30 (m, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃, 323K) δ 13.8 (CH₃), 23.0 (CH₂), 31.5 (CH₂), 32.1 (CH₂), 33.8 (CH₂), 125.6 (CH), 126.0 (CH), 126.9 (CH), 127.2 (CH), 127.9 (CH), 128.4 (CH), 128.6 (CH), 129.9 (CH), 132.2 (CH), 137.1 (C), 139.3 (C), 140.3 (C), 141.6 (C), 142.3 (C); HRMS-EI *m/z* [M]⁺ calcd for C₁₉H₂₀: 248.1565, found: 248.1566.

1.5.6. 5-(2,2-Dimethylpropylidene)-10,11-dihydro-5*H*-dibenzo[*a,d*]cycloheptene (1c) (Table 2, entry 5).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (300 MHz, CDCl₃) δ 0.98 (s, 9H, CH₃ (*t*-Bu)), 2.72 (dt, J = 4.2, 13.6 Hz, 1H, CH₂), 2.93 (ddd, J = 4.1, 13.4, 17.3 Hz, 1H, CH₂), 3.30 (dt, J = 4.2, 17.3 Hz, 1H, CH₂), 3.52 (td, J = 3.9, 13.3 Hz, 1H, CH₂), 5.78 (s, 1H, CH (vinyl)), 6.93– 7.01 (m, 1H, Ar), 7.07–7.28 (m, 7H, Ar); ¹³C NMR (75.5 MHz, CDCl₃) δ 31.0 (3CH₃), 31.6 (CH₂), 33.7 (CH₂), 33.8 (C), 125.3 (CH), 125.9 (CH), 126.7 (CH), 127.1 (CH), 127.3 (CH), 128.2 (CH), 128.3 (CH), 130.3 (CH), 136.2 (C), 138.7 (C), 139.9 (C), 141.5 (CH), 141.8 (C), 142.8 (C); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₀H₂₂Na: 285.1614, found: 285.1609.

1.5.7. 5-Methylene-10,11-dihydro-5*H*-dibenzo[*a*,*d*]cycloheptene (1e') (Table 2, entry 7).

The title compound was synthesized using the same procedure described above. ¹H NMR and ¹³C NMR spectra were identical to those in the literature.⁴

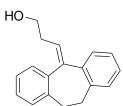
1.5.8. 3-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-*N*,*N*-dimethylpropan-1-amine (1a) (Table 2, entry 8).

To a mixture of *N*,*N*-dimethyl-4-(2-phenethylphenyl)but-3-yn-1-amine (7a) (13.8 mg, 49.7 μ mol) in CH₂Cl₂ (0.5 mL) at 0 °Cwas added TfOH (21.9 μ L, 250 μ mol). The mixture was stirred at 0 °C for 10 min, quenched with saturated aqueous NaHCO₃, and extracted with ethyl acetate (3 × 1.0 mL). The combined organic layers were washed with brine,

dried over Na₂SO₄, and evaporated. The residue was purified by silica gel column chromatography using chloroform/methanol = 1/1 to give 3-(10,11-dihydro-5*H*-dibenzo[*a,d*][7]annulen-5-ylidene)-*N*,*N*-dimethylpropan-1-amine (**1a**) as a colorless liquid (7.7 mg, 27.8 µmol, 56%): ¹H NMR (600 MHz, CDCl₃) δ 2.20 (s, 6H, CH₃ (NMe₂)), 2.28–2.46 (m, 4H, CH₂), 2.71–2.86 (m, 1H, CH₂), 2.91–3.07 (m, 1H, CH₂), 3.26–3.38 (m, 1H, CH₂), 3.38–3.51 (m, 1H, CH₂), 5.88 (t, *J* = 7.2 Hz, 1H, CH (vinyl)), 7.02–7.07 (m, 1H, Ar), 7.13–7.23 (m, 6H, Ar), 7.28–7.32 (m, 1H, Ar). ¹H NMR and ¹³C NMR spectra were identical to those in the literature.⁵

1.5.9. **3**-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-*N*-methylpropan-1-amine (1b) (Table 2, entry 9).

To a mixture of *N*-methyl-4-(2-phenethylphenyl)but-3-yn-1-amine (**7b**) (6.5 mg, 24.7 μ mol) in CH₂Cl₂ (0.25 mL) at 0 °C was added TfOH (10.8 μ L, 124 μ mol). The mixture was then stirred at 0 °C for 10 min, quenched with saturated aqueous NaHCO₃, and then extracted with ethyl acetate (3 × 1.0 mL). The combined organic layers were washed with

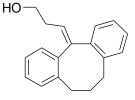

brine, dried over Na₂SO₄, and evaporated. The residue was purified by PTLC using chloroform/methanol = 1/1 as an eluent to give 3-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-*N*-methylpropan-1-amine (**1b**) as a colorless liquid (4.4 mg, 16.7 µmol, 68%): IR (neat) 3417 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 2.02–2.16 (m, 1H, NH), 2.34 (q, *J* = 7.2 Hz, 2H, CH₂), 2.37 (s, 3H, CH₃ (NHMe)), 2.64–2.72 (m, 2H, CH₂), 2.74–2.86 (m, 1H, CH₂), 2.89–3.06 (m, 1H, CH₂), 3.27–3.46 (m, 2H, CH₂), 5.85 (t, *J* = 7.7 Hz, 1H, CH (vinyl)), 7.02–7.06 (m, 1H, Ar), 7.11–7.21 (m, 6H, Ar), 7.27–7.30 (m, 1H, Ar).

1.5.10. 3-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)propan-1-ol (1f) (Table 2, entry 10).

⁴ G. A. Molander and E. D. Dowdy, J. Org. Chem., 1999, 64, 6515.

⁵ S. Das, F. D. Bobbink, G. Laurenczy and P. J. Dyson, *Angew. Chem., Int. Ed.*, 2014, **53**, 12876.

The title compound was synthesized using the same procedure described above. Colorless solid: mp 81.5-


81.8 °C; IR (KBr) 3394 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 1.30 (app. br s, 1H, OH), 2.36–2.46 (m, 2H, CH₂), 2.67–3.10 (m, 2H, CH₂), 3.20–3.52 (m, 2H, CH₂), 3.69 (app. br s, 2H, CH₂), 5.89 (t, J = 7.5 Hz, 1H, CH (vinyl)), 7.02–7.06 (m, 1H, Ar), 7.12–7.22 (m, 6H, Ar), 7.28–7.30 (m, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 32.0 (CH₂), 33.1 (CH₂), 33.7 (CH₂), 62.6 (CH₂), 125.8 (CH), 126.0 (CH), 127.2 (CH), 127.4 (CH),

127.5 (CH), 128.1 (CH), 128.3 (CH), 128.5 (CH), 130.0 (CH), 137.0 (C), 139.3 (C), 139.9 (C), 141.1 (C), 145.2 (C); HRMS-ESI m/z [M+Na]⁺ calcd for C₁₈H₁₈ONa: 273.1250, found: 273.1252.

1.5.11. 3-(6,7-Dihydrodibenzo[*a*,*d*][8]annulen-12(5*H*)-ylidene)-*N*,*N*-dimethylpropan-1-amine (2f) (Table 2, entry 11).

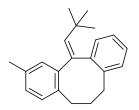
Me₂N The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (600 MHz, CDCl₃, 323K) δ 1.96 (app. br s, 2H, CH₂), 2.02 (q, J = 7.4 Hz, 2H CH₂), 2.15 (s, 6H, CH₃ (NMe₂)), 2.34 (t, J = 7.7 Hz, 2H, CH₂), 2.63 (app. br s, 2H, CH₂), 2.88 (t, J = 6.6 Hz, 2H, CH₂), 5.83 (t, J = 7.2 Hz, 1H, CH (vinyl)), 6.99 (d, J = 7.4 Hz, 1H, Ar), 7.04–7.17 (m, 6H, Ar), 7.35 (d, J = 7.4 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃, 323 K) δ 27.6 (CH₂), 29.6 (CH₂), 34.6 (CH₂), 34.9 (CH₂), 45.2 (2CH₃), 59.2 (CH₂), 126.2 (2CH), 126.9 (CH), 127.2 (CH), 128.2 (CH), 128.2 (CH), 128.8 (CH), 129.1 (CH), 130.6 (CH), 140.1 (C), 140.4 (C), 140.6 (C), 143.4 (C), 144.4 (C); HRMS-ESI m/z [M+H]⁺ calcd for C₂₁H₂₆N: 292.2060, found: 292.2060.

1.5.12. 3-(6,7-Dihydrodibenzo[*a*,*d*][8]annulen-12(5H)-ylidene)propan-1-ol (2g) (Table 2, entry 12).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (400 MHz, CDCl₃) δ 1.18–1.25 (m, 1H, OH), 1.84–2.08 (m, 2H, CH₂), 2.15 (q, *J* = 6.8 Hz, 2H, CH₂), 2.54–2.75 (m, 2H, CH₂), 2.88 (t, *J* = 6.6 Hz, 2H, CH₂), 3.67 (t, *J* = 6.6 Hz, 2H, CH₂), 5.87 (t, *J* = 7.3 Hz, 1H, CH (vinyl)), 7.02 (dd, *J* = 1.3, 7.5 Hz, 1H, Ar), 7.06–7.19 (m, 6H, Ar), 7.37 (d, *J* = 7.2 Hz, 1H, Ar); ¹³C

NMR (150 MHz, CDCl₃, 322 K) δ 29.5 (CH₂), 33.0 (CH₂), 34.7 (CH₂), 35.1 (CH₂), 62.4 (CH₂), 126.3 (CH), 126.3 (CH), 126.9 (CH), 127.1 (CH), 127.4 (CH), 128.1 (CH), 128.3 (CH), 129.2 (CH), 130.6 (CH), 140.1 (C), 140.4 (C), 140.4 (C), 143.3 (C), 145.9 (C); HRMS-ESI *m*/*z* [M+H]⁺ calcd for C₁₉H₂₁O: 265.1592, found: 265.1588.

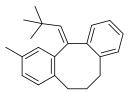
1.5.13. 3-(6,7-Dihydrodibenzo[*a*,*d*][8]annulen-12(5*H*)-ylidene)propan-1-amine (2h) (Table 2, entry 13).



The title compound was synthesized using the same procedure described above. Colorless liquid: IR (neat) 3502 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, 322 K) δ 1.87 (app. br s, 2H, CH₂), 2.08 (q, *J* = 7.1 Hz, 2H, CH₂), 2.54 (app. br s, 2H, CH₂), 2.75 (t, *J* = 6.4 Hz, 2H, CH₂), 2.82 (app. br s, 2H, CH₂), 5.22 (app. br s, 2H, NH₂), 5.67 (t, *J* = 7.0 Hz, 2H, CH₂), 5.67 (t, *J* = 7.0 Hz, 2H, CH₂), 5.67 (t, *J* = 7.0 Hz, 2H, CH₂), 5.67 (t, *J* = 7.0 Hz), 5.67 (t, J =

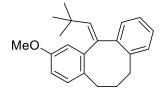
1H, CH (vinyl)), 6.91 (d, *J* = 7.2 Hz, 1H, Ar), 6.93–6.97 (m, 1H, Ar), 6.99–7.08 (m, 5H, Ar), 7.29 (d, *J* = 7.5 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃, 322 K) δ 28.2 (CH₂), 29.6 (CH₂), 34.6 (CH₂), 34.9 (CH₂), 40.2

(CH₂), 124.3 (CH), 126.4 (CH), 126.6 (CH), 127.4 (CH), 127.7 (CH), 127.8 (CH), 128.1 (CH), 129.3 (CH), 130.7 (CH), 139.7 (C), 139.8 (C), 140.3 (C), 142.6 (C), 147.8 (C); HRMS-ESI m/z [M+H]⁺ calcd for C₁₉H₂₂N: 264.1747, found: 264.1742.


1.5.14. (*E*)-12-(2,2-Dimethylpropylidene)-2-methyl-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclooctene (*E*-2j) (Table 3, entry 7).

To a mixture of 1-(3,3-dimethylbut-1-yn-1-yl)-2- (3-(*p*-tolyl)propyl)benzene (**8**I) (29.0 mg, 100 μ mol) in CH₂Cl₂ (1 mL) at 0 °C was added H₂SO₄ (9.8 μ L, 100 μ mol). The mixture was then stirred at 0 °C for 20 min, quenched with saturated aqueous NaHCO₃, and then extracted with ethyl acetate (3 × 1 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by

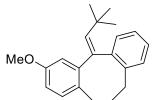
silica gel column chromatography using ethyl acetate/hexane = 1/8 as an eluent to give *E*-2j as a colorless liquid (24.9 mg, 85.7 µmol, 86%): ¹H NMR (600 MHz, CDCl₃, 322 K) δ 0.96 (s, 9H, CH₃ (*t*-Bu)), 1.41–2.20 (m, 2H, CH₂), 2.25 (s, 3H, CH₃ (*p*-tol)), 2.57–3.29 (m, 4H, CH₂), 5.61 (s, 1H, CH (vinyl)), 6.81–6.87 (m, 2H, Ar), 6.96–7.01 (m, 1H, Ar), 7.02–7.07 (m, 3H, Ar), 7.10–7.14 (m, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃, 322 K) δ 20.9 (3CH₃), 29.3 (CH₂), 30.7 (CH₃), 34.2 (C), 36.3 (CH₂), 37.3 (CH₂), 125.7 (CH), 126.8 (CH), 127.3 (CH), 128.9 (CH), 129.2 (CH), 129.6 (CH), 130.0 (CH), 135.6 (C), 137.1 (C), 139.4 (CH), 139.8 (C), 140.2 (C), 142.0 (C), 146.3 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₂H₂₆: 290.2035, found: 290.2035.


1.5.15. (*Z*)-12-(2,2-Dimethylpropylidene)-2-methyl-5,6,7,12-tetrahydro-dibenzo[*a*,*d*]cyclooctene (*Z*-2j) (Table 3, entry 6).

The title compound was synthesized using the same procedure described above. Colorless solid: mp 49.7–50.2 °C: ¹H NMR (400 MHz, CDCl₃) δ 0.97 (s, 9H, CH₃ (*t*-Bu)), 1.49–2.22 (m, 2H, CH₂), 2.25 (s, 3H, CH₃ (*p*–tol)), 2.52–3.35 (m, 4H, CH₂), 5.60 (s, 1H, CH (vinyl)), 6.87 (d, J = 7.4 Hz, 1H, Ar), 6.90 (d, J = 7.5, 1H, Ar), 6.93 (s, 1H, Ar), 6.98 (dd, J = 1.3, 7.3 Hz, 1H, Ar), 7.04 (ddd, J = 1.5, 7.2, 7.5 Hz, 1H, Ar),

7.10 (ddd, J = 1.5, 7.2, 7.5 Hz, 1H, Ar), 7.22 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃, 341 K) δ 20.7 (3CH₃), 28.8 (CH₂), 30.4 (CH₃), 33.9 (C), 36.5 (CH₂), 36.6 (CH₂), 125.9 (CH), 126.4 (CH), 127.2 (CH), 128.3 (CH), 129.3 (CH), 129.7 (CH), 134.8 (C), 136.8 (C), 139.2 (CH), 139.6 (C), 140.0 (C), 141.5 (C), 146.3 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₂H₂₆: 290.2035, found: 290.2031.

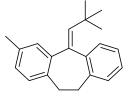
1.5.16. (*Z*)-12-(2,2-Dimethylpropylidene)-2-methoxy-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclooctene (*Z*-2i) (Table 3, entry 2).



The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 0.92 (s, 9H, CH₃ (*t*-Bu)), 1.29–2.38 (m, 2H, CH₂), 2.44–3.22 (m, 4H, CH₂ (Bn)), 3.67 (s, 3H, OMe), 5.52 (s, 1H, CH (vinyl)), 6.54 (dd, J = 2.7, 8.4 Hz, 1H, Ar), 6.63 (d, J = 2.4 Hz, 1H, Ar), 6.86 (d, J

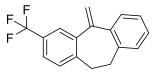
= 8.3 Hz, 1H, Ar), 6.92 (dd, J = 1.3, 7.6 Hz, 1H, Ar), 6.98 (td, J = 1.4, 7.4 Hz, 1H, Ar), 7.03 (td, J = 1.3, 7.4 Hz, 1H, Ar), 7.14 (d, J = 7.2 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 29.1 (C), 30.4 (3CH₃), 33.9 (CH₂), 36.4 (CH₂), 36.5 (CH₂), 55.0 (CH₃), 111.5 (CH), 114.6 (CH), 125.9 (CH), 126.4 (CH), 128.4 (CH), 129.7

(CH), 130.3 (CH), 132.4 (C), 139.2 (CH), 139.3 (C), 140.1 (C), 142.8 (C), 146.0 (C), 157.4 (C); HRMS-EI m/z [M]⁺ calcd for C₂₂H₂₆O: 306.1984, found: 306.1982.


