Supporting Information for

Reversible and selective chemochemosensor based on intramolecular NH^{...}NH₂ hydrogen bonding for cyanide and pH detection

Chuanxiu Zhang, Kai Ji, Xinyu Wang, Hongwei Wu and Chuanxiang Liu*

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China

e-mail: cxliu@sit.edu.cn;

1. ¹ H, ¹³ C NMR, IR and HRMS-ESI copies of the compound 2 (Fig.S1-S4)	S3
2. ¹ H, ¹³ C NMR, IR and HRMS-ESI copies of the compound 3 (Fig.S5-S8)	S5
3. ¹ H, ¹³ C NMR, IR and HRMS-ESI copies of the compound 4 (Fig.S9-S12)	S8
4. The ¹ H NMR spectra of compound 3 and 4 (Fig.S13)	S10
5. The I_{max} of chemosensor 3 in various polar solvents (Fig.S14)	S11
6. DFT calculation for chemosensor 3 (Fig.S15)	S12
7. UV-visible spectra of chemosensor 3 (Fig.S16)	S12
8. The UV detection limit of the chemosensor 3 with CN ⁻ in DMSO (Fig.S17)	S13
9. The UV detection limit of the chemosensor 3 with CN^{-} in DMSO/H ₂ O (Fig.S18)	S14
10. The UV detection limit of the chemosensor 3 with CN^{-} in H ₂ O (Fig.S19)	S15
11. UV-visible spectra of chemosensor 3 in the presence of different anions in H_2O (Fig.S20)	S 16
12. Interference experiments of chemosensor 3 toward cyanide in H ₂ O (Fig.S21)	S17
13. The response time of chemosensor 3 to CN ⁻ in aqueous media (Fig.S22)	S17
14. Fluorescence spectra of chemosensor ${\bf 3}$ in the presence of different cations in H ₂ O (Fig	g.S23)
	S18
15. Linear fluorescence response of chemosensor 3 to CN^- in DMSO/H ₂ O (Fig.S24)	S19
16. The fluorescence detection limit of the chemosensor 3 with CN^{-} in DMSO (Fig.S25)	S19
17. The fluorescence detection limit of the chemosensor 3 with CN^- in DMSO/H ₂ O (Fig.S26)).S20
18. The fluorescence detection limit of the chemosensor 3 with CN^{-} in H ₂ O (Fig.S27)	S21
19. The ¹ H NMR spectra of the chemosensor 3 with CN^- in DMSO- d_6 (Fig.S28)	S22
20. The ¹ H NMR spectra of the chemosensor 3 with F^- in DMSO- d_6 (Fig.S29)	S22
21. Confocal microscopic images of Hela cells (Fig.S30)	S23
22. Fluorescence spectra of chemosensor ${\bf 3}$ at different pH values in DMSO/H ₂ O (Fig.S31)	S23
23. Fluorescence spectra of chemosensor 3 at different pH values in H ₂ O (Fig.S32)	S24

Scheme S1. Synthesis of chemosensor **3** and its cartoon-type representation; Reagents and conditions: (a) NaH, N₂, THF, 2-(cyanomethyl)pyridine, r.t., 70% yield; (b) SnCl₂, r.t., 79% yield.

Materials and instruments

Unless otherwise noted, solvents and reagents were analytical grade and used without further purification. THF were distilled from Na prior to use. UV-visible absorption spectra were obtained on a SHIMADZU UV-1800 spectrophotometer. Fluorescence emission spectra were obtained on a Hitach F-4600 Fluorescence spectrophotometer. IR were recorded on NICOLET 6700 FT-IR. NMR spectra were recorded on Bruker AVANCE III 500 MHz (500 MHz for ¹H) or Bruker AM-400 spectrometer (100 MHz for ¹³C NMR), and chemical shifts were reported in parts per million (ppm, δ) downfield from internal standard Me₄Si (TMS). Multiplicities of signals are described as follows: s --- singlet, br. s --- broad singlet, d --- doublet, t --- triplet, m --- multiplet. Coupling constants were reported in hertz (Hz). HRMS were recorded on solanX 70 FT-MS spectrometer with methanol and water (v/v = 1:1) as solvent.

