A rhodium(I)-catalysed formal intramolecular C-C/C-H bond metathesis

Takanori Matsuda* and Itaru Yuihara

Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Electronic Supplementary Information

General. All reactions were carried out with standard Schlenk techniques under an argon or nitrogen atmosphere. Column chromatography was carried out on Wakogel[®] C-200 (75–150 μ m). Preparative thin-layer chromatography (TLC) was performed on Wakogel[®] B-5F. Proton chemical shifts were referenced to residual CHCl₃ signal at 7.26 ppm. Carbon chemical shifts were referenced to CDCl₃ at 77.0 ppm.

Materials. Cyclobutanones and (pyridylmethylene)cyclobutanes were prepared according to the literature methods. All other commercially available chemical resources were used as received without further purification.

Preparation of Substrates.

(1) preparation of cyclobutanones

2-Methyl-2-phenyl-4-(2-pyridylmethylene)cyclobutane (1a): White solid, mp 42– 43 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.52 (s, 3H), 2.93–2.99 (m, 1H), 3.18–3.24 (m, 1H), 3.28–3.34 (m, 1H), 3.46–3.52 (m, 1H), 6.42 (quint, J = 2.2 Hz, 1H), 7.02–7.07 (m, 1H), 7.15– 7.23 (m, 2H), 7.28–7.37 (m, 4H), 7.60 (dt, J = 2.0, 7.5 Hz, 1H), 8.54–8.57 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 30.8, 40.3, 45.5, 46.0, 120.5, 121.7, 123.4, 125.1, 125.5, 128.2, 135.9, 144.6, 149.3, 150.3, 156.7; HRMS (ESI) calcd for C₁₇H₁₇NNa [M + Na]⁺ 258.1253, found 258.1253.

2-Methyl-2-(²**H**₅**)phenyl-4-(2-pyridylmethylene)cyclobutane** (1a-*d*₅): White solid, mp 43–45 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.53 (s, 3H), 2.93–2.99 (m, 1H), 3.18–3.24 (m, 1H), 3.28–3.34 (m, 1H), 3.46–3.52 (m, 1H), 6.42 (quint, *J* = 2.2 Hz, 1H), 7.02–7.07 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.60 (dt, *J* = 1.7, 7.6 Hz, 1H), 8.54–8.57 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.7, 40.2, 45.6, 46.1, 120.4, 121.7, 123.4, 124.7 (t, *J*_{C-D} = 24.0 Hz), 125.0 (t, *J*_{C-D} = 25.2 Hz), 127.7 (t, *J*_{C-D} = 24.0 Hz), 135.8, 144.6, 149.3, 150.1, 156.7; HRMS (ESI) calcd for C₁₇H₁₃D₅N [M + H]⁺ 241.1748, found 241.1745.

2-Methyl-4-[(3-methyl-2-pyridyl)methylene]-2-phenylcyclobutane (1b): Pale yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.52 (s, 3H), 2.32 (s, 3H), 2.92–2.98 (m, 1H), 3.26–3.34 (m, 2H), 3.52–3.58 (m, 1H), 6.47 (quint, J = 2.2 Hz, 1H), 6.96 (dd, J = 7.8, 4.8 Hz, 1H), 7.16–7.21 (m, 1H), 7.28–7.35 (m, 4H), 7.37–7.40 (m, 1H), 8.39–8.42 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 19.0, 30.8, 40.3, 45.6, 46.6, 118.6, 120.4, 125.2, 125.3, 128.1, 129.9, 137.3, 146.1, 146.6, 150.6, 155.2; HRMS (MALDI) calcd for C₁₈H₁₉NNa [M + Na]⁺ 272.1410, found 272.1397.

2-Methyl-4-[(6-methyl-2-pyridyl)methylene]-2-phenylcyclobutane (1c): Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.52 (s, 3H), 2.53 (s, 3H), 2.91–2.97 (m, 1H), 3.14–3.20 (m, 1H), 3.27–3.33 (m, 1H), 3.43–3.50 (m, 1H), 6.41 (quint, *J* = 2.2 Hz, 1H), 6.92 (d, *J* = 7.5 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 7.17–7.22 (m, 1H), 7.27–7.31 (m, 2H), 7.31–7.37 (m, 2H), 7.50 (t, J = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 24.3, 30.4, 40.0, 45.2, 45.8, 118.3, 119.7, 123.5, 124.8, 125.2, 127.9, 135.8, 143.7, 150.0, 155.7, 157.4; HRMS (ESI) calcd for C₁₈H₁₉NNa [M + Na]⁺ 272.1410, found 272.1414.