1.5.17. (*E*)-12-(2,2-Dimethylpropylidene)-2-methoxy-5,6,7,12-tetrahydro-dibenzo[*a*,*d*]cyclooctene (*E*-2i) (Table 3, entry 4).

The title compound was synthesized using the same procedure described above. Yellow liquid: ¹H NMR (600 MHz, CDCl₃) δ 0.98 (s, 9H, CH₃ (*t*-Bu)), 2.00–2.41 (m, 1H, CH₂), 2.41–3.40 (m, 5H, CH₂), 3.79 (s, 3H, OMe), 5.65 (s, 1H, CH (vinyl)), 6.62 (dd, J = 2.9, 8.5 Hz, 1H, Ar), 6.82 (s, 1H, Ar), 6.94 (d, J = 8.2 Hz, 1H, Ar), 7.10 (m, 4H, Ar); ¹³C NMR (150 MHz, CDCl₃, 323 K) δ 29.2 (C), 30.4 (3CH₃),

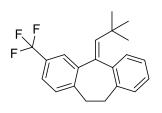
33.9 (CH₂), 35.7 (CH₂), 37.1 (CH₂), 55.1 (CH₃), 111.1 (CH), 114.6 (CH), 125.5 (CH), 126.7 (CH), 128.7 (CH), 129.4 (CH), 130.7 (CH), 132.3 (C), 139.3 (C), 139.4 (CH), 140.1 (C), 141.5 (C), 147.3 (C), 157.8 (C); HRMS-EI m/z [M]⁺ calcd for C₂₂H₂₆O: 306.1984, found: 306.1982.


1.5.18. (*E*)-5-(2,2-Dimethylpropylidene)-10,11-dihydro-3-methyl-5*H*-dibenzo[*a*,*d*]cycloheptene (*E*-1g) (Table 3, entry 9).

The title compound was synthesized using the same procedure described above. Colorless liquid: mp 82.6–83.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.98 (s, 9H, CH₃ (*t*-Bu)), 2.29 (s, 3H, CH₃ (*p*-tol)), 2.70 (dt, J = 4.4, 13.6 Hz, 1H, CH₂), 2.88 (ddd, J = 4.3, 13.2, 17.1 Hz, 1H, CH₂), 3.25 (dt, J = 4.4, 17.1 Hz, 1H, CH₂), 3.49 (td, J = 4.3, 13.6 Hz, 1H, CH₂), 5.77 (s, 1H, CH (vinyl)), 6.86 (d, J = 8.1 Hz, 1H, Ar), 6.91 (dd, J = 4.3)

1.7, 7.8 Hz, 1H, Ar), 7.04–7.21 (m, 5H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 20.8 (CH₃), 31.1 (3CH₃), 31.7 (CH₂), 33.2 (CH₂), 33.8 (C), 125.3 (CH), 127.1 (CH), 127.2 (CH), 127.5 (CH), 128.1 (CH), 128.8 (CH), 130.3 (CH), 133.1 (C), 135.3 (C), 138.8 (C), 140.0 (C), 141.2 (CH), 141.9 (C), 142.5 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₁H₂₄: 276.1878, found: 276.1881.

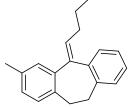
1.5.19. 10,11-Dihydro-5-methylene-3-(trifluoromethyl)-5*H*-dibenzo[*a*,*d*]cycloheptene (1h') (Table 3, entry 10).



The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 3.15–3.19 (m, 2H, CH₂), 3.19–3.22 (m, 2H, CH₂), 5.47 (d, J = 1.2 Hz, 1H, C=CH₂), 5.51 (d, J = 1.2 Hz, 1H, C=CH₂), 7.14 (d, J = 7.1 Hz, 1H, Ar), 7.19–7.26 (m, 3H, Ar), 7.37 (dd, J = 1.4, 7.4 Hz, 1H,

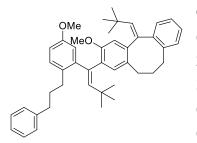
Ar), 7.46 (d, J = 8.5 Hz, 1H, Ar), 7.61 (s, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 32.8 (CH₂), 33.1 (CH₂), 118.7 (CH₂), 124.2 (q, ¹J = 272.0 Hz, CF₃), 124.3 (q, ³J = 4.1 Hz, CH), 124.9 (q, ³J = 4.1 Hz, CH), 126.5 (CH), 128.0 (CH), 128.3 (CH), 128.6 (q, ²J = 20.9 Hz, C), 129.0 (CH), 129.3 (CH), 137.8 (C), 140.2 (C), 141.8 (C), 142.4 (C), 150.6 (C); HRMS-EI *m*/*z* [M]⁺ calcd for C₁₇H₁₃F₃: 274.0969, found: 274.0965.

1.5.20. (*E*)-5-(2,2-Dimethylpropylidene)-10,11-dihydro-3-(trifluoromethyl)-5*H*-dibenzo[*a*,*d*]cyclo-heptene (*E*-1h) (Table 3, entry 10).


Light yellow liquid: ¹H NMR (500 MHz, CDCl₃) δ 0.99 (s, 9H, CH₃ (*t*-Bu)), 2.75 (dt, J = 4.3, 13.8 Hz, 1H,

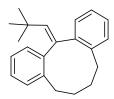
CH₂), 2.96 (td, J = 4.3, 15.6 Hz, 1H, CH₂), 3.34 (dd, J = 4.3, 17.3 Hz, 1H, CH₂), 3.52 (td, J = 4.3, 13.8 Hz, 1H, CH₂), 5.81 (s, 1H, CH (vinyl)), 7.07 (d, J = 8.1 Hz, 1H, Ar), 7.12–7.20 (m, 4H, Ar), 7.32 (dd, J = 1.5, 8.1 Hz, 1H, Ar), 7.48 (s, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 30.9 (3CH₃), 31.2 (CH₂), 33.7 (CH₂), 34.0 (C), 123.1 (q, ³J = 3.8 Hz, CH), 124.3 (q, ¹J = 271.7 Hz, CF₃), 125.1 (q, ³J = 3.3 Hz,

CH), 125.6 (CH), 127.3 (CH), 127.7 (CH), 128.1 (q, ${}^{2}J$ = 32.4 Hz, C), 128.3 (CH), 130.8 (CH), 138.3 (C), 138.8 (C), 141.1 (C), 142.3 (C), 142.7 (CH), 143.2 (C); HRMS-EI *m*/*z* [M]⁺ calcd for C₂₁H₂₁F₃: 330.1595, found: 330.1598.


1.5.21. (*E*)-5-Butylidene-10,11-dihydro-3-methyl-5*H*-dibenzo[*a*,*d*]cycloheptene (*E*-1i) (Table 3, entry 14).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃, 324 K) δ 0.92 (t, J = 7.5 Hz, 3H, CH₃ (*n*-Pr)), 1.44–1.51 (m, 2H, CH₂ (*n*-Pr)), 2.12 (app. br s, 2H, CH₂ (*n*-Pr)), 2.33 (s, 3H, CH₃), 2.60–3.61 (m, 4H, CH₂), 5.87 (t, J = 7.7Hz, 1H, CH (vinyl)), 6.92–6.99 (m, 2H, Ar), 7.11–7.23 (m, 5H, Ar); ¹³C NMR (150 MHz, CDCl₃, 324 K) δ 13.6 (CH₃), 20.6

(CH₃), 22.8 (CH₂), 31.3 (CH₂), 32.1 (CH₂), 33.2 (CH₂), 125.4 (CH), 127.0 (CH), 127.5 (CH), 127.8 (CH), 128.2 (CH), 128.9 (CH), 129.7 (CH), 131.6 (CH), 133.9 (C), 135.2 (C), 139.2 (C), 140.3 (C), 141.4 (C), 142.5 (C); HRMS-EI m/z [M]⁺ calcd for C₂₀H₂₂: 262.1722, found: 262.1725.

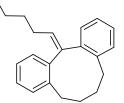

1.5.22. (*Z*)-12-(2,2-Dimethylpropylidene)-2-methoxy-3-((*Z*)-1-(5-methoxy-2-(3-phenylpropyl)-phenyl)-3,3-dimethylbut-1-en-1-yl)-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclooctane (10) (Table 3, entry 1).

Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 0.91 (s, 9H, CH₃ (*t*-Bu)), 0.94 (s, 9H, CH₃ (*t*-Bu)), 1.36–1.49 (m, 1H, CH₂), 1.60–1.73 (m, 2H, CH₂), 1.99–2.34 (m, 1H, CH₂), 2.36–2.42 (m, 2H, CH₂), 2.42–2.50 (m, 2H, CH₂), 2.52–3.38 (m, 4H, CH₂), 3.68 (s, 3H, OMe), 3.83 (s, 3H, OMe), 5.59 (s, 1H, CH (vinyl)), 5.82 (s, 1H, CH (vinyl)), 6.61 (s, 1H, Ar), 6.70–6.75 (m, 1H, Ar), 6.75 (dd, J = 2.9, 8.5 Hz, 1H, Ar), 6.93 (s, 1H, Ar), 6.96–7.01 (m, 2H, Ar), 7.04–

7.09 (m, 3H, Ar), 7.11 (t, J = 7.3 Hz, 1H, Ar), 7.15 (t, J = 7.3 Hz, 1H, Ar), 7.18–7.26 (m, 3H, Ar); ¹³C NMR (150 MHz, CDCl₃, 322 K) δ 29.1 (2C), 30.6 (3CH₃), 30.9 (3CH₃), 31.9 (CH₂), 32.0 (CH₂), 34.1 (CH₂), 34.2 (CH₂), 36.1 (CH₂), 36.4 (CH₂), 55.4 (CH₃), 55.9 (CH₃), 112.5 (CH), 113.1 (CH), 117.9 (CH), 125.5 (CH), 126.1 (CH), 126.6 (CH), 128.2 (C), 128.2 (2CH), 128.4 (C), 128.4 (2CH), 128.5 (CH), 129.0 (CH), 130.0 (CH), 132.0 (C), 132.0 (CH), 133.1 (C), 139.7 (C), 139.8 (C), 139.8 (C), 140.4 (C), 141.4 (C), 142.6 (C), 143.3 (2CH), 155.0 (C), 156.5 (C); HRMS-EI *m/z* [M]⁺ calcd for C₄₄H₅₂O₂: 612.3967, found: 612.3970.

1.5.23. 13-(2,2-Dimethylpropylidene)-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3a) (Table 4, entry 1).

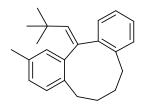
To a mixture of 1-(3,3-dimethylbut-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9a) (29.2 mg, 101 μ mol) in CH₂Cl₂ (1 mL) at 0 °C was added TfOH (8.8 μ L, 100 μ mol). The mixture was stirred at 0 °C for 10 min, quenched with saturated aqueous NaHCO₃, and then


extracted with ethyl acetate (3 × 1 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by silica gel column chromatography using hexane as an eluent to give **3a** as a colorless liquid (12.4 mg, 42.7 μmol, 43%): ¹H NMR (600 MHz, CDCl₃) δ 0.94 (s, 10H, CH₃ (*t*-Bu), CH₂), 1.34–1.45 (m, 1H, CH₂), 1.71–1.81 (m, 2H, CH₂), 2.46–2.56 (m, 2H, CH₂), 3.11 (dt, *J* = 5.3, 13.3 Hz, 1H, CH₂), 3.37–3.54 (m, 1H, CH₂), 5.51 (s, 1H, CH (vinyl)), 7.01–7.15 (m, 6H, Ar), 7.24–7.30 (m, 2H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 27.5 (CH₂), 29.3 (CH₂), 30.4 (CH₂), 30.6 (3CH₃), 30.9 (CH₂), 34.5 (C), 125.5 (CH), 125.5 (CH), 126.9 (CH), 127.1 (CH), 128.9 (CH), 129.2 (CH), 129.7 (CH), 129.8 (CH), 137.0 (C), 139.7 (C), 141.4 (C), 141.8 (C), 142.2 (CH), 145.8 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₂H₂₆: 290.2035, found: 290.2031.

1.5.24. 13-Butylidene-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3b) (Table 4, entry 3).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (600 MHz, CDCl₃) δ 0.88 (t, J = 7.4 Hz, 3H, CH₃ (*n*-Pr)), 1.43 (sext, J = 7.4 Hz, 2H, CH₂ (*n*-Pr)), 1.44–1.86 (m, 4H, CH₂), 1.93 (q, J = 6.6 Hz, 2H, CH₂ (*n*-Pr)), 2.10–3.46 (m, 4H, CH₂), 5.70 (t, J = 7.3 Hz, 1H, CH (vinyl)), 7.03 (dd, J =

1.8, 6.9 Hz, 1H, Ar), 7.08 (dd, J = 1.9, 7.6 Hz, 1H, Ar), 7.10–7.18 (m, 5H, Ar), 7.33 (dd, J = 1.9, 6.8 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 13.9 (CH₃), 22.4 (CH₂), 28.7 (CH₂), 29.2 (CH₂), 30.8 (CH₂), 31.1 (CH₂), 31.7 (CH₂), 125.6 (CH), 125.8 (CH), 126.9 (CH), 127.0 (CH), 128.7 (CH), 129.0 (CH), 129.2 (CH), 129.4 (CH), 132.3 (CH), 140.5 (C), 141.0 (C), 141.1 (2C), 144.0 (C); HRMS-EI m/z [M]⁺ calcd for C₂₁H₂₄: 276.1878, found: 276.1877.

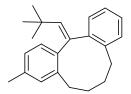

1.5.25. 13-Hexylidene-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3c) (Table 4, entry 4).

The title compound was synthesized using the same procedure described above. Colorless liquid: ¹H NMR (500 MHz, CDCl₃) δ 0.85 (t, J = 7.6 Hz, 3H, CH₃), 1.22– 1.26 (m, 6H, CH₂), 1.37–1.44 (m, 2H, CH₂), 1.44–1.70 (m, 2H, CH₂), 1.95 (ap q, J= 7.7 Hz, 2H, CH₂), 2.20–3.20 (m, 4H, CH₂), 5.78 (t, J = 7.2 Hz, 1H, CH (vinyl)), 7.03 (dd, J = 1.7, 7.6 Hz, 1H, Ar), 7.07–7.09 (m, 1H, Ar), 7.11–7.18 (m,

5H, Ar), 7.33 (dd, J = 1.7, 7.6 Hz, 1H, Ar); ¹³C NMR (126 MHz, CDCl₃) δ 14.0 (CH₃), 22.5 (CH₂), 28.7 (CH₂), 28.9 (CH₂), 29.0 (CH₂), 29.2 (CH₂), 30.8 (CH₂), 31.5 (CH₂), 31.7 (CH₂), 125.6 (CH), 125.8 (CH), 126.9 (CH), 127.0 (CH), 128.7 (CH), 129.0 (CH), 129.2 (CH), 129.4 (CH), 132.5 (CH), 140.5 (C), 140.8 (C), 141.1 (C), 141.2 (C), 144.0 (C); HRMS-ESI *m*/*z* [M+H]⁺ calcd for C₂₃H₂₉: 305.2264, found: 305.2271.

1.5.26. (*E*)- and (*Z*)-13-(2,2-Dimethylpropylidene)-2-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]- cyclononene (3d) (Table 4, entry 5).