N-butyl-4-bromo-3-nitro-1,8-naphthalimide (1) was synthesized according to the literature reported procedure¹.

Synthesis of 2-(N-butyl-3-nitro-1,8-naphthalimide)-2-(pyridin-2-yl)acetonitrile (2): To a solution of NaH (60% in oil) (1.60 g, 40 mmol) in 30 mL anhydrous THF was added 2-cyanomethylpyridine (0.70 g, 5.60 mmol) under N2 at room temperature, after 30 min the mixture was then added 1 (1.50 g, 4 mmol). The reaction mixture was stirred at room temperature for another 2 h. After the reaction was completed, the reaction mixture was quenched with a mixture of saturated ammonium chloride solution and hydrochloric acid (2N). The anhydrous solution was extracted with EA (25 mL \times 3). The organic layer was dried with anhydrous sodium sulfate, concentrated and purified by column chromatography eluting with PE/EA (5:1) to give 2 (1.12 g, 70%) as a black solid with a mp of 137–138 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.94 (s, 1H), 8.65 (d, J = 7.5 Hz, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.46 (d, J = 4.0 Hz, 1H), 7.78 (dd, $J_1 = 7.0$, $J_2 = 9.0$ Hz 1H), 7.70 (dd, J = 8.0, J = 7.5 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.23-7.20 (m, 1H), 6.60 (s, 1H), 4.12 (t, J = 7.5 Hz, 2H), 1.67-1.61 (m, 2H), 1.38-1.34 (m, 2H), 0.91 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.7, 19.9, 29.8, 94.8, 98.9, 109.6, 112.7, 116.0, 120.5, 122.0, 123.5, 127.1, 128.7, 136.6, 136.8, 147.2, 149.2, 150.3, 154.2, 154.7, 163.6, 163.9; IR (KBr) 3080, 2959, 2873, 2157, 1712, 1680, 1597, 1586, 1466, 1435, 1435, 1355, 1277, 1233, 1112, 995, 803, 790, 761 cm⁻¹; HRMS-ESI (m/z): $[M+H]^+$ (calcd for C₂₃H₁₉N₄O₄) 415.14063; Found 415.14214.

Synthesis of (*E*)-2-(5-amino-2-butyl-1, 3-dioxo-2,3-dihydro-1*H*-benzo[*de*]isoquinolin-6-yl)-2-(pyridin-2(1H)-ylidene)acetonitrile (3):

2 (0.15 g, 0.36 mmol) and SnCl₂ (0.60 g, 3.20 mmol) were dissolved in (20 mL) EA, the reaction mixture was stirred under N_2 at room temperature for 1 h. After the reaction was completed, the solution was filtered and saturated Na_2CO_3 (aq) (150 mL) was then added. The resulting suspension was then extracted with ethyl acetate, washed with brine, and dried over anhydrous

sodium sulfate, concentrated and purified by column chromatography eluting with PE/EA (2:1) to give **3** (0.11 g, 79%) as a red solid with a mp of 218–220 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 12.17 (s, 1H), 8.70 (d, J = 4.5 Hz, 1H), 8.61 (d, J = 8.0 Hz, 1H), 8.31 (s, 1H), 8.31 (d, J = 6.5 Hz, 1H), 7.87 (dd, $J_1 = 8.0$, $J_2 = 7.5$ Hz, 1H), 7.67 (d, J = 7.5 Hz, 1H), 7.52 (dd, $J_1 = J_2 = 8.0$ Hz, 1H), 7.29 (dd, $J_1 = 5.5$, $J_2 = 6.5$ Hz, 1H), 6.87 (s, 2H), 4.06 (t, J = 7.5 Hz, 2H), 1.66-1.60 (m, 2H), 1.40-1.35 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.6, 19.7, 29.5, 109.5, 113.6, 118.7, 121.7, 122.9, 125.6, 128.8, 129.3, 131.1, 132.7, 133.2, 136.6, 138.2, 147.4, 149.3, 153.1, 153.2, 162.0, 162.7; IR (KBr) 3445, 2957, 2926, 2856, 2375, 1681, 1652, 1500, 1463, 1427, 1384, 1233, 1166, 1092, 810, 776, 607 cm⁻¹; HRMS-ESI (m/z): [M+H]⁺ (calcd for C₂₃H₂₁N₄O₂) 385.16645; Found 385.16645.