2-Methyl-2-phenyl-4-(2-quinolylmethylene)cyclobutane (1d): Pale yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.55 (s, 3H), 2.98–3.05 (m, 1H), 3.29–3.41 (m, 2H), 3.58–3.64 (m, 1H), 6.63 (quint, J = 2.3 Hz, 1H), 7.19–7.24 (m, 1H), 7.28–7.38 (m, 5H), 7.44–7.48 (m, 1H), 7.65–7.69 (m, 1H), 7.74–7.77 (m, 1H), 8.02 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.7, 40.3, 45.8, 46.2, 120.2, 124.2, 125.1, 125.59, 125.64, 126.3, 127.3, 128.2, 129.0, 129.3, 135.7, 146.8, 148.1, 150.1, 156.8; HRMS (ESI) calcd for C₂₁H₂₀N [M + H]⁺ 286.1590, found 286.1587.

2-Methyl-2-phenyl-4-(2-pyrazylmethylene)cyclobutane: Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.53 (s, 3H), 2.96–3.02 (m, 1H), 3.24–3.30 (m, 1H), 3.31–3.37 (m, 1H), 3.50–3.56 (m, 1H), 6.40 (quint, J = 2.4 Hz, 1H), 7.19–7.23 (m, 1H), 7.27–7.31 (m, 2H), 7.32–7.38 (m, 2H), 8.29 (d, J = 2.0 Hz, 1H), 8.45 (d, J = 1.0 Hz, 1H), 8.48–8.50 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.7, 40.2, 45.5, 46.3, 119.6, 124.9, 125.5, 128.1, 140.7, 143.3, 143.8, 148.5, 149.7, 152.3; HRMS (ESI) calcd for C₁₆H₁₇N₂ [M + H]⁺ 237.1386, found 237.1386.

2-Methyl-2-phenyl-4-(8-quinolylmethylene)cyclobutane: Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.54 (s, 3H), 3.05–3.16 (m, 2H), 3.38–3.44 (m, 1H), 3.50–3.56 (m, 1H), 7.17–7.23 (m, 1H), 7.28–7.37 (m, 4H), 7.41 (dd, *J* = 8.5, 4.5 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.59 (quint, *J* = 2.5 Hz, 1H), 7.65–7.69 (m, 2H), 8.14 (dd, *J* = 8.3, 2.3 Hz, 1H), 8.96 (dd, *J* = 4.0, 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.7, 40.6, 45.7, 45.8, 118.2, 120.9, 125.2, 125.5, 125.8, 126.2, 126.5, 128.2, 128.4, 135.8, 136.2, 140.4, 145.5, 149.1, 150.6; HRMS (ESI) calcd for C₂₁H₂₀N [M + H]⁺ 286.1590, found 286.1592.

2,2-Diphenyl-4-(2-pyridylmethylene)cyclobutane (1e): White solid, mp 91–92 °C; ¹H NMR (CDCl₃, 500 MHz) δ 3.68 (s, 2H), 3.92 (s, 2H), 6.39 (quint, J = 2.5 Hz, 1H), 7.01–7.06 (m, 1H), 7.14–7.20 (m, 3H), 7.26–7.33 (m, 8H), 7.59 (dt, J = 2.2, 7.6 Hz, 1H), 8.54–8.57 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 46.8, 47.6, 48.2, 120.5, 121.9, 122.5, 125.8, 126.4, 128.2, 135.9, 143.9, 148.8, 149.3, 156.5; HRMS (ESI) calcd for C₂₂H₁₉NNa [M + Na]⁺ 320.1410, found 320.1415.

2-Phenyl-4-(2-pyridylmethylene)cyclobutane (1f): Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 3.05–3.12 (m, 1H), 3.23–3.38 (m, 2H), 3.55–3.63 (m, 1H), 3.67–3.76 (m, 1H), 6.38 (quint, J = 2.2 Hz, 1H), 7.02–7.07 (m, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.19–7.24 (m, 1H), 7.30–7.36 (m, 4H), 7.60 (dt, J = 2.0, 7.7 Hz, 1H), 8.54–8.57 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 36.3, 40.5, 40.8, 120.5, 121.7, 122.2, 126.1, 126.4, 128.4, 135.9, 145.3, 146.0, 149.3, 156.7; HRMS (ESI) calcd for C₁₆H₁₆N [M + H]⁺ 222.1277, found 222.1278.