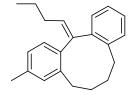
The title compound was obtained as a mixture of (*E*)- and (*Z*)-isomers (major:minor = 52:48) by the same procedure described above. Yellow liquid: ¹H NMR (500 MHz, CDCl₃) (mixture) δ 0.92–0.95 (m, 20H, CH₃ (*t*-Bu), CH₂), 1.33–1.43 (m, 2H, CH₂), 1.69–1.81 (m, 4H, CH₂), 2.26 (s, 3H, CH₃ (*p*–tol)), 2.30 (s, 3H, CH₃ (*p*–tol)), 2.45–2.53 (m, 4H, CH₂), 3.02–3.13 (m, 2H, CH₂), 3.32–3.49 (m, 2H, CH₂), 5.48 (s, 1H, CH


(vinyl)), 5.48 (s, 1H, CH (vinyl)), 6.89–6.93 (m, 3H, Ar), 6.96 (d, J = 7.6 Hz, 1H, Ar), 7.02–7.14 (m, 8H,

Ar), 7.25–7.31 (m, 2H, Ar); ¹³C NMR (150 MHz, CDCl₃) (mixture) δ 21.0 (CH₃), 21.1 (CH₃), 27.2 (CH₂), 27.5 (CH₂), 28.6 (CH₂), 29.1 (CH₂), 30.0 (CH₂), 30.2 (CH₂), 30.3 (CH₂), 30.4 (6CH₃), 30.7 (CH₂), 34.3 (C), 34.3 (C), 125.2 (CH), 125.3 (CH), 126.6 (CH), 126.8 (CH), 127.5 (CH), 127.5 (CH), 128.5 (CH), 128.7 (CH), 129.0 (CH), 129.4 (2CH), 129.5 (CH), 129.7 (CH), 130.2 (CH), 134.5 (C), 134.6 (C), 136.3 (C), 136.8 (C), 136.9 (C), 138.5 (C), 139.7 (C), 140.9 (C), 141.2 (C), 141.7 (C), 141.8 (CH), 141.8 (CH), 145.3 (C), 145.7 (C); HRMS-EI *m/z* [M]⁺ calcd for C₂₃H₂₈: 304.2191, found: 304.2182.

1.5.27. (*E*)- and (*Z*)-13-Butylidene-2-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3e) (Table 4, entry 6).

The title compound was obtained as a mixture of (*E*)- and (*Z*)-isomers (major:minor = 74:26) by the same procedure described above. Colorless liquid: ¹H NMR (500 MHz, CDCl₃) (major) δ 0.89 (t, 3H, J = 1.7, 7.6 Hz, CH₃), 1.40–1.46 (m, 2H, CH₂), 1.52–1.57 (m, 4H, CH₂), 1.89–1.97 (m, 2H, CH₂), 2.26 (s, 3H, CH₃), 2.30–3.20 (m, 4H, CH₂), 5.69 (t, J = 6.5 Hz, 1H, vinyl), 6.87 (br s, 1H, Ar), 6.96 (dd, J = 1.4, 7.5 Hz, 1H, Ar), 7.01–7.03 (m, 2H, Ar), 7.12–7.17 (m, 2H, Ar), 7.34–7.31 (dd, J = 1.6, 7.4 Hz, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) (major) δ 13.9 (CH₃), 21.0 (CH₃), 22.4 (CH₂), 28.9 (CH₂), 29.1 (CH₂), 30.9 (CH₂), 31.09 (CH₂), 31.13 (CH₂) 125.6 (CH), 126.8 (CH), 127.7 (CH), 128.9 (CH), 129.2 (CH), 129.3 (CH), 129.4 (CH), 132.1 (CH), 135.1 (C), 137.9 (C), 140.2 (C), 141.1 (C), 141.3 (C), 144.1 (C); HRMS-ESI m/z [M+Na]⁺ calcd for C₂₂H₂₆Na: 313.1927, found: 313.1932.


1.5.28. (*E*)- and (*Z*)-13-(2,2-Dimethylpropylidene)-3-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]- cyclononene (3f) (Table 4, entry 7).

The title compound was obtained as a mixture of (*E*)- and (*Z*)-isomers (major:minor = 51:49) by the same procedure described above. Colorless liquid: ¹H NMR (500 MHz, CDCl₃) (mixture) δ 0.89–1.01 (m, 20H, CH₃ (*t*-Bu), CH₂), 1.32–1.46 (m, 2H, CH₂), 1.69–1.82 (m, 4H, CH₂), 2.26 (s, 3H, CH₃), 2.28 (s, 3H, CH₃), 2.42–2.56 (m, 4H, CH₂),

3.02–3.16 (m, 2H, CH₂), 3.33–3.52 (m, 2H, CH₂), 5.50 (s, 2H, CH (vinyl)), 6.85–6.96 (m, 4H, Ar), 7.01–7.19 (m, 8H, Ar), 7.21–7.26 (m, 2H, Ar); ¹³C NMR (125 MHz, CDCl₃) (mixture) δ 21.2 (3CH₃), 21.3 (3CH₃), 27.5 (CH₂), 27.6 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 30.3 (CH₂), 30.4 (CH₂), 30.7 (CH₃), 30.7 (CH₃), 31.0 (CH₂), 31.0 (CH₂), 34.5 (2C), 125.5 (CH), 125.6 (CH), 126.2 (CH), 126.3 (CH), 126.8 (CH), 127.0 (CH), 128.9 (CH), 129.1 (2CH), 129.6 (CH), 129.7 (CH), 129.8 (CH), 129.8 (CH), 130.4 (CH), 136.4 (C), 136.6 (C), 137.0 (C), 137.2 (C), 138.4 (C), 139.6 (C), 139.7 (C), 141.6 (2C), 141.7 (C), 142.1 (CH), 142.2 (CH), 143.1 (C), 146.1 (C); HRMS-ESI *m/z* [M+H]⁺ calcd for C₂₃H₂₉: 305.2264, found: 305.2261.

1.5.29. (*E*)- and (*Z*)-13-Butylidene-3-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3g) (Table 4, entry 8).

The title compound was obtained as a mixture of (*E*)- and (*Z*)-isomers (major:minor = 51:49) by the same procedure described above. Colorless liquid: ¹H NMR (500 MHz, CDCl₃) (mixture) δ 0.87 (t, *J* = 7.3 Hz, 3H, CH₃), 0.88 (t, *J* = 7.3 Hz, 3H, CH₃), 1.38–1.46 (m, 4H, CH₂), 1.52–1.57 (m, 8H, CH₂), 1.89–1.97 (m, 4H, CH₂), 2.28 (s, 3H, CH₃),

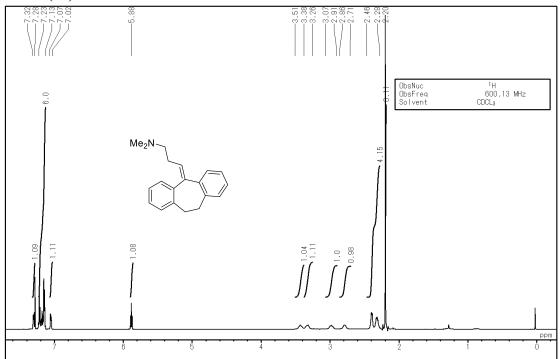
2.29 (s, 3H, CH₃), 2.30–3.20 (m, 8H, CH₂), 5.68 (t, J = 7.0 Hz, 1H, vinyl), 5.69 (t, J = 7.0 Hz, 1H, vinyl),

6.85 (br s, 1H, Ar), 6.93–6.97 (m, 4H, Ar), 7.01–7.03 (m, 1H, Ar), 7.06 (app d, J = 7.6 Hz, 1H, Ar), 7.10–7.18 (m, 5H, Ar), 7.23 (d, J = 7.6 Hz, 1H, Ar), 7.29–7.31 (m, 1H, Ar); ¹³C NMR (150 MHz, CDCl₃) (mixture) δ 13.90 (CH₃), 13.92 (CH₃), 21.0 (CH₃), 21.1 (CH₃), 22.4 (2CH₂), 28.8 (2CH₂), 29.2 (2CH₂), 30.9 (CH₂), 31.1 (CH₂), 31.3 (2CH₂), 31.7 (CH₂), 31.8 (CH₂), 125.6 (CH), 125.8 (CH), 126.3 (CH), 126.5 (CH), 126.8 (CH), 126.9 (CH), 128.6 (CH), 128.7 (CH), 129.0 (CH), 129.2 (2CH), 129.4 (CH), 129.8 (CH), 130.3 (CH), 132.0 (CH), 132.2 (CH), 136.4 (2C), 137.5 (C), 140.7 (C), 140.93 (C), 140.94 (C), 140.97 (C), 140.99 (C), 141.06 (C), 141.08 (C), 141.2 (C), 144.2 (C); HRMS-ESI *m*/*z* [M+H]⁺ calcd for C₂₂H₂₇: 291.2107, found: 291.2115.

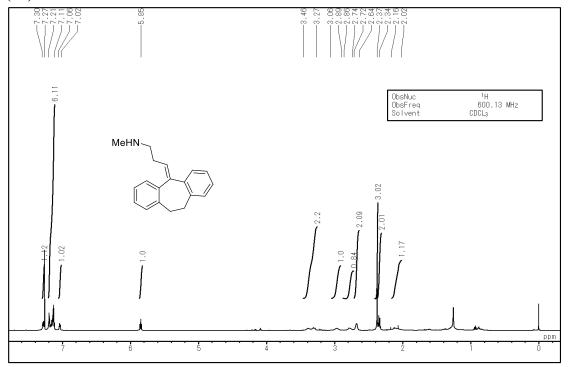
1.6. Preparation of 5,6,7,8-tetrahydro-13*H*-dibenzo[*a,d*][9]annulen-13-one (6)

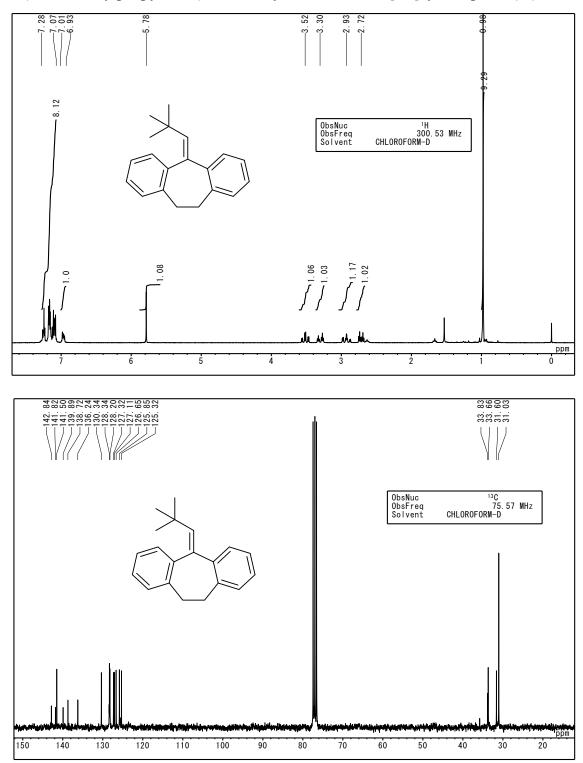
1.6.1. 5,6,7,8-Tetrahydro-13*H*-dibenzo[*a*,*d*][9]annulen-13-one (6) (eqn (3)).

Ο

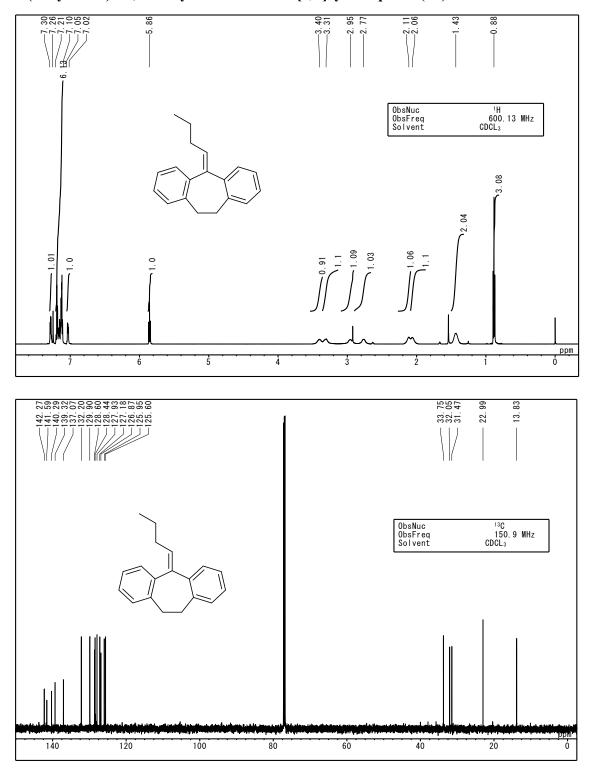

To a stirred mixture of 13-butylidene-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (**3b**) (95.7 mg, 350 μmol), RuCl₃ (24.2 mg, 92.6 μmol, 26 mol%), CH₃CN (5.0 mL) and distilled water (3.0 mL) at room temperature was added a mixture of Oxone (903 mg, 1.47 mmol) and NaHCO₃ (378 mg, 4.52 mmol) in portions over a period of 10 min. The mixture was stirred for 2 h, quenched with saturated aqueous NaS₂O₃, and then extracted

with CH₂Cl₂. The combined organic layers were washed with water and brine, dried over Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by silica gel column 1/8chromatography using ethyl acetate/hexane eluent = as an to give 5,6,7,8-tetrahydro-13*H*-dibenzo[a,d][9]annulen-13-one (6) as a colorless liquid (50.7 mg, 215 µmol, 61%): IR (neat) 1666 cm⁻¹ (lit.⁶ 1655 cm⁻¹); ¹H NMR (600 MHz, CDCl₃) δ 1.73 (app. br s, 4H, CH₂), 2.68 (app. br s, 4H, CH₂), 7.19 (d, J = 7.6 Hz, 2H, Ar), 7.30 (d, J = 7.6 Hz, 2H, Ar), 7.39 (td, J = 1.1, 7.6 Hz, 2H, Ar), 7.48 (d, J = 7.6 Hz, 2H, Ar); ¹³C NMR (150 MHz, CDCl₃) δ 27.0 (2CH₂), 32.9 (2CH₂), 126.1 (2CH), 126.6 (2CH), 130.6 (2CH), 130.9 (2CH), 141.1 (2C), 141.4 (2C), 203.4 (C=O); HRMS-ESI *m/z* [M+Na]⁺ calcd for C₁₇H₁₆ONa: 259.1093, found: 259.1089.

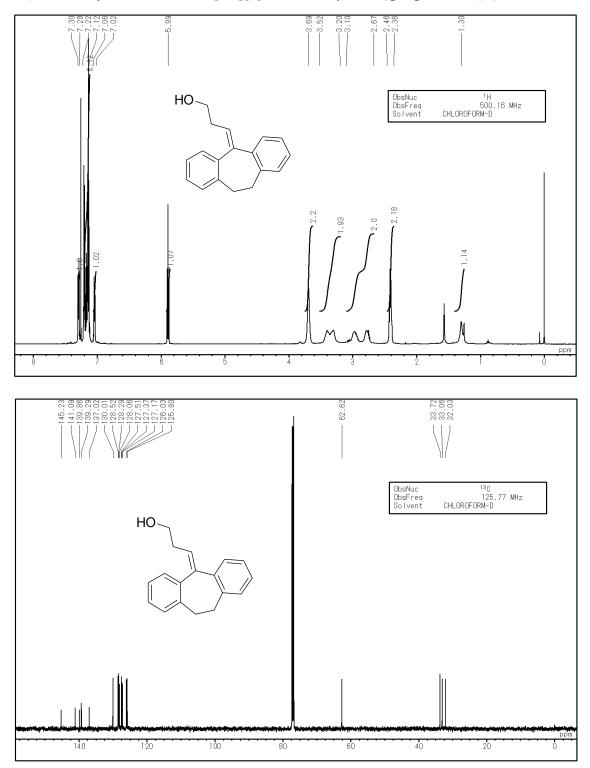

⁶ P. Caubere, M. S. Mourad, G. Guillaumet, *Tetrahedron*, 1973, **29**, 1851.