Synthesis of N-butyl-4-bromo-3-amino-1,8-naphthalimide (4): **2** (0.15 g, 0.40 mmol) were dissolved in a mixture of ethyl acetate (20 mL) and THF (10 mL), warmed to 70 °C and under N₂. SnCl₂ (0.60 g, 3.20 mmol) was then added and the reaction mixture was stirred for 2 hours at 70 °C. After cooling, the solution was filtered and saturated Na₂CO₃ (aq) (150 mL) was then added. The resulting suspension was then extracted with ethyl acetate, washed with brine, and dried over anhydrous sodium sulfate, concentrated and purified by column chromatography eluting with PE/EA (15:1) to give **4** (0.10 g, 72%) as a yellow solid with a mp of 192–193 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.24 (d, *J* = 8.5 Hz, 1H), 8.18 (d, *J* = 7.0 Hz, 1H), 8.13 (s, 1H), 8.79 (dd, *J*₁ = 8.0, *J*₂ = 7.5 Hz, 1H), 6.34 (s, 2H), 4.01 (t, *J* = 7.5 Hz, 2H), 1.63-1.57 (m, 2H), 1.39-1.31 (m, 2H), 0.92 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 13.7, 19.8, 29.6, 106.6, 121.1, 121.7, 121.8, 122.1, 125.7, 128.2, 129.7, 131.4, 145.2, 162.9, 163.2; IR (KBr) 3323, 2961, 1694, 1650, 1618, 1420, 1339, 1285, 1231, 1078, 778, 749; HRMS-ESI (m/z): [M+H]⁺ (calcd for C₁₆H₁₆BrN₂O₂) 347.03952; Found 347.03742.

Typical procedure of NMR titration of 3 with cyanide ions: ¹H NMR titrations (500 MHz) were performed with a DMSO- d_6 solution of **3** (0.04 mol L⁻¹, 0.5mL) and a DMSO- d_6 solution of TBACN (1.5 mol L⁻¹). The TBACN solution was introduced in portions (7, 14, 28, 42, 70 and 126 μ L; 14 μ L corresponds to 1.0 equiv) and, after every addition, the solution was maintained for 1 min at 298K.

References

[1] a) J. Yeow, A. Kaur, M. D. Anscomb, E. J. New, *Chem. Commun.* 2014, *50*, 8181–8184; b) X.
Zeng, X. Zhang, B. Zhu, H. Jia, Y. Li, *Dyes and Pigments* 2012, *94*, 10–15.

1. ¹H, ¹³C NMR, IR and HRMS-ESI copies of the compound 2.

Fig. S1. ¹H NMR (CDCl₃, 500 MHz) spectra of compound **2.**

Fig. S3. IR spectra of compound 2.

Fig. S4. ESI mass spectra of compound 2.

2. ¹H, ¹³C NMR, IR and HRMS-ESI copies of the compound 3.

Fig. S5. ¹H NMR (DMSO- d_6 , 500 MHz) spectra of compound **3.**

Fig. S6. ¹³C NMR (DMSO- d_6 , 100 MHz) spectra of compound 3.

Fig. S7. IR spectra of compound 3.

Fig. S8. ESI mass spectra of compound 3.

3. ¹H, ¹³C NMR, IR and HRMS-ESI copies of the compound 4.

Fig. S9. ¹H NMR (DMSO- d_6 , 500 MHz) spectra of compound **4.**

Fig. S11. IR spectra of compound 4.

Fig. S12. ESI mass spectra of compound 4.

4. The ¹H NMR spectra of compound 3 and 4

Fig. S13. ¹H NMR (DMSO- d_6 , 500 MHz) spectra of compound 3 and 4.

5. The I_{max} of chemosensor $\boldsymbol{3}$ in various polar solvents

Fig. S14. The fluorescent maximum emission wavelength of chemosensor 3 in diethyl ether, dichloromethane, acetonitrile, dimethyl sulfoxide, dimethyl sulfoxide/water (1:1, v/v), and water. Excitation at 480 nm.