(*E*)-1-Methyl-1-phenyl-3-(2-pyridylmethylene)spiro[3.3]heptane (1g): Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.41 (s, 3H), 1.70–1.78 (m, 1H), 1.80–2.01 (m, 3H), 2.18–2.26 (m, 1H), 2.28–2.37 (m, 1H), 2.95 (dd, *J* = 15.8, 1.8 Hz, 1H), 3.54 (dd, *J* = 15.8, 2.2 Hz, 1H), 6.75 (s, 1H), 7.06–7.12 (m, 1H), 7.20–7.25 (m, 1H), 7.26–7.33 (m, 3H), 7.34–7.39 (m, 2H), 7.62–7.68 (m, 1H), 8.56–8.60 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 15.4, 25.0, 28.4, 31.5, 41.6, 45.3, 58.3, 119.1, 120.5, 121.8, 125.7, 126.2, 128.1, 135.9, 146.0, 149.3, 156.3, 156.9; HRMS (MALDI) calcd for C₂₀H₂₁NNa [M + Na]⁺ 298.1566, found 298.1554.

2-Methyl-2-phenyl-4-[1-(2-pyridyl)ethylidene]cyclobutane (**1h**): Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.49 (s, 3H), 2.03–2.06 (m, 3H), 2.93–2.99 (m, 1H), 3.03–3.09 (m, 1H), 3.22–3.28 (m, 1H), 3.39–3.46 (m, 1H), 7.05–7.09 (m, 1H), 7.16–7.21 (m, 1H), 7.23–7.27 (m, 1H), 7.28–7.36 (m, 4H), 7.58–7.63 (m, 1H), 8.58–8.61 (m, 1H); ¹³C NMR (CDCl₃, 75.6

MHz) δ 15.4, 31.1, 39.0, 44.4, 46.2, 120.5, 121.4, 125.2, 125.5, 128.1, 128.2, 135.5, 137.5, 148.8, 150.6, 158.7; HRMS (ESI) calcd for C₁₈H₁₉NNa [M + Na]⁺ 272.1410, found 272.1407.

2-Methyl-2-phenyl-4-[phenyl(2-pyridyl)methylene]cyclobutane (1i): Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.54 (s, 3H), 2.91–2.97 (m, 1H), 3.21–3.31 (m, 2H), 3.46–3.51 (m, 1H), 7.06–7.12 (m, 2H), 7.16–7.20 (m, 1H), 7.22–7.38 (m, 9H), 7.58 (dt, *J* = 1.7, 7.8 Hz, 1H), 8.60–8.64 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 31.1, 39.4, 45.2, 46.0, 120.8, 123.1, 125.1, 125.4, 126.6, 128.1, 128.2, 129.1, 134.3, 135.7, 139.3, 140.6, 149.1, 150.4, 158.9; HRMS (ESI) calcd for C₂₃H₂₂N [M + H]⁺ 312.1747, found 312.1746.

2-Methyl-2-(4-methylphenyl)-4-(2-pyridylmethylene)cyclobutane (1j): Pale yellow solid, mp 33–37 °C; ¹H NMR (CDCl₃, 301 MHz) δ 1.51 (s, 3H), 2.34 (s, 3H), 2.89–2.98 (m, 1H), 3.13–3.23 (m, 1H), 3.24–3.33 (m, 1H), 3.42–3.51 (m, 1H), 6.42 (quint, J = 2.0 Hz, 1H), 7.02–7.08 (m, 1H), 7.12–7.22 (m, 5H), 7.61 (dt, J = 1.6, 7.7 Hz, 1H), 8.53–8.57 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 20.9, 30.7, 40.0, 45.6, 46.1, 120.4, 121.6, 123.4, 125.0, 128.9, 135.0, 135.8, 144.8, 147.3, 149.3, 156.7; HRMS (ESI) calcd for C₁₈H₁₉NNa [M + Na]⁺ 272.1410, found 272.1408.

2-(4-Chlorophenyl)-2-methyl-4-(2-pyridylmethylene)cyclobutane (1k): White solid, mp 59–62 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.50 (s, 3H), 2.92–2.98 (m, 1H), 3.18–3.29 (m, 2H), 3.42–3.48 (m, 1H), 6.41 (quint, J = 2.3 Hz, 1H), 7.03–7.07 (m, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.20–7.24 (m, 2H), 7.28–7.32 (m, 2H), 7.60 (dt, J = 2.0, 7.5 Hz, 1H), 8.54–8.57 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 30.6, 40.0, 45.5, 46.1, 120.5, 121.8, 123.5, 126.6, 128.3, 131.2, 135.9, 143.9, 148.8, 149.3, 156.6; HRMS (ESI) calcd for C₁₇H₁₇ClN [M + H]⁺ 270.1044, found 270.1046.