2. NMR spectra

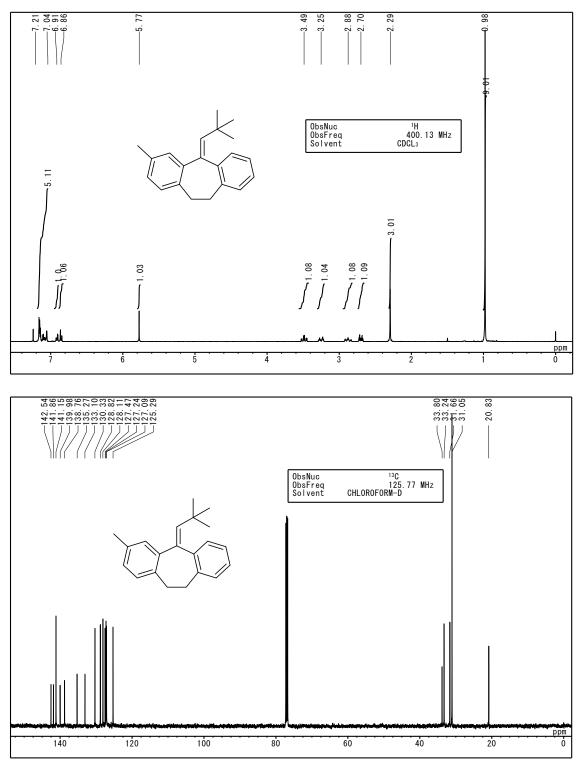
3-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-*N*,*N*-dimethylpropan-1amine (1a).



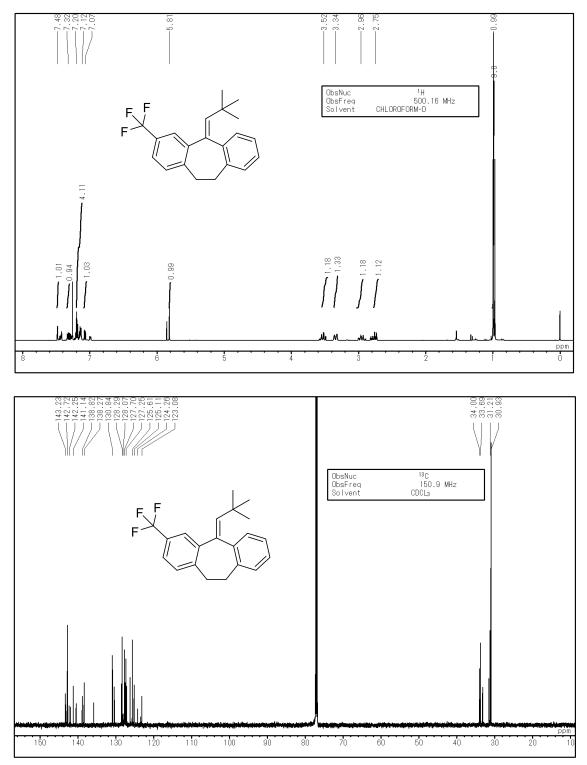
3-(10,11-Dihydro-5*H***-dibenzo**[*a,d*][7]annulen-5-ylidene)-*N*-methylpropan-1-amine (1b).

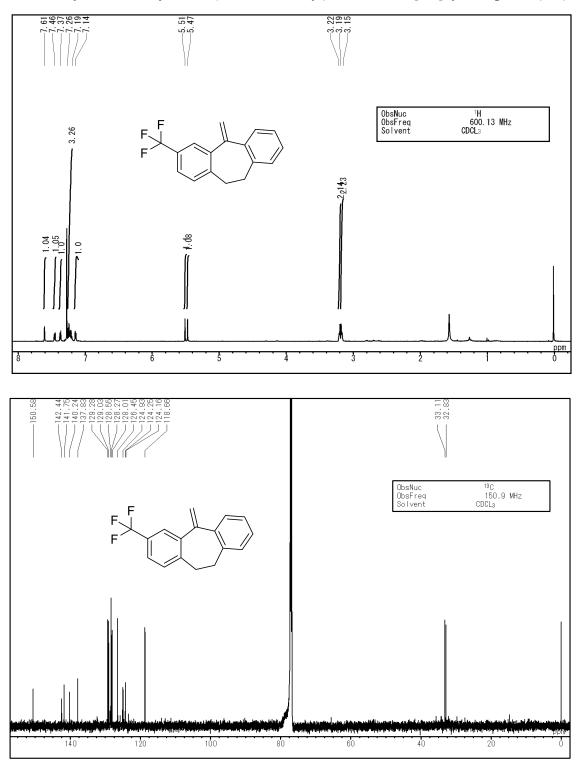


5-(2,2-Dimethylpropylidene)-10,11-dihydro-5*H*-dibenzo[*a*,*d*]cycloheptene (1c).

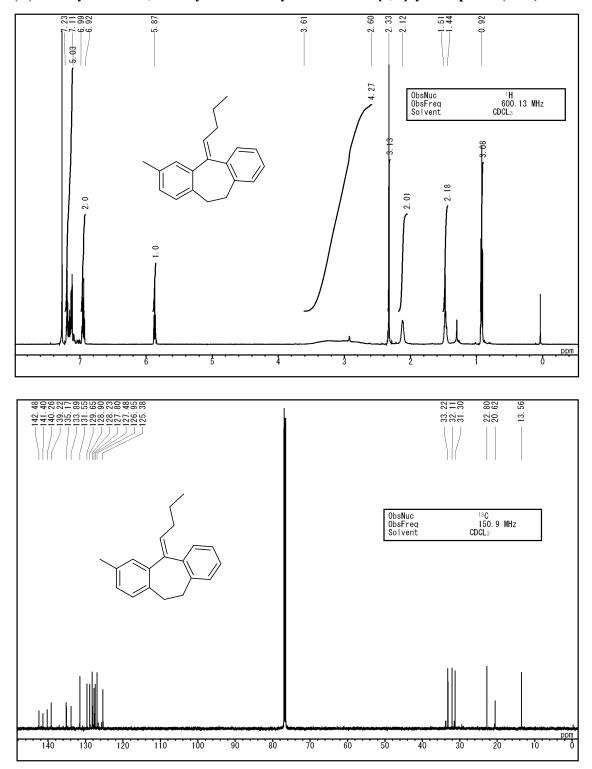


5-(Butylidene)-10,11-dihydro-5*H*-dibenzo[*a*,*d*]cycloheptene (1d).

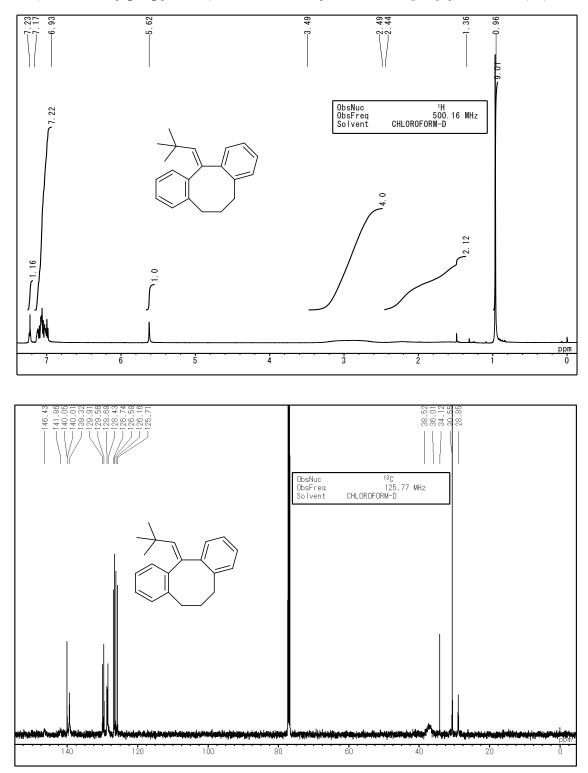


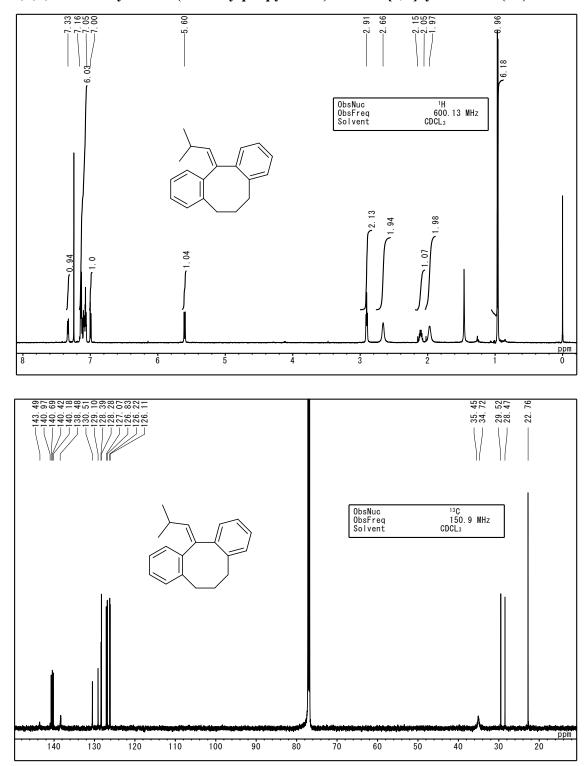

3-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)propan-1-ol (1f).

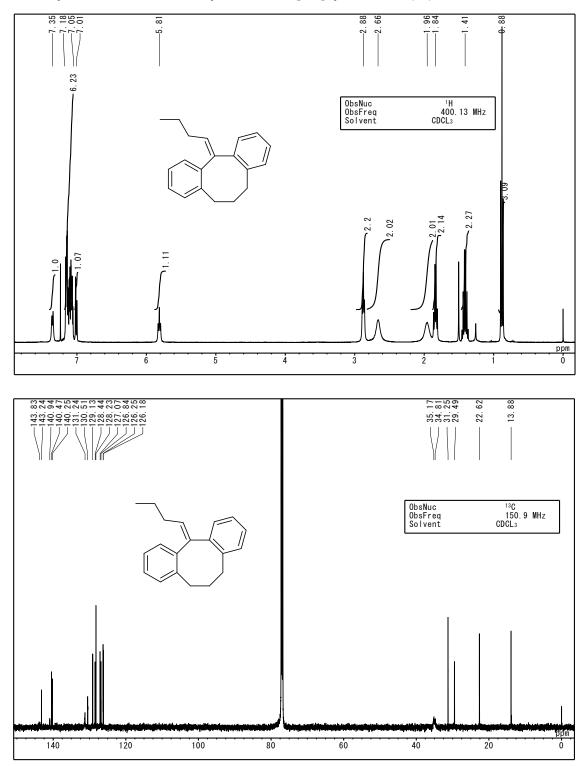
(*E*)-5-(2,2-Dimethylpropylidene)-10,11-dihydro-3-methyl-5*H*-dibenzo[*a*,*d*]cyclohep tene (*E*-1g).

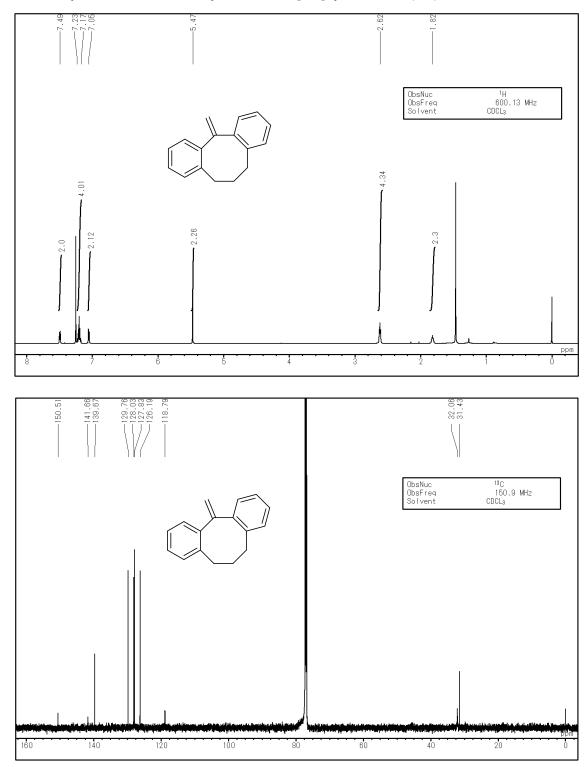


(*E*)-5-(2,2-Dimethylpropylidene)-10,11-dihydro-3-(trifluoromethyl)-5*H*-dibenzo[*a*, *d*]cycloheptene (*E*-1h).

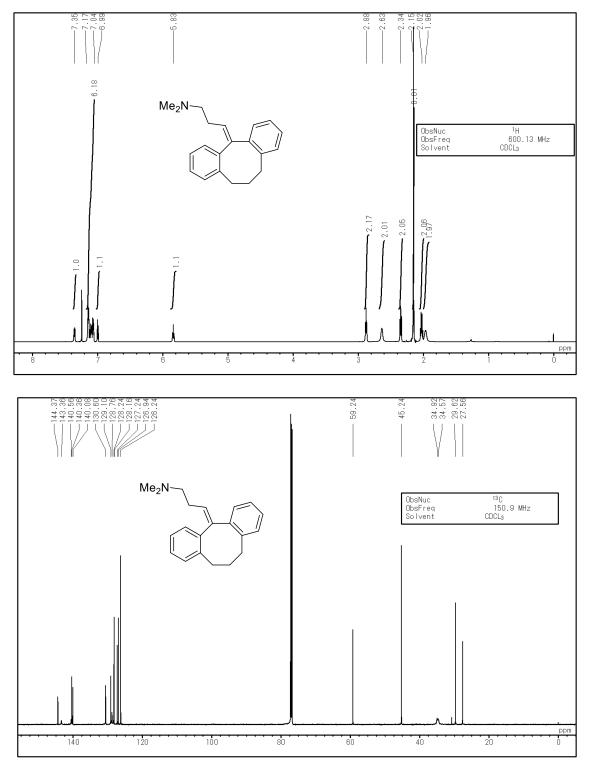


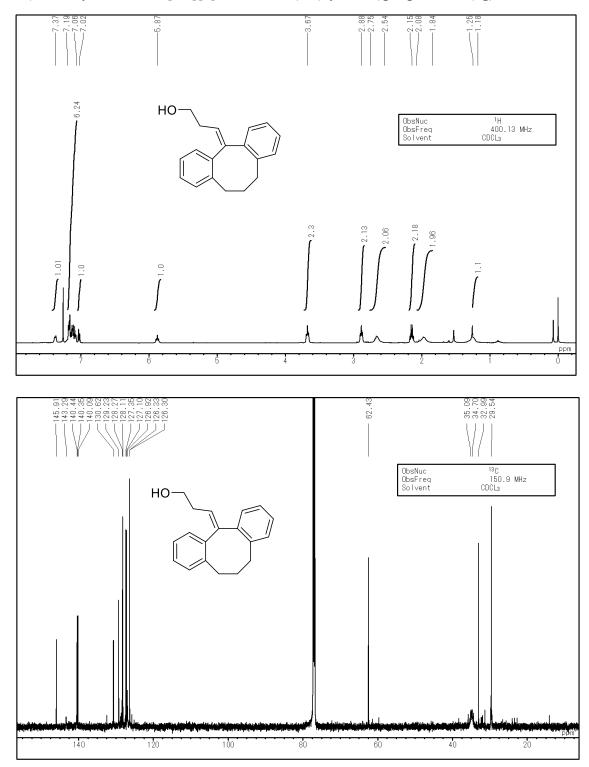

10,11-Dihydro-5-methylene-3-(trifluoromethyl)-5*H*-dibenzo[*a,d*]cycloheptene (1h').