6. DFT calculation for chemosensor 3

Fig. S15. The optimized structure of chemosensor **3** at the level of M06-2X functional with 6-31+G (d, p) basis set.

7. UV-visible spectra of chemosensor 3

Fig. S16. UV-visible spectral changes of 20 μ mol L⁻¹ solution of **3** (a) in DMSO/H₂O (1:1) with various anions (4.0 equiv) (Inset: from left to right: **3** only, NaCN, TBACN, F⁻, AcO⁻, H₂PO₄⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, BF₄⁻, ClO₄⁻); (b) in DMSO (1.5 equiv); (c) in DMSO/H₂O (1:1) (4.0 equiv); and (d) in H₂O (10.0 equiv) upon titration with TBACN.

8. The UV detection limit of the chemosensor 3 with CN⁻ in DMSO

Fig. S17. Absorbance intensity ratio (A_{332}/A_{502}) of chemosensor **3** (20 μ mol L⁻¹) as a function of CN⁻ concentration from 0-24 μ mol L⁻¹ (0–1.2 equiv) in DMSO.

SD	N
0.02548	7

The result of the analysis as follows:

Linear Equation: y = 0.9189 + 0.0296 * x, $R^2 = 0.9902$

 $S = 2.96 * 10^4$, K = 3, $\delta = 0.02548$

 $LOD = K * \delta/S = 2.58 \ \mu mol \ L^{-1}$

9. The UV detection limit of the chemosensor 3 with CN^- in DMSO/H₂O

Fig. S18. Absorbance intensity ratio (A_{318}/A_{505}) of chemosensor **3** (20 μ mol L⁻¹) as a function of CN⁻ concentration from 0-60 μ mol L⁻¹ (0-3.0 equiv) in DMSO/H₂O (1:1, v/v).

SD	Ν
0.0117	7

The result of the analysis as follows:

Linear Equation: y = 0.9728 + 0.0044 * x, $R^2 = 0.98531$

 $S = 4.4 * 10^3$, K = 3, $\delta = 0.0117$

 $LOD = K * \delta/S = 7.98 \ \mu mol \ L^{-1}$

10. The UV detection limit of the chemosensor **3** with CN^- in H₂O

Fig. S19. Absorbance intensity ratio (A_{518}/A_{380}) of chemosensor **3** (20 μ mol L⁻¹) as a function of CN⁻ concentration from 0-130 μ mol L⁻¹ (0–6.5 equiv).

	1
SD	Ν
0.29351	14

The result of the analysis as follows:

Linear Equation: y = 2.81 + 0.05 * x, $R^2 = 0.98073$ $S = 5 * 10^4$, K = 3, $\delta = 0.29351$

 $LOD = K * \delta/S = 17.61 \ \mu mol \ L^{-1}$

11. UV-visible spectra of chemosensor 3 in the presence of different anions in H₂O.

Fig. S20. UV-visible spectra of chemosensor **3** (20 μ mol L⁻¹) in the presence of different anions (ca. 10.0 equiv) in H₂O; Color change of chemosensor **3** with different anions (from left to right: **3** only, CN⁻, F⁻, AcO⁻, H₂PO₄⁻, Cl⁻, Br⁻, Γ , NO₃⁻, BF₄⁻, ClO₄⁻).

12. Interference experiments of chemosensor $\mathbf{3}$ toward cyanide in H₂O.

Fig. S21. Absorbance intensity ratio of chemosensor **3** toward cyanide and other anions (10.0 equiv, from left to right: $H_2PO_4^-$, Cl^- , Br^- , Γ^- , NO_3^- , HSO_4^- , BF_4^- , AcO^- , ClO_4^- , F^-) in $H_2O_4^-$.

13. The response time of chemosensor 3 to CN^- in aqueous media

Fig. S22. The time-dependent behavior of chemosensor **3** in aqueous media upon addition of 6.0 equivalent cyanide ions.

14. Fluorescence spectra of chemosensor $\mathbf{3}$ in the presence of different cations in H₂O

Fig. S23. Fluorescence intensity changes of **3** with other heavy metal ions. Fluorescence spectra (excitation at 515 nm) of **3** (20 μ mol L⁻¹) with 6.0 equivalents of various metal ions (NaCl, KCl, KI, CuSO₄·5H₂O, ZnCl₂, MgSO₄·7H₂O, FeSO₄·7H₂O, SnCl₂, TBACN) were recorded in DMSO/H₂O (1:1 ν/ν).