2-Methyl-4-(2-pyridylmethylene)-2-[4-(trifluoromethyl)phenyl]cyclobutane (11): White solid, mp 48–50 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.53 (s, 3H), 2.96–3.03 (m, 1H), 3.24–3.33 (m, 2H), 3.47–3.53 (m, 1H), 6.42 (quint, J = 2.0 Hz, 1H), 7.04–7.08 (m, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.61 (dt, J = 2.0, 7.6 Hz, 1H), 8.55–8.57 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.6, 40.5, 45.4, 46.0, 120.6, 121.8, 123.6, 124.3 (q, ¹ $_{JC-F} = 271.0$ Hz), 125.2 (q, ³ $_{JC-F} = 3.5$ Hz), 125.6, 127.9 (q, ² $_{JC-F} = 32.4$ Hz), 135.9, 143.5, 149.4, 154.3, 156.5; HRMS (ESI) calcd for C₁₈H₁₇F₃N [M + H]⁺ 304.1308, found 304.1303.

2-(3-Bromophenyl)-2-methyl-4-(2-pyridylmethylene)cyclobutane (1m): Yellow oil; ¹H NMR (CDCl₃, 301 MHz) δ 1.51 (s, 3H), 2.90–3.00 (m, 1H), 3.17–3.33 (m, 2H), 3.42–3.52 (m, 1H), 6.41 (quint, J = 2.2 Hz, 1H), 7.02–7.09 (m, 1H), 7.15 (d, J = 7.8 Hz, 1H), 7.19–7.24 (m, 2H), 7.24–7.37 (m, 1H), 7.40–7.44 (m, 1H), 7.61 (dt, J = 1.7, 7.7 Hz, 1H), 8.53–8.58 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.6, 40.2, 45.3, 46.0, 120.5, 121.7, 122.3, 123.5, 123.8, 128.4, 128.6, 129.8, 135.8, 143.6, 149.2, 152.6, 156.4; HRMS (ESI) calcd for C₁₇H₁₇BrN [M + H]⁺ 314.0539, found 314.0534.

2-Methyl-2-(2-naphthyl)-4-(2-pyridylmethylene)cyclobutane (1n): White solid, mp 102–104 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.61 (s, 3H), 3.01–3.07 (m, 1H), 3.27–3.33 (m, 1H), 3.39–3.45 (m, 1H), 3.58–3.64 (m, 1H), 6.45 (quint, J = 2.0 Hz, 1H), 7.04–7.08 (m, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.41–7.50 (m, 3H), 7.62 (dt, J = 1.5, 7.7 Hz, 1H), 7.68–7.71 (m, 1H), 7.80–7.85 (m, 3H), 8.55–8.59 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 30.6, 40.5, 45.5, 46.0, 120.5, 121.7, 122.9, 123.5, 124.2, 125.2, 126.0, 127.5, 127.6, 128.0, 131.6, 133.2, 135.8, 144.5, 147.5, 149.3, 156.6; HRMS (ESI) calcd for C₂₁H₂₀N [M + H]⁺ 286.1590, found 286.1590.

2-Methyl-4-(2-pyridylmethylene)-2-(2-thienyl)cyclobutane (10): Yellow oil; ¹H NMR (CDCl₃, 301 MHz) δ 1.66 (s, 3H), 2.95–3.05 (m, 1H), 3.20–3.35 (m, 2H), 3.46–3.56 (m, 1H), 6.42 (quint, J = 2.3 Hz, 1H), 6.89–6.97 (m, 2H), 7.02–7.08 (m, 1H), 7.11–7.18 (m, 2H), 7.60 (dt, J = 2.0, 7.7 Hz, 1H), 8.52–8.57 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 29.4, 37.9, 48.1, 48.7, 120.6, 121.8, 122.0, 123.0, 123.9, 126.7, 136.0, 143.7, 149.4, 154.9, 156.6; HRMS (ESI) calcd for C₁₅H₁₅NNaS [M + Na]⁺ 264.0817, found 264.0818.

2-Methyl-2-(2-methylphenyl)-4-(2-pyridylmethylene)cyclobutane (1p): Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.49 (s, 3H), 2.34 (s, 3H), 2.93–2.99 (m, 1H), 3.21–3.27 (m, 1H), 3.34–3.40 (m, 1H), 3.50–3.56 (m, 1H), 6.41–6.44 (m, 1H), 7.03–7.08 (m, 1H), 7.10–7.21 (m, 5H), 7.61 (dt, *J* = 1.7, 7.6 Hz, 1H), 8.55–8.58 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 19.9, 28.1, 41.2, 45.9, 46.1, 120.3, 121.6, 122.7, 125.7, 125.8, 125.9, 131.1, 134.7, 135.7, 145.2, 147.3, 149.2, 156.6; HRMS (ESI) calcd for C₁₈H₂₀N [M + H]⁺ 250.1590, found 250.1594.