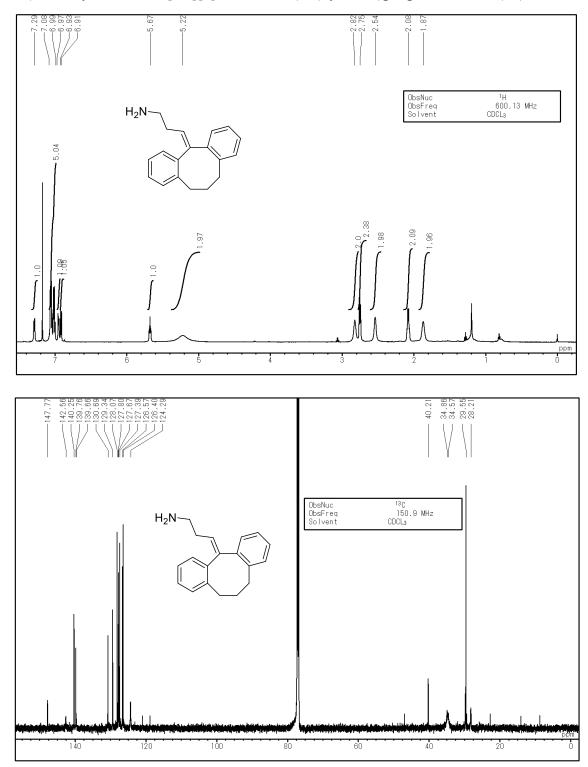

(*E*)-5-Butylidene-10,11-dihydro-3-methyl-5*H*-dibenzo[*a*,*d*]cycloheptene (*E*-1i).


12-(2,2-Dimethylpropylidene)-5,6,7,12-tetrahydro-dibenzo[*a*,*d*]cyclooctene (2a).

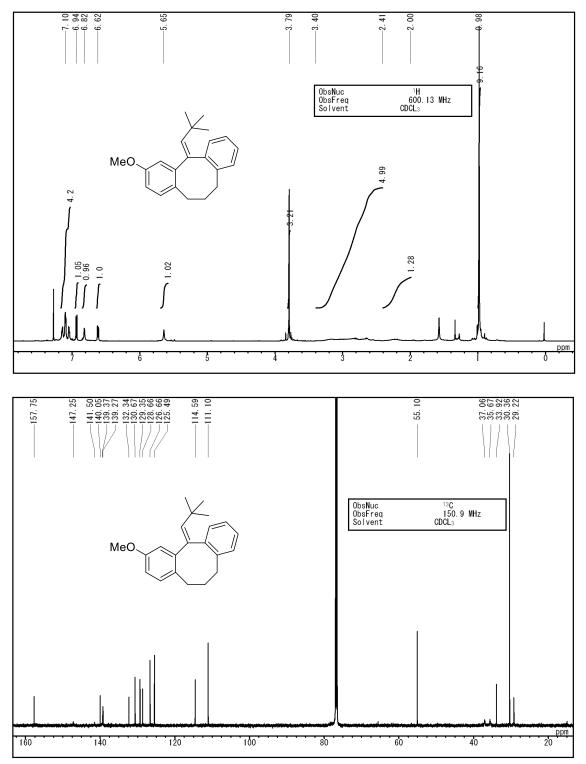
5,6,7,12-Tetrahydro-12-(2-methylpropylidene)-dibenzo[*a*,*d*]cyclooctene (2b).



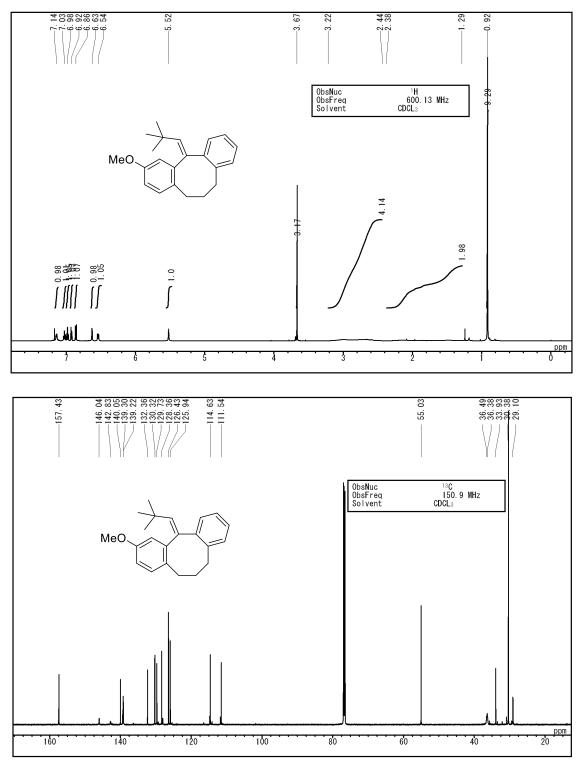

12-Butylidene-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclooctene (2c).


12-Methylene-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclooctene (2e').

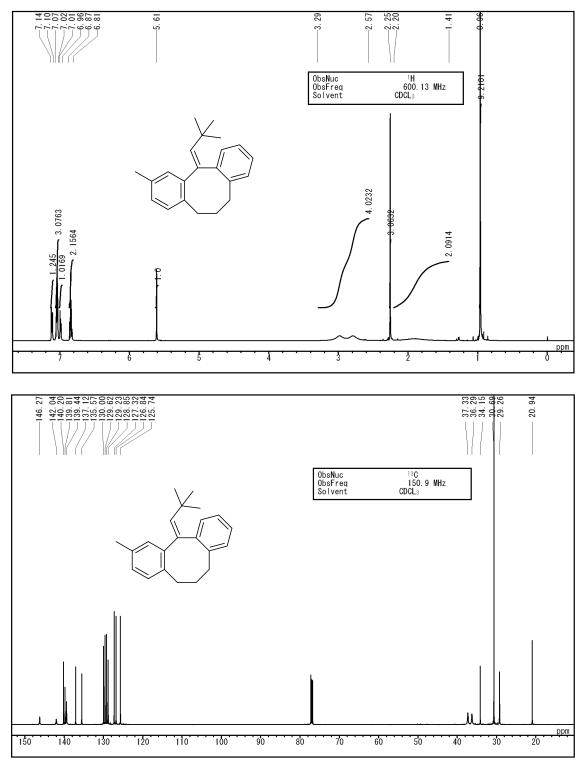
3-(6,7-Dihydrodibenzo[*a*,*d*][8]annulen-12(5*H*)-ylidene)-*N*,*N*-dimethylpropan-1amine (2f).

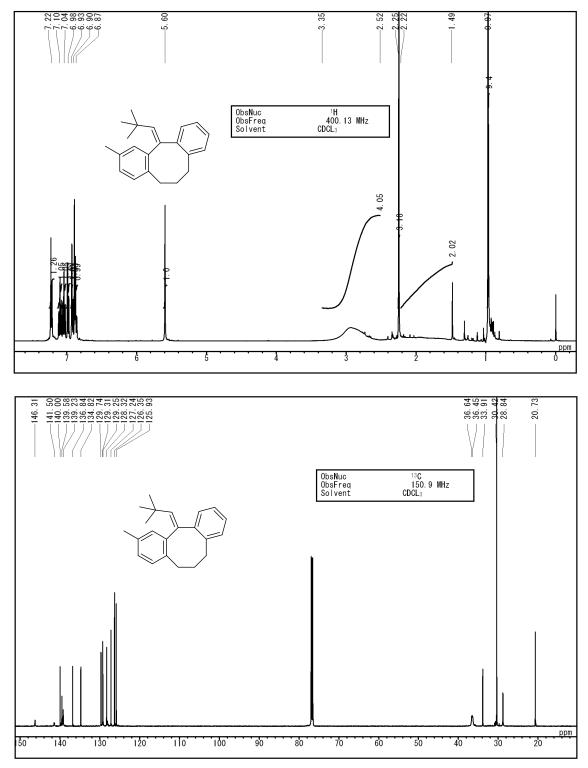


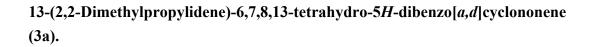
3-(6,7-Dihydrodibenzo[*a*,*d*][8]annulen-12(5*H*)-ylidene)propan-1-ol (2g).

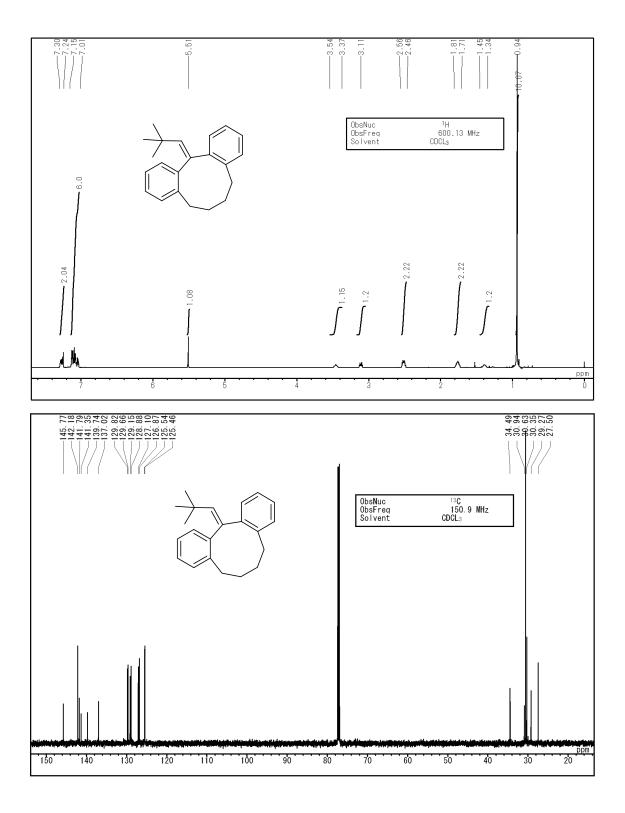


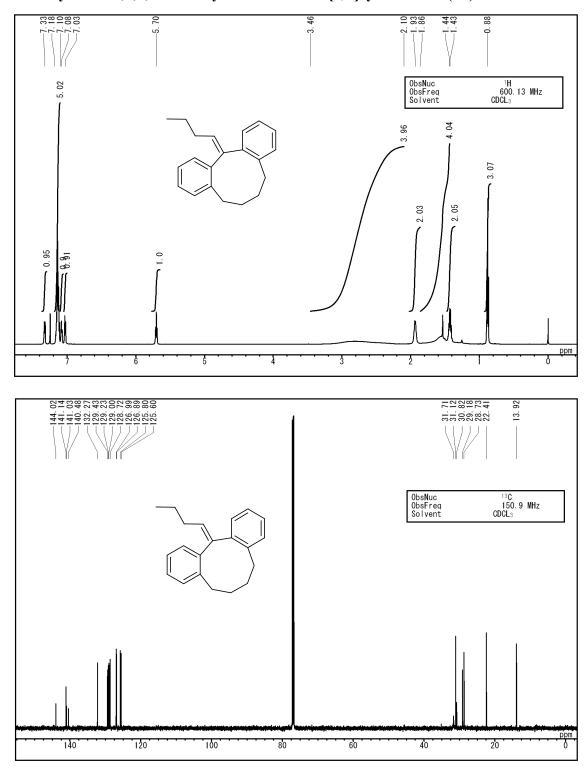
3-(6,7-Dihydrodibenzo[*a*,*d*][8]annulen-12(5*H*)-ylidene)propan-1-amine (2h).


(*E*)-12-(2,2-Dimethylpropylidene)-2-methoxy-5,6,7,12-tetrahydro-dibenzo[*a*,*d*]- cyclooctene (*E*-2i).

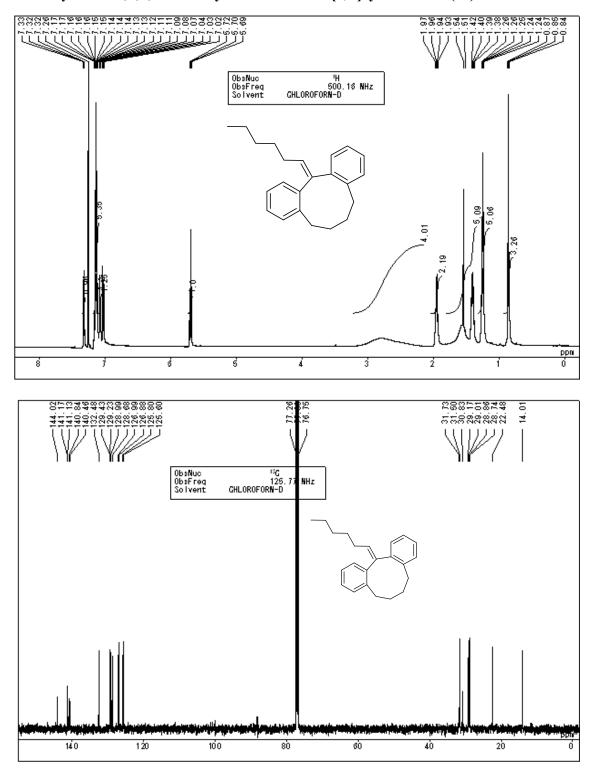

(*Z*)-12-(2,2-Dimethylpropylidene)-2-methoxy-5,6,7,12-tetrahydro-dibenzo[*a*,*d*]- cyclooctene (*Z*-2i).

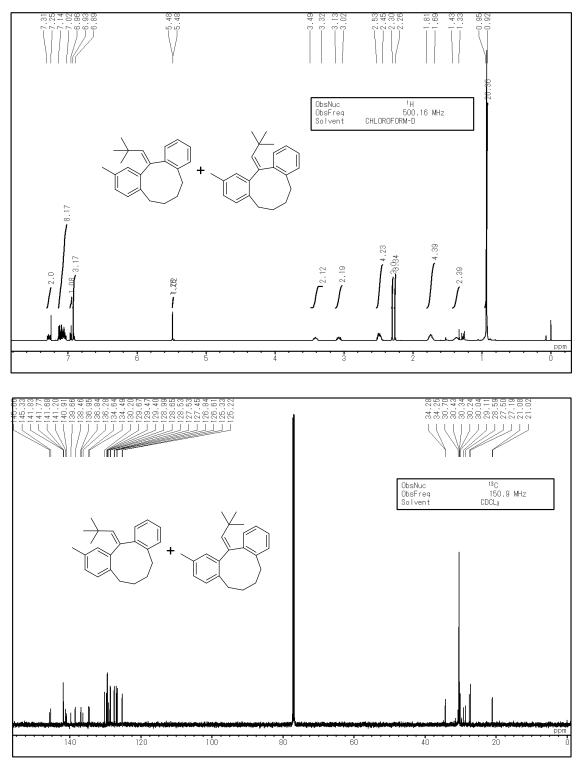



(*E*)-12-(2,2-Dimethylpropylidene)-2-methyl-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclooctene (*E*-2j).

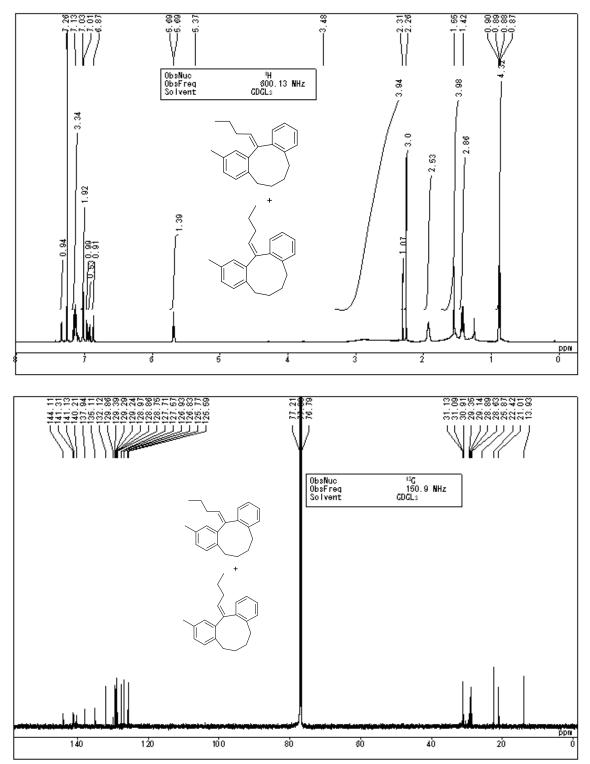


(*Z*)-12-(2,2-Dimethylpropylidene)-2-methyl-5,6,7,12-tetrahydro-dibenzo[*a*,*d*]- cyclooctene (*Z*-2j).