15. Linear fluorescence response of chemosensor 3 to CN^- in DMSO/H₂O

Fig. S24. Linear fluorescence response of chemosensor **3** to CN⁻ concentration ranging from 0 to 56 μ mol L⁻¹ (0-2.8 equiv) in DMSO/H₂O (1:1, ν/ν).

16. The fluorescence detection limit of the chemosensor 3 with CN^{-} in DMSO.

Fig. S25. Response of fluorescence intensity to changing CN⁻ concentrations in DMSO. ([**3**] = 20 μ mol L⁻¹, [CN⁻] = 5000 μ mol L⁻¹, $\lambda_{ex} = 515$ nm, $\lambda_{em} = 520$ nm). The result of the analysis as follows:

Linear Equation: y = 6.8435 + 1.2999 * x, $R^2 = 0.99645$ LOD = K * $\delta/S = 0.034 \ \mu mol \ L^{-1}$ 17. The fluorescence detection limit of the chemosensor 3 with CN^- in DMSO/H₂O.

Fig. S26. Response of fluorescence intensity to changing CN⁻ concentrations in DMSO/H₂O (1:1, ν/ν). ([**3**] = 20 μ mol L⁻¹, [CN⁻] = 5000 μ mol L⁻¹, λ_{ex} = 515 nm, λ_{em} = 525 nm). The result of the analysis as follows: Linear Equation: y = 5.42971 + 1.08125 * x, R² = 0.99041 LOD = K * δ/S = 0.045 μ mol L⁻¹

18. The fluorescence detection limit of the chemosensor **3** with CN^{-} in H₂O.

Fig. S27. Response of fluorescence intensity to changing CN^- concentrations in H₂O. ([**3**] = 20 μ mol L⁻¹, [CN⁻] = 5000 μ mol L⁻¹, λ_{ex} = 480 nm, λ_{em} = 500 nm).

SD	Ν
0.06798	9

The result of the analysis as follows:

Linear Equation: y = 5.75 + 1.162 * x, $R^2 = 0.96596$

 $S = 1.16 * 10^6$, K = 3, $\delta = 0.06798$

 $LOD = K * \delta/S = 0.18 \ \mu mol \ L^{-1}$

19. The ¹H NMR spectra of the chemosensor **3** with CN^{-} in DMSO- d_6 .

Fig. S28. ¹H-NMR titration spectra of chemosensor **3** (4.0 \times 10⁻² mol L-1) in DMSO-*d*₆ upon addition of CN ions (as TBA salts in DMSO-*d*₆) at 298 K.

20. The ¹H NMR spectra of the chemosensor **3** with F^- in DMSO- d_6 .

Fig. S29. The ¹H NMR spectra of the chemosensor **3** (0.04 mol L^{-1}) followed by the addition of 10.0 equiv. TBAF in DMSO- d_6 .

21. Confocal microscopic images of Hela cells.

Fig. S30. Confocal fluorescence microscope images of Hela cells in the presence of chemosensor **3** (10 μ mol L⁻¹). The fluorescence images were recorded after 10 min of treatment of CN⁻ (10 μ mol L⁻¹) at 37 °C.

22. Fluorescence spectra of chemosensor $\mathbf{3}$ at different pH values in DMSO/H₂O.

Fig. S31. Fluorescence spectra of chemosensor **3** at different pH values (515 nm excitation) in DMSO/H₂O (1:1) ranging from (a) 1-14, (c) 5.8-8.0. (b) Relationship between the pH and the fluorescence intensity at 615nm ranging from (b) 1-14, (d) 5.8-8.0.

23. Fluorescence spectra of chemosensor $\mathbf{3}$ at different pH values in H₂O.

Typical procedure of the p K_a value obtained: $\log[(F_{max}-F)/(F-F_{min})]=pK_a-pH$, where F is the fluorescence emission intensity at 618 nm.

Fig. S32. Relative intensity of **3** at 618 nm in Britton-Robinson buffer solution as a function of pH, pK_{a1} and pK_{a2} values are calculated.