2,2-Dibenzyl-4-(2-pyridylmethylene)cyclobutane (1q): Yellow oil; ¹H NMR (CDCl₃, 301 MHz) δ 2.78–2.82 (m, 2H), 2.86 (s, 4H), 2.99–3.03 (m, 2H), 6.29 (quint, *J* = 2.1 Hz, 1H), 7.00–7.06 (m, 1H), 7.09 (d, *J* = 8.1 Hz, 1H), 7.13–7.33 (m, 10H), 7.57 (dt, *J* = 2.0, 7.7 Hz, 1H), 8.50–8.55 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 40.1, 41.0, 41.7, 43.4, 119.9, 121.1,

122.7, 125.6, 127.6, 129.7, 135.3, 138.4, 144.7, 148.8, 156.2; HRMS (ESI) calcd for $C_{24}H_{24}N$ [M + H]⁺ 326.1903, found 326.1905.

3-Methyl-3-(4-methylphenyl)cyclobutanone (6b): Colourless oil; ¹H NMR (CDCl₃, 301 MHz) δ 1.59 (s, 3H), 2.35 (s, 3H), 3.04–3.15 (m, 2H), 3.39–3.50 (m, 2H), 7.15–7.24 (m, 4H); ¹³C NMR (CDCl₃, 126 MHz) δ 20.7, 30.8, 33.3, 59.0, 125.3, 129.0, 135.5, 145.1, 206.3; HRMS (ESI) calcd for C₁₂H₁₄NaO [M + Na]⁺ 197.0937, found 197.0933; IR (ν /cm⁻¹): 1782, 1381, 818.

3-(4-Chlorophenyl)-3-methylcyclobutanone (6c): Colourless oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.60 (s, 3H), 3.08–3.15 (m, 2H), 3.39–3.47 (m, 2H), 7.22–7.27 (m, 2H), 7.32–7.36 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.7, 33.4, 59.0, 127.0, 128.4, 131.8, 146.6, 205.5; HRMS (ESI) calcd for C₁₁H₁₁ClNaO [M + Na]⁺ 217.0391, found 217.0396; IR (ν /cm⁻¹): 1790, 1496, 1095, 825.

3-Methyl-3-(3-methylphenyl)cyclobutanone (6d): Colourless oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.60 (s, 3H), 2.38 (s, 3H), 3.06–3.13 (m, 2H), 3.43–3.50 (m, 2H), 7.05–7.13 (m,

3H), 7.24–7.29 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 21.4, 31.0, 33.7, 59.1, 122.6, 126.3, 126.9, 128.4, 138.1, 148.2, 206.7; HRMS (ESI) calcd for C₁₂H₁₄NaO [M + Na]⁺ 197.0937, found 197.0935; IR (*ν*/cm⁻¹): 2962, 1782, 787.

3-(3-Bromophenyl)-3-methylcyclobutanone (6e): White solid, mp 64–68 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.60 (s, 3H), 3.08–3.15 (m, 2H), 3.41–3.48 (m, 2H), 7.22–7.25 (m, 2H), 7.37–7.41 (m, 1H), 7.44–7.46 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.7, 33.8, 59.0, 122.5, 124.3, 128.9, 129.3, 130.1, 150.5, 205.4; HRMS (ESI) calcd for C₁₁H₁₁BrNaO [M + Na]⁺ 260.9885, found 260.9888. IR (ν /cm⁻¹): 1774, 1072, 787, 694.

3-Methyl-3-(2-methylphenyl)cyclobutanone (6f): Pale yellow oil; ¹H NMR (CDCl₃, 301 MHz) δ 1.55 (s, 3H), 2.34 (s, 3H), 3.05–3.15 (m, 2H), 3.45–3.56 (m, 2H), 7.15–7.22 (m, 4H); ¹³C NMR (CDCl₃, 126 MHz) δ 20.1, 28.3, 34.3, 58.8, 125.9, 126.3, 126.5, 131.3, 134.8, 145.2, 206.3; HRMS (ESI) calcd for C₁₂H₁₄NaO [M + Na]⁺ 197.0937, found 197.0941; IR (ν/cm^{-1}): 1790, 1381, 764.