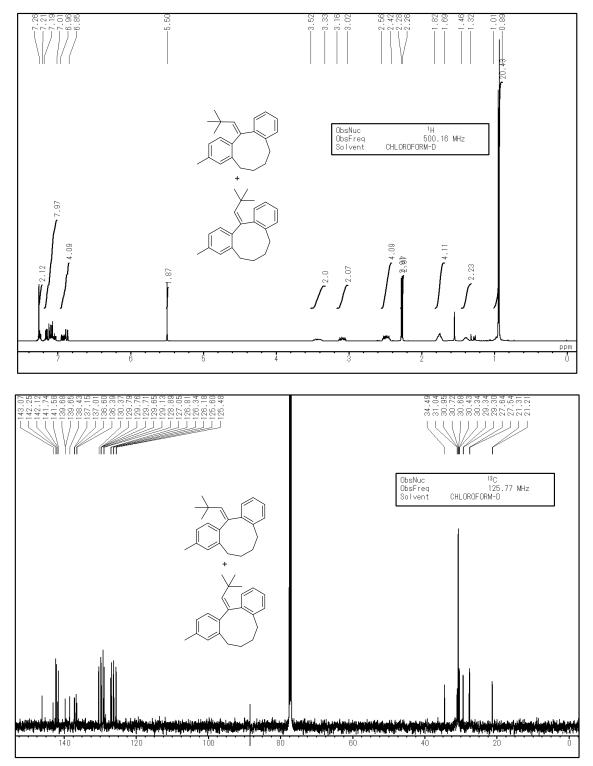


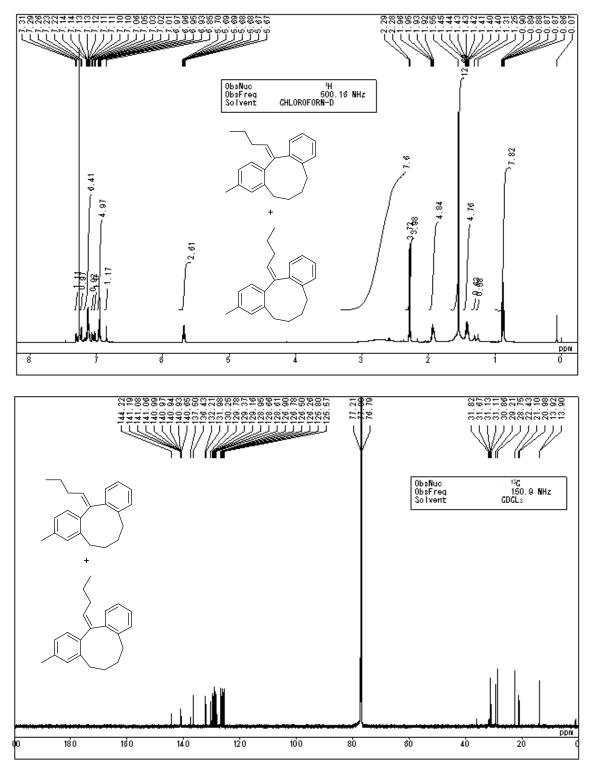


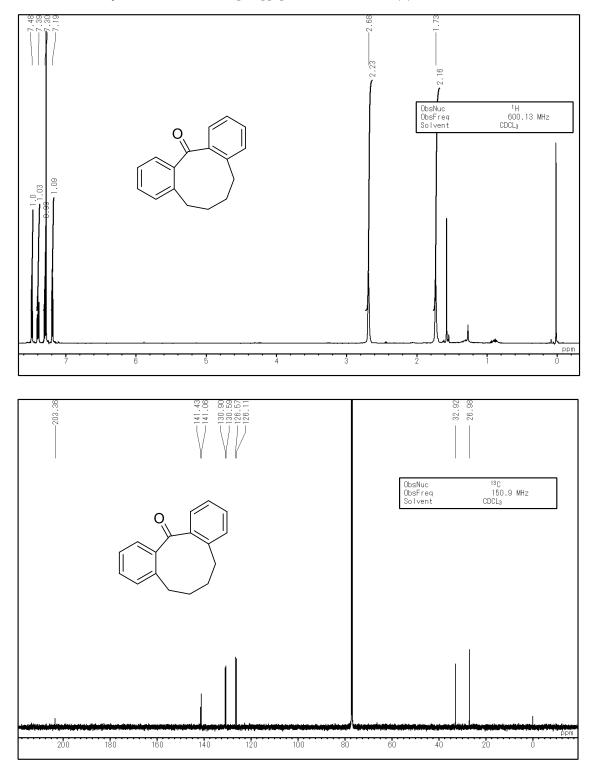
13-Butylidene-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3b).



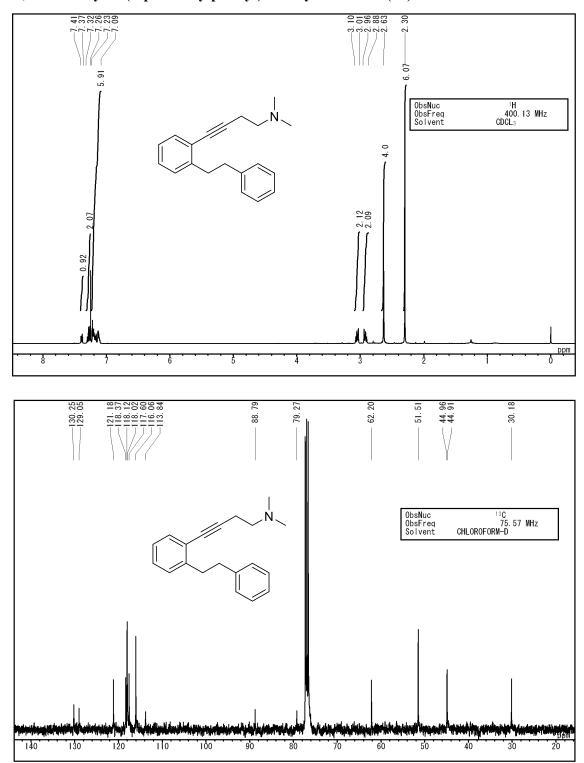
13-Hexylidene-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3c).


(*E*)- and (*Z*)-13-(2,2-Dimethylpropylidene)-2-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3d).

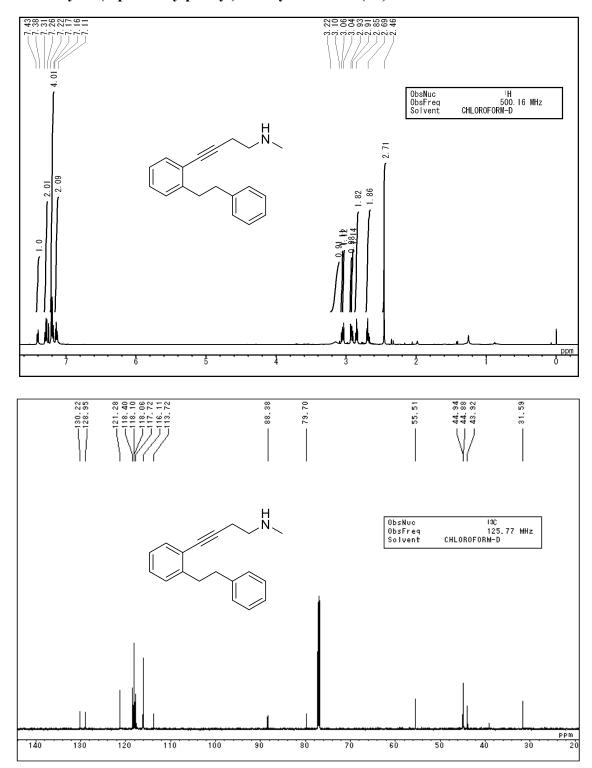

(*E*)- and (*Z*)-13-Butylidene-2-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]- cyclononene (3e).

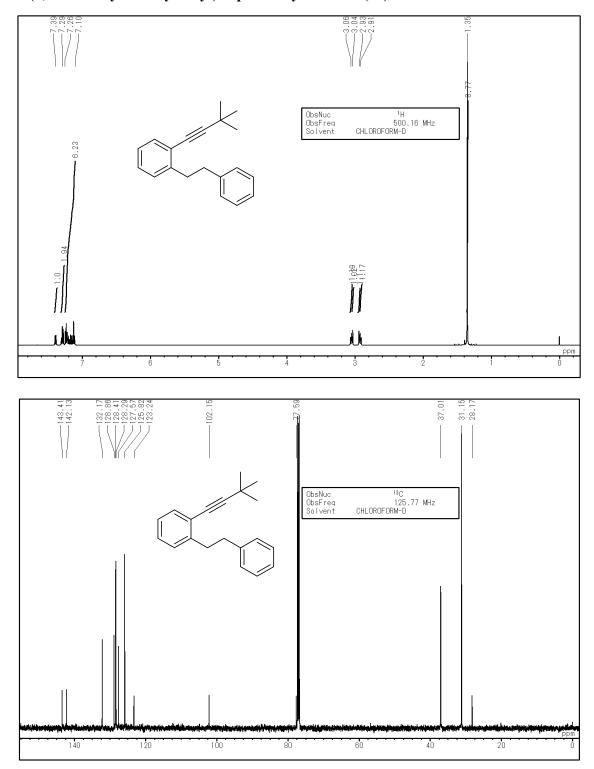


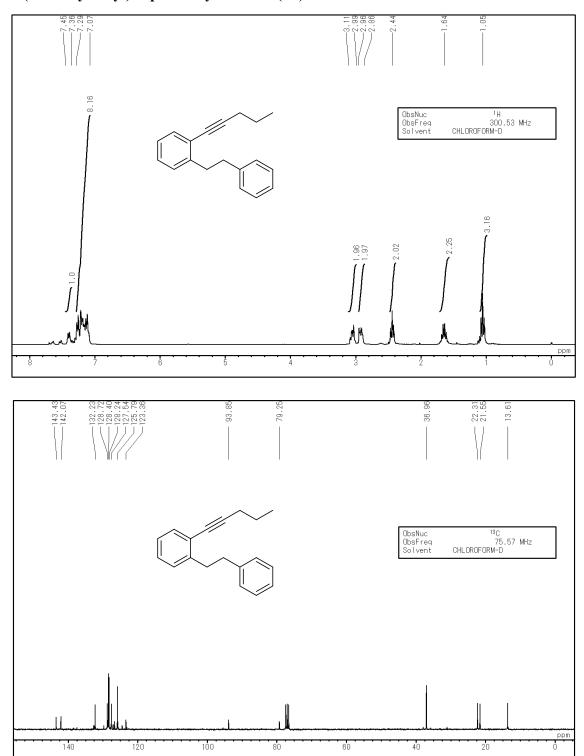
(*E*)- and (*Z*)-13-(2,2-Dimethylpropylidene)-3-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]cyclononene (3f).

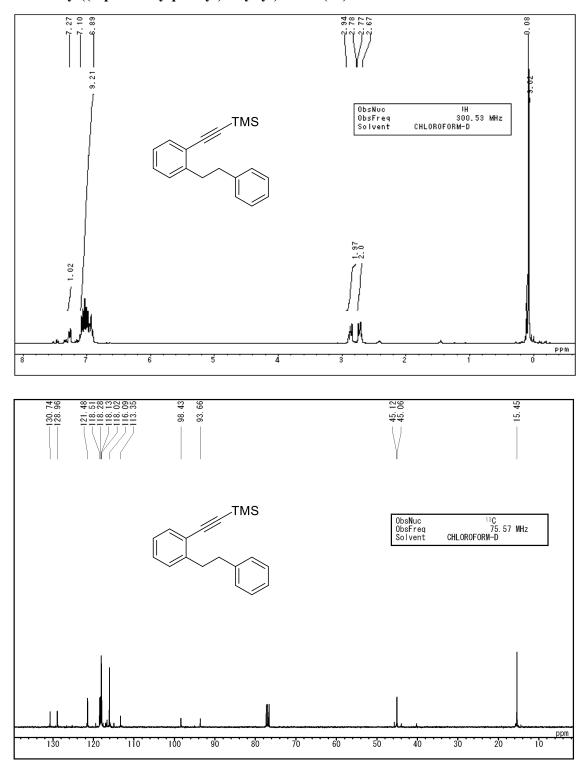


(*E*)- and (*Z*)-13-Butylidene-3-methyl-6,7,8,13-tetrahydro-5*H*-dibenzo[*a*,*d*]- cyclononene (3g).

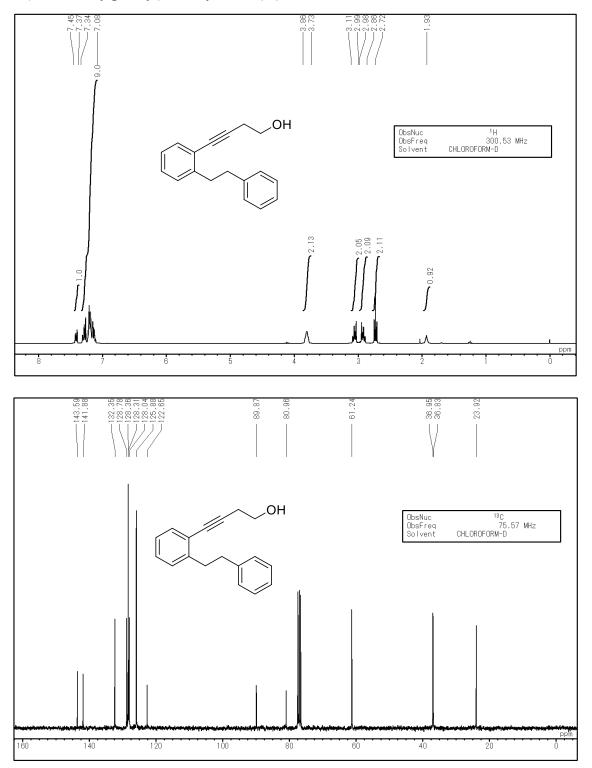


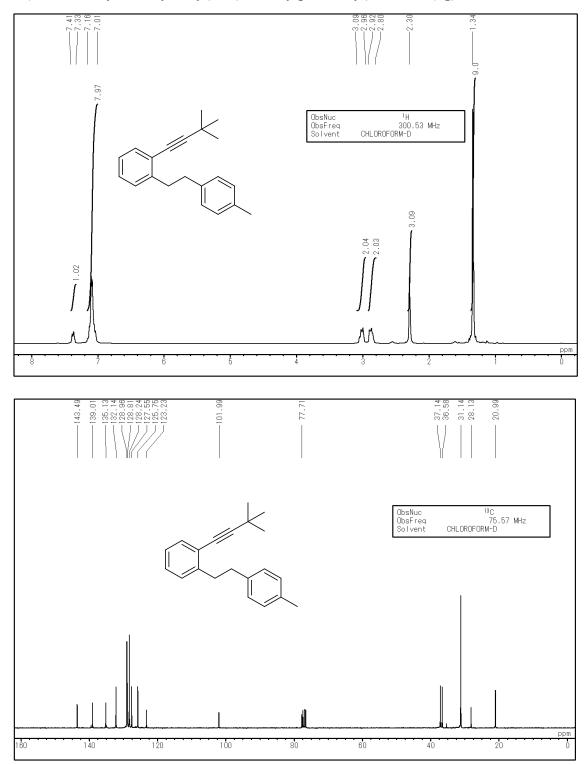

5,6,7,8-Tetrahydro-13*H*-dibenzo[*a*,*d*][9]annulen-13-one (6).

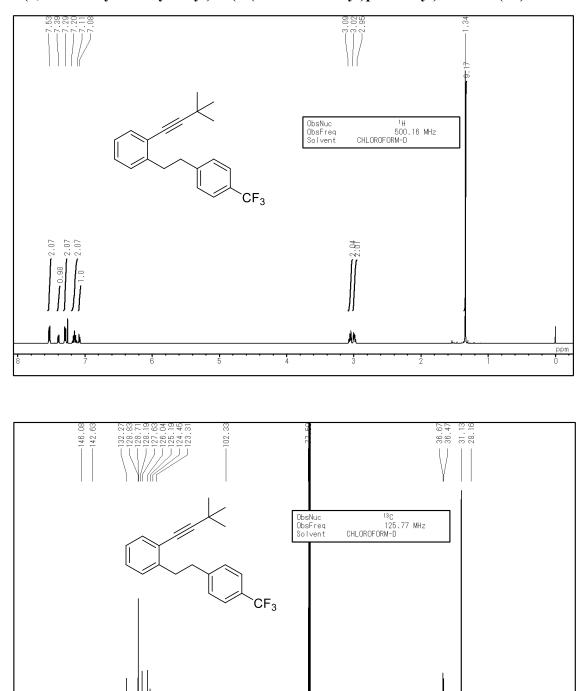

N,*N*-Dimethyl-4-(2-phenethylphenyl)but-3-yn-1-amine (7a).


N-Methyl-4-(2-phenethylphenyl)but-3-yn-1-amine (7b).

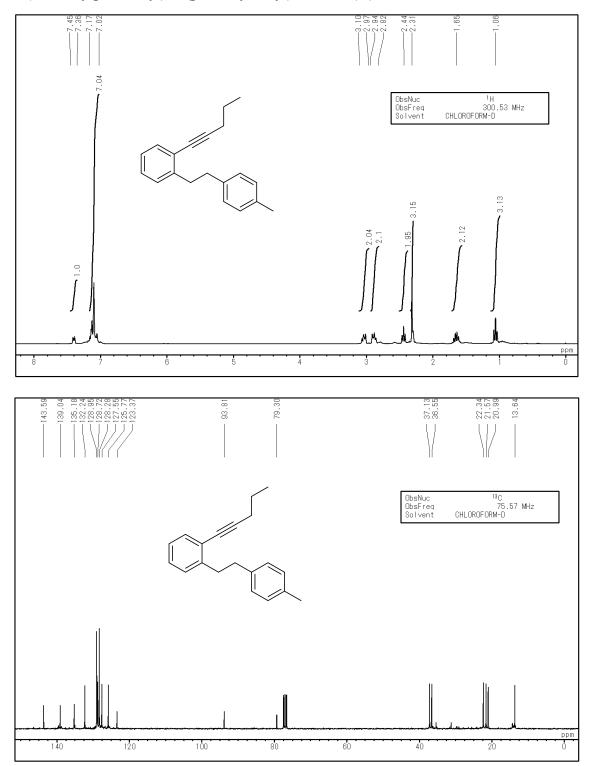
1-(3,3-Dimethylbut-1-yn-1-yl)-2-phenethylbenzene (7c).

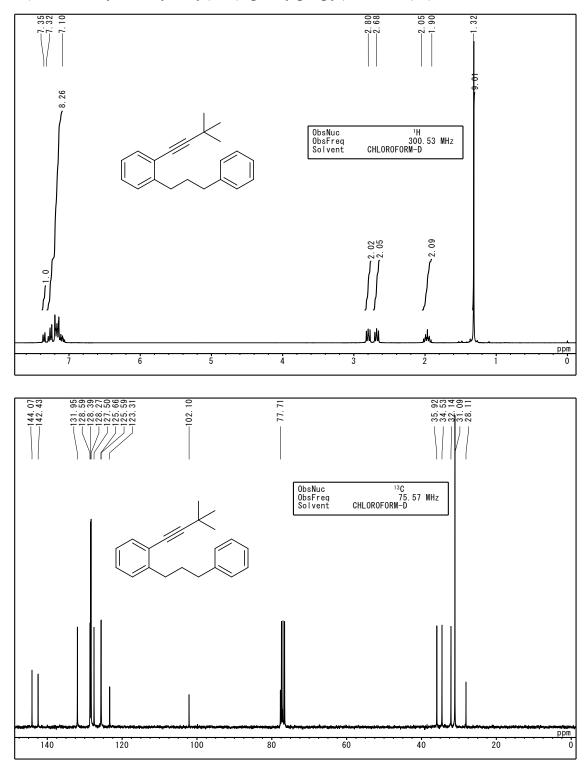


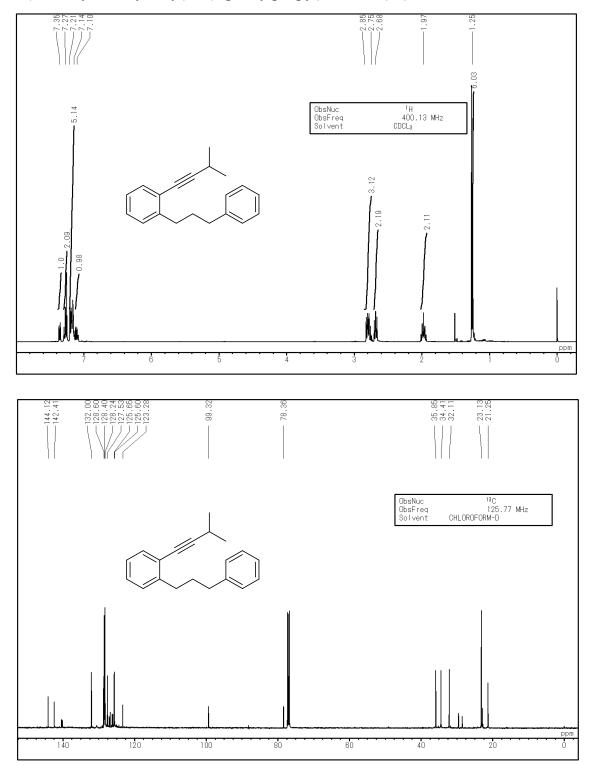

1-(Pent-1-yn-1-yl)-2-phenethylbenzene (7d).

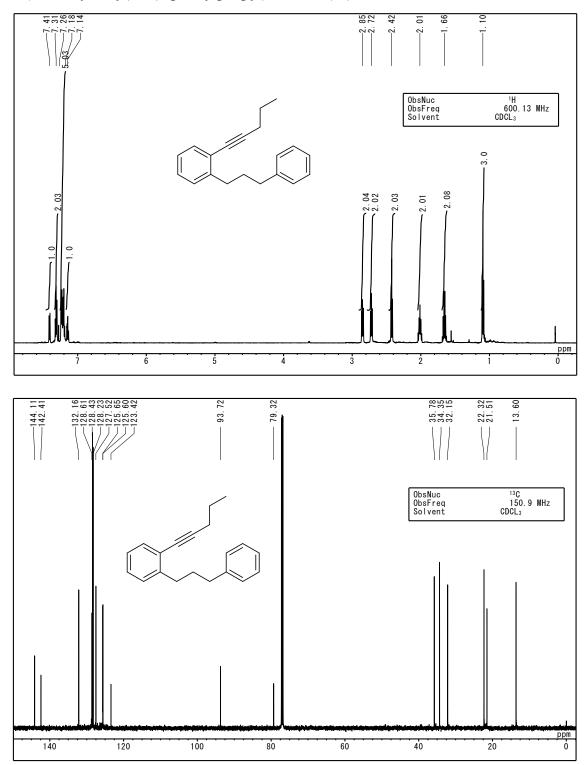

Trimethyl((2-phenethylphenyl)ethynyl)silane (7e).

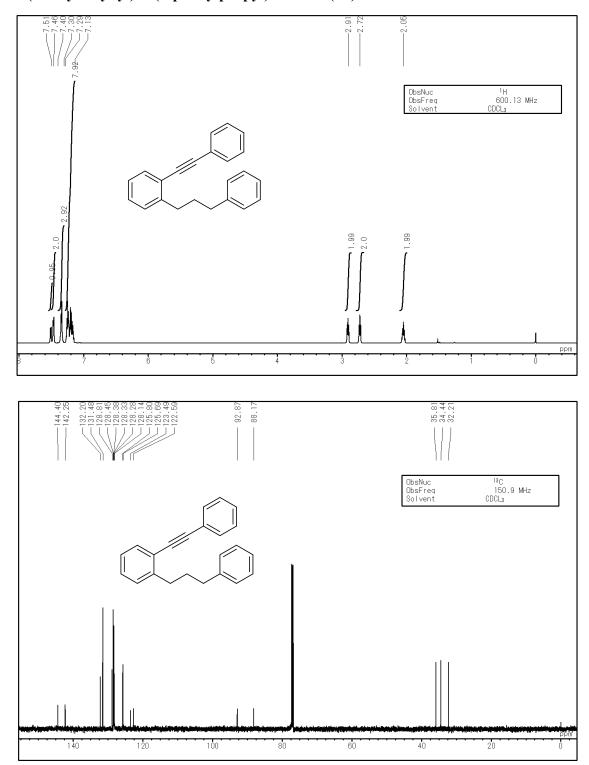
4-(2-Phenethylphenyl)but-3-yn-1-ol (7f).

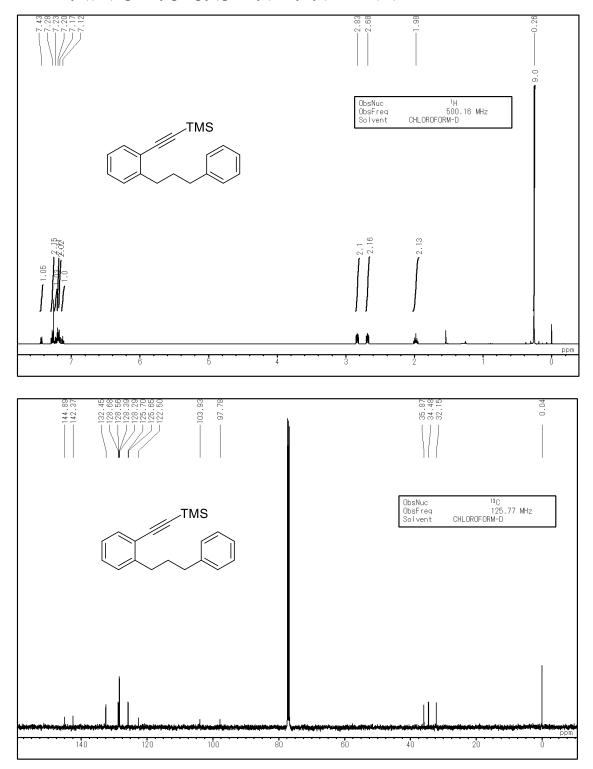


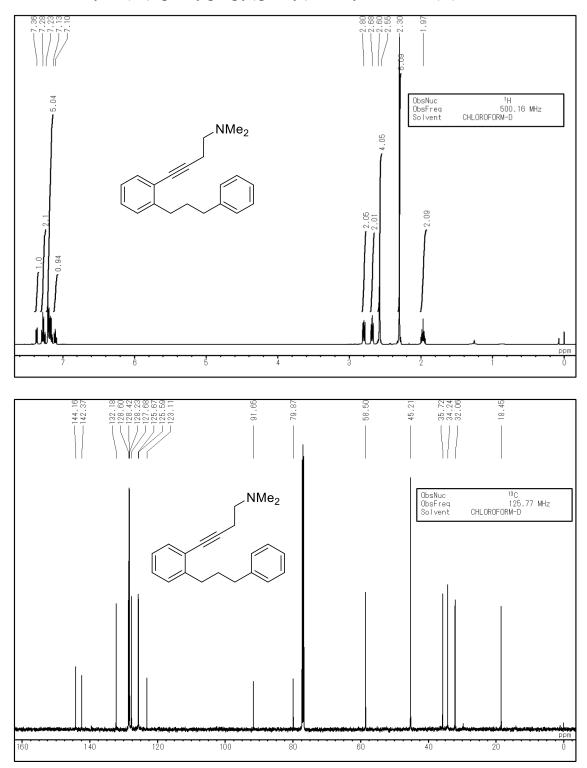

1-(3,3-Dimethylbut-1-yn-1-yl)-2-(4-methylphenethyl)benzene (7g).

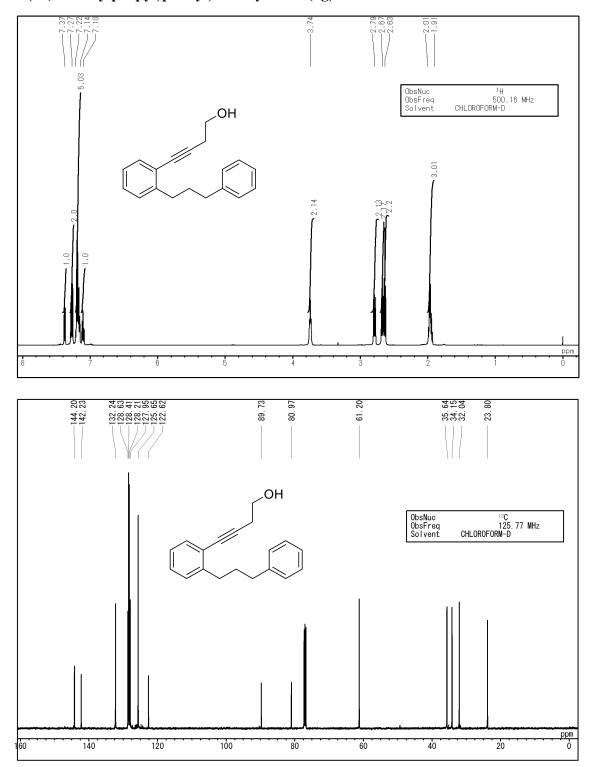

1-(3,3-Dimethylbut-1-yn-1-yl)-2-(4-(trifluoromethyl)phenethyl)benzene (7h).

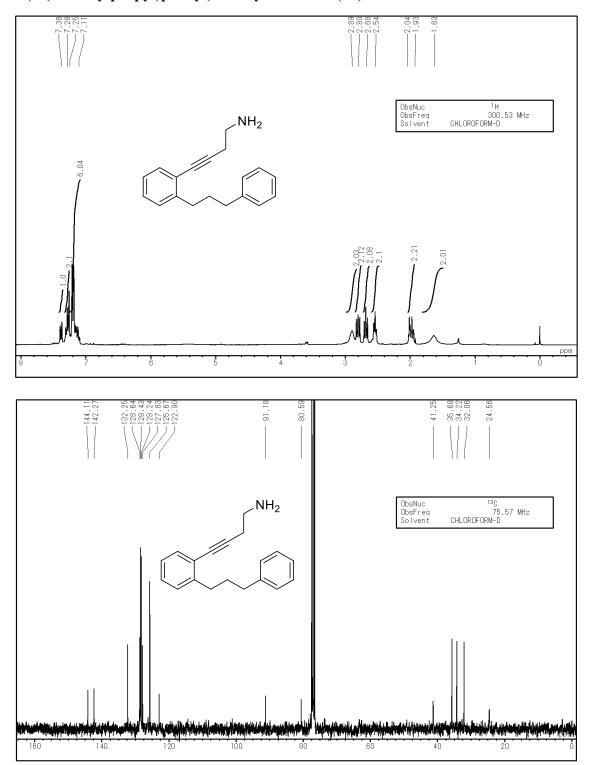

1-(4-Methylphenethyl)-2-(pent-1-yn-1-yl)benzene (7i).

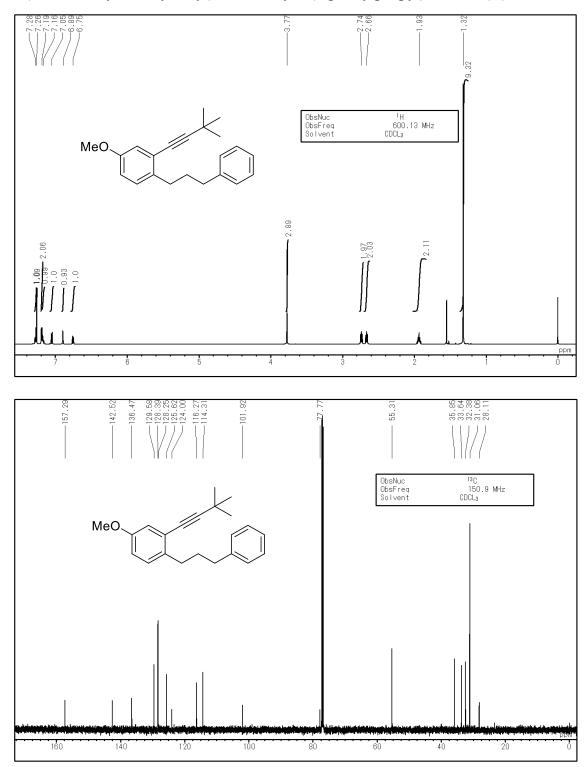

1-(3,3-Dimethylbut-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8a).