3,3-Dibenzylcyclobutanone (6h): Yellow solid, mp 69–74 °C; ¹H NMR (CDCl₃, 500 MHz) δ 2.90 (s, 4H), 2.95 (s, 4H), 7.15–7.19 (m, 4H), 7.24–7.29 (m, 2H), 7.30–7.35 (m, 4H);

¹³C NMR (CDCl₃, 126 MHz) δ 33.6, 44.0, 54.3, 126.6, 128.3, 130.1, 137.8, 206.3; HRMS (ESI) calcd for C₁₈H₁₈NaO [M + Na]⁺ 273.1250, found 273.1254; IR (*v*/cm⁻¹): 1774, 1119, 756, 702.

General Procedure for the Rhodium(I)-Catalysed Skeletal Reorganisation of (Pyridylmethylene)cyclobutanes 1. A Schlenk tube was charged with (pyridylmethylene)cyclobutane 1 (0.100 mmol), RhCl(PPh₃)₃ (4.0 μ mol, 4 mol%). The tube was evacuated and backfilled with nitrogen. *p*-Xylene (1.0 mL) was added via syringe through the septum. After heating at 150 °C for the indicated time, the reaction mixture was cooled to room temperature and was filtered through a plug of Florisil[®] washing with hexane–AcOEt (1:1), and the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC on silica gel to afford the following compounds.

(*Z*)-1,1-Dimethyl-3-(2-pyridylmethylene)indane (2a). The general procedure was followed using 1a (23.5 mg, 0.100 mmol), RhCl(PPh₃)₃ (3.6 mg, 3.9 μ mol, 4 mol% Rh), and *p*-xylene (1.0 mL) for 30 min. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1, twice) yielded 2a (20.9 mg, 0.089 mmol, 89%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.34 (s, 6H), 2.81 (d, *J* = 2.5 Hz, 2H), 6.61 (t, *J* = 2.0 Hz, 1H), 7.03–7.08 (m, 1H), 7.12–7.16 (m, 1H), 7.22–7.25 (m, 2H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.63 (dt, *J* = 2.0, 7.7 Hz, 1H), 7.80 (d, *J* = 7.5 Hz, 1H), 8.64–8.67 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.3, 41.3, 52.0,

121.2, 121.6, 122.4, 123.8, 125.3, 125.9, 129.1, 136.0, 137.4, 144.8, 149.3, 156.8, 157.7; HRMS (ESI) calcd for $C_{17}H_{18}N [M + H]^+$ 236.1434, found 236.1437.

(*E*)-1,1-Dimethyl-3-(2-pyridylmethylene)indane (3a): Yellow oil; ¹H NMR (CDCl₃, 500 MHz) δ 1.35 (s, 6H), 3.18 (d, *J* = 2.5 Hz, 2H), 7.04–7.10 (m, 2H), 7.24–7.33 (m, 3H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.62–7.68 (m, 2H), 8.63–8.65 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.1, 42.8, 48.2, 118.8, 120.4, 120.6, 122.8, 123.5, 126.8, 129.1, 135.9, 140.4, 146.8, 149.3, 155.4, 157.2; HRMS (ESI) calcd for C₁₇H₁₈N [M + H]⁺ 236.1434, found 236.1435.

1,1-Dimethyl-3-(2-pyridylmethyl)indene (4a): Yellow oil; ¹H NMR (CDCl₃, 301 MHz) δ 1.32 (s, 6H), 4.04 (d, J = 1.2, 2H), 6.08 (t, J = 1.2 Hz, 1H), 7.10–7.21 (m, 5H), 7.28–7.34 (m, 1H), 7.57 (dt, J = 1.9, 7.7 Hz, 1H), 8.55–8.90 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 24.6, 36.9, 48.3, 119.8, 121.0, 121.3, 122.9, 125.2, 126.3, 136.6, 137.5, 142.8, 143.9, 149.0, 154.1, 159.5; HRMS (ESI) calcd for C₁₇H₁₈N [M + H]⁺ 236.1434, found 236.1435.

(*Z*)-1-Methyl-1-(²H₁)methyl-3-(2-pyridylmethylene)-(4,5,6,7-²H₄)indane (2a-*d*₅). The general procedure was followed using 1a-*d*₅ (33.0 mg, 0.137 mmol), RhCl(PPh₃)₃ (5.6 mg, 6.1 μ mol, 4 mol% Rh), and *p*-xylene (1.5 mL) for 1 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1) yielded 2a-*d*₅ (25.2 mg, 0.105 mmol, 76%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.31–1.36 (m, 5H), 2.81 (d, *J* = 1.5 Hz, 2H), 6.62 (t, *J* = 2.0 Hz, 1H), 7.11–7.16 (m, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.62 (dt, *J* = 1.7, 7.6 Hz, 1H), 8.64–8.68 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.0 (t, *J*_{C-D} = 19.2 Hz), 29.3, 41.2, 52.0, 121.2, 121.6, 122.0 (t, *J*_{C-D} = 23.4 Hz), 123.8, 125.0 (t, *J*_{C-D} = 24.6 Hz), 125.4 (t, *J*_{C-D} = 24.6 Hz), 128.6 (t, *J*_{C-D} = 24.0 Hz), 136.0, 137.3, 144.9, 149.3, 156.8, 157.6; HRMS (ESI) calcd for C₁₇H₁₃D₅N [M + H]⁺ 241.1748, found 241.1749.