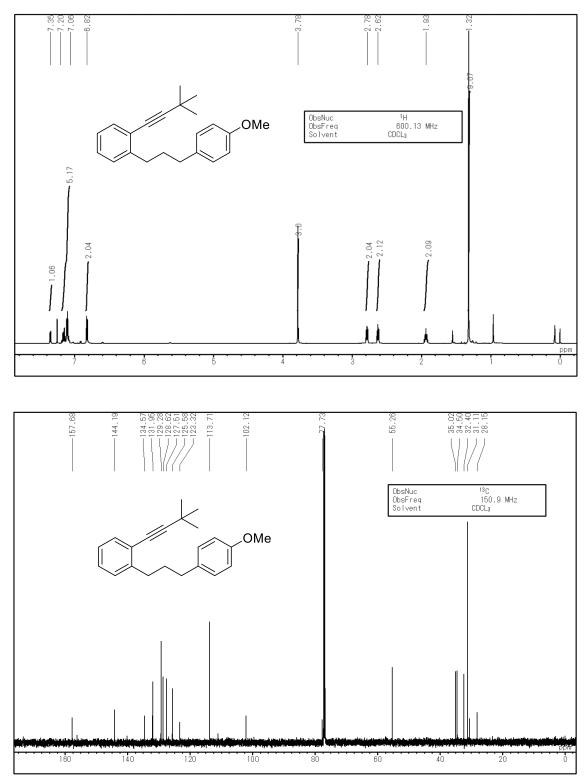

1-(3-Methylbut-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8b).

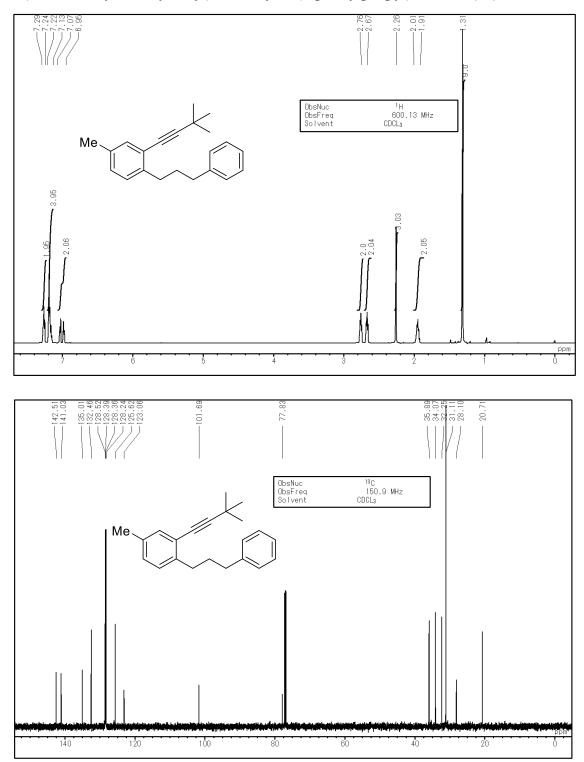

1-(Pent-1-yn-1-yl)-2-(3-phenylpropyl)benzene (8c).

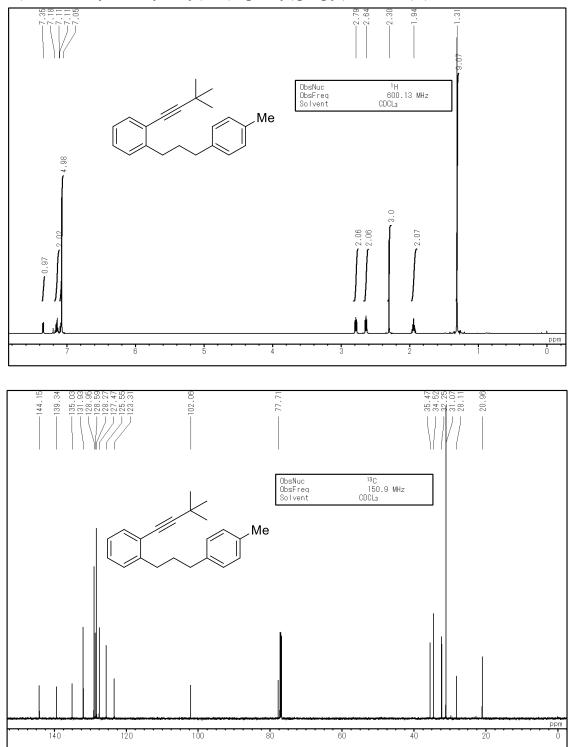

1-(Phenylethynyl)-2-(3-phenylpropyl)benzene (8d).

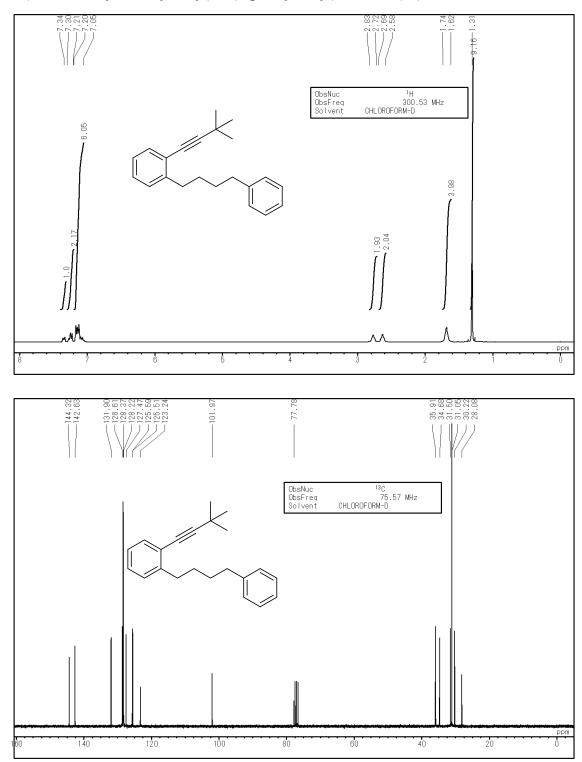

Trimethyl((2-(3-phenylpropyl)phenyl)ethynyl)silane (8e).

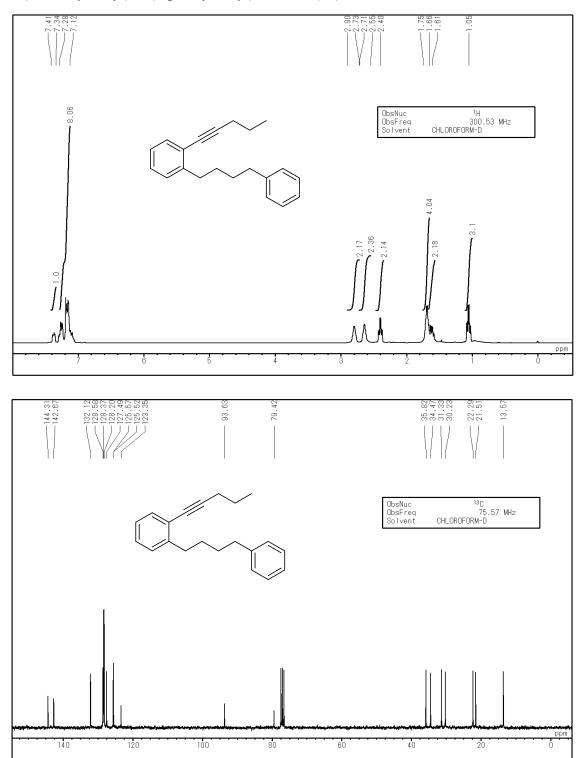

N,N-Dimethyl-4-(2-(3-phenylpropyl)phenyl)but-3-yn-1-amine (8f).

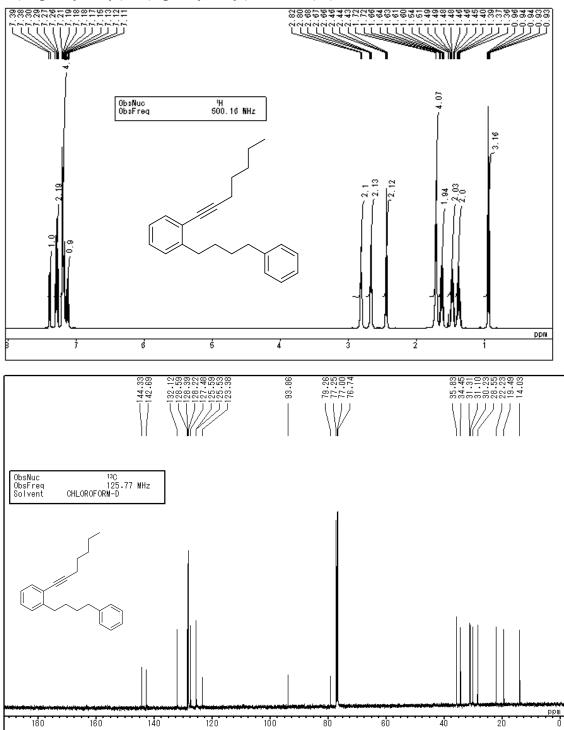

4-(2-(3-Phenylpropyl)phenyl)but-3-yn-1-ol (8g).

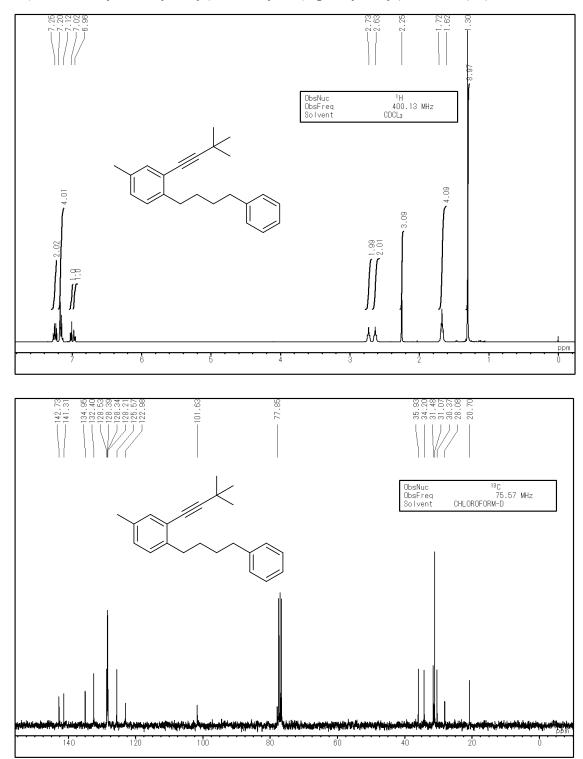

4-(2-(3-Phenylpropyl)phenyl)but-3-yn-1-amine (8h).

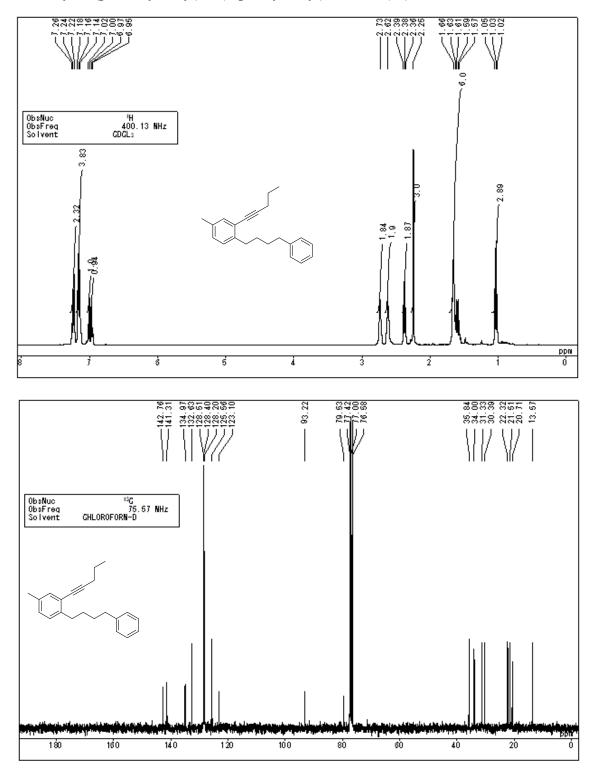

2-(3,3-Dimethylbut-1-yn-1-yl)-4-methoxy-1-(3-phenylpropyl)benzene (8i).

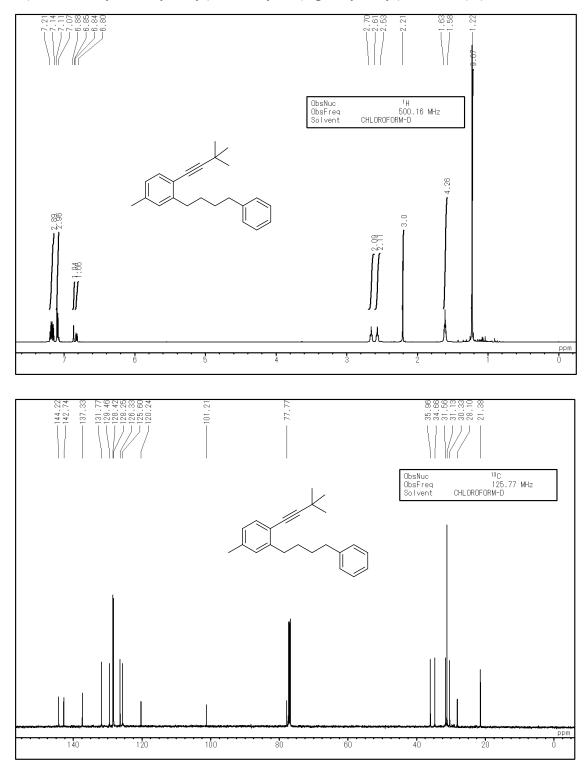

1-(3,3-Dimethylbut-1-yn-1-yl)-2-(3-(4-methoxyphenyl)propyl)benzene (8j).


2-(3,3-Dimethylbut-1-yn-1-yl)-4-methyl-1-(3-phenylpropyl)benzene (8k).


1-(3,3-Dimethylbut-1-yn-1-yl)-2-(3-(p-tolyl)propyl)benzene (8l).

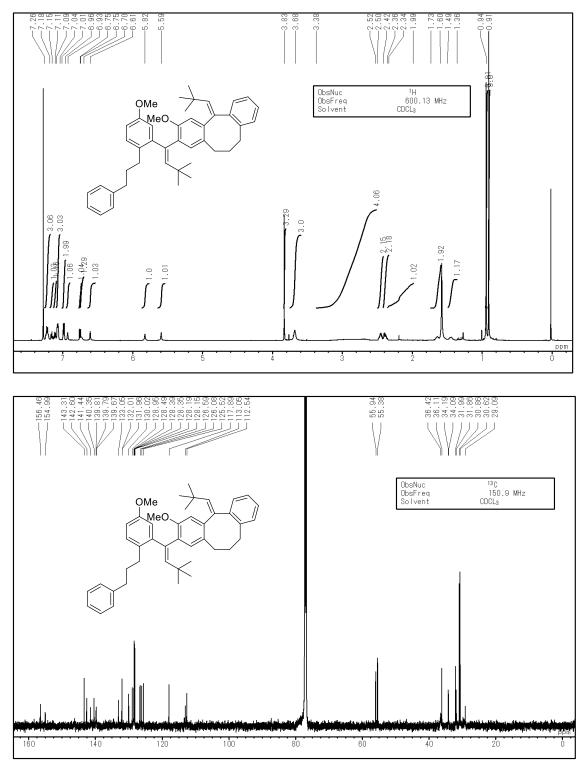

1-(3,3-Dimethylbut-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9a).


1-(Pent-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9b).


1-(Hept-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9c).


2-(3,3-Dimethylbut-1-yn-1-yl)-4-methyl-1-(4-phenylbutyl)benzene (9d).

4-Methyl-2-(pent-1-yn-1-yl)-1-(4-phenylbutyl)benzene (9e).



1-(3,3-Dimethylbut-1-yn-1-yl)-4-methyl-2-(4-phenylbutyl)benzene (9f).

4-Methyl-1-(pent-1-yn-1-yl)-2-(4-phenylbutyl)benzene (9g).

(*Z*)-12-(2,2-Dimethylpropylidene)-2-methoxy-3-((*Z*)-1-(5-methoxy-2-(3-phenyl-propyl)phenyl)-3,3-dimethylbut-1-en-1-yl)-5,6,7,12-tetrahydrodibenzo[*a*,*d*]cyclo-octane (10).