(*Z*)-1,1-Dimethyl-3-[(3-methyl-2-pyridyl)methylene]indane (2b). The general procedure was followed using 1b (37.8 mg, 0.152 mmol), RhCl(PPh₃)₃ (5.6 mg, 6.1 μ mol, 4 mol% Rh), and *p*-xylene (1.5 mL) for 1 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1) yielded 2b (27.8 mg, 0.111 mmol, 74%) as a pale yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.34 (s, 6H), 2.25 (s, 3H), 2.84 (d, *J* = 2.0 Hz, 2H), 6.58–6.60 (m, 1H), 6.90–6.96 (m, 2H), 7.14 (dd, *J* = 7.7, 4.7 Hz, 1H), 7.16–7.22 (m, 2H), 7.49–7.53 (m, 1H),

8.49–8.52 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 19.0, 29.4, 41.3, 50.7, 119.7, 121.9, 122.3, 124.4, 126.2, 128.8, 131.8, 137.6, 137.8, 144.2, 146.8, 156.1, 157.0; HRMS (MALDI) calcd for C₁₈H₁₉NNa [M + Na]⁺ 272.1410, found 272.1703.

(*E*)-1,1-Dimethyl-3-[(6-methyl-2-pyridyl)methylene]indane (3c) and 1,1-dimethyl-3-[(6-methyl-2-pyridyl)methyl]indene (4c). The general procedure was followed using 1c (37.3 mg, 0.150 mmol), RhCl(PPh₃)₃ (5.6 mg, 6.1 μ mol, 4 mol% Rh), and *p*-xylene (1.5 mL) for 24 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1, twice) yielded 3c (23.7 mg, 0.095 mmol, 64%) as a pale yellow oil and 4c (10.0 mg, 0.040 mmol, 27%) as a yellow oil.

3c: ¹H NMR (CDCl₃, 301 MHz) δ 1.34 (s, 6H), 2.58 (s, 3H), 3.12 (d, *J* = 3.0 Hz, 2H), 6.95 (d, *J* = 7.5 Hz, 1H), 7.06 (t, *J* = 2.6 Hz, 1H), 7.20–7.30 (m, 4H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.60–7.66 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 24.7, 30.1, 42.8, 48.2, 119.5, 120.1, 120.2, 120.6, 122.7, 126.8, 129.0, 136.2, 140.6, 146.2, 155.2, 156.5, 157.9; HRMS (ESI) calcd for C₁₈H₂₀N [M + H]⁺ 250.1590, found 250.1590.

4c: ¹H NMR (CDCl₃, 500 MHz) δ 1.32 (s, 6H), 2.58 (s, 3H), 4.02 (s, 2H), 6.06 (t, J = 1.0 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H), 7.16–7.20 (m, 3H), 7.29–7.33 (m, 1H), 7.45 (t, J = 7.7 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 24.5, 24.6, 36.9, 48.3, 119.7, 119.8, 120.8, 121.0, 125.1, 126.2, 136.7, 137.7, 142.9, 143.8, 154.1, 157.7, 158.9; HRMS (ESI) calcd for C₁₈H₂₀N [M + H]⁺ 250.1590, found 250.1593.

(*E*)-1,1-Dimethyl-3-(2-quinolylmethylene)indane (3d). The general procedure was followed using 1d (40.0 mg, 0.140 mmol), RhCl(PPh₃)₃ (5.6 mg, 6.1 μ mol, 4 mol% Rh), and *p*-xylene (1.5 mL) for 35 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1, twice) yielded 3d (14.6 mg, 0.051 mmol, 37%) as a pale yellow solid. Mp 60–65 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.38 (s, 6H), 3.34 (d, *J* = 3.0 Hz, 2H), 7.23 (t, *J* = 2.7 Hz, 1H), 7.26–7.35 (m, 3H), 7.46–7.50 (m, 1H), 7.53–7.56 (m, 1H), 7.67–7.72 (m, 2H), 7.75–7.79 (m, 1H), 8.07–8.12 (m, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.1, 42.9, 48.5, 119.3, 120.8, 122.1, 122.9, 125.8, 126.3, 126.9, 127.4, 129.2, 129.4, 135.7, 140.5, 148.3, 148.8, 155.8, 157.3; HRMS (ESI) calcd for C₂₁H₂₀N [M + H]⁺ 286.1590, found 286.1590.

(*Z*)-1-Methyl-1-phenyl-3-(2-pyridylmethylene)indane (2e). The general procedure was followed using 1e (32.7 mg, 0.110 mmol), RhCl(PPh₃)₃ (4.1 mg, 4.4 μ mol, 4 mol% Rh), and *p*-xylene (1.1 mL) for 2 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1, twice) yielded 2e (26.0 mg, 0.087 mmol, 80%) as a pale yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.75 (s, 3H), 3.10 (dd, *J* = 15.8, 2.2 Hz, 1H), 3.28 (dd, *J* = 15.8, 1.8 Hz, 1H), 6.61 (t, *J* = 2.0 Hz, 1H), 7.04 (d, *J* = 7.0 Hz, 1H), 7.08–7.25 (m, 4H), 7.27–7.30 (m, 4H), 7.41 (d, *J*

= 8.0 Hz, 1H), 7.64 (dt, J = 2.0, 7.8 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.66–8.69 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 27.8, 49.0, 54.5, 121.4, 121.8, 123.9, 124.6, 125.4, 125.9, 126.3, 126.6, 128.1, 129.3, 136.0, 138.1, 144.6, 148.8, 149.3, 156.6, 156.7; HRMS (ESI) calcd for C₂₂H₁₉NNa [M + Na]⁺ 320.1410, found 320.1413.

(*Z*)-1',1'-Dimethyl-3'-(2-pyridylmethylene)spiro[cyclobutane-1,2'-indane] (2g). The general procedure was followed using 1g (29.7 mg, 0.108 mmol), RhCl(PPh₃)₃ (10.2 mg, 11.0 μ mol, 10 mol% Rh), and *p*-xylene (1.1 mL) for 22.5 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 7:1, twice) yielded 2e (20.4 mg, 0.074 mmol, 69%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.21 (s, 6H), 1.75–1.84 (m, 1H), 1.92–2.00 (m, 2H), 2.11–2.30 (m, 3H), 6.83 (s, 1H), 6.97–7.03 (m, 1H), 7.12–7.17 (m, 1H), 7.19–7.24 (m, 2H), 7.41–7.52 (m, 2H), 7.55–7.61 (m, 1H), 8.65–8.68 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 14.5, 24.0, 27.2, 45.6, 60.2, 119.1, 121.3, 122.4, 123.8, 125.5, 125.6, 128.9, 135.9, 136.5, 149.4, 152.3, 154.8, 157.4; HRMS (MALDI) calcd for C₂₀H₂₁NNa [M + Na]⁺ 298.1566, found 298.1552.

(Z)-1,1-Dimethyl-3-[1-(2-pyridyl)ethylidene]indane (2h). The general procedure was followed using 1h (37.9 mg, 0.152 mmol), RhCl(PPh₃)₃ (13.9 mg, 15.0 μ mol, 10 mol% Rh),

and *p*-xylene (1.5 mL) for 24 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1, twice) yielded **2h** (17.5 mg, 0.070 mmol, 46%) as a pale yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.34 (s, 6H), 2.16–2.19 (m, 3H), 2.73–2.75 (m, 2H), 6.15 (d, *J* = 8.0 Hz, 1H), 6.76–6.81 (m, 1H), 7.05–7.10 (m, 1H), 7.16 (d, *J* = 7.5 Hz, 1H), 7.21–7.25 (m, 1H), 7.27–7.31 (m, 1H), 7.65 (dt, *J* = 1.8, 7.7 Hz, 1H), 8.69–8.72 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 22.0, 30.0, 41.2, 48.0, 121.8, 122.4, 123.68, 123.69, 125.8, 127.3, 129.4, 136.6, 137.6, 138.6, 150.0, 156.0, 162.3; HRMS (ESI) calcd for C₁₈H₂₀N [M + H]⁺ 250.1590, found 250.1595.

(*Z*)-1,1-Dimethyl-3-[phenyl(2-pyridyl)methylene]indane (2i). The general procedure was followed using 1i (31.3 mg, 0.101 mmol), RhCl(PPh₃)₃ (9.3 mg, 10.1 μ mol, 10 mol% Rh), and *p*-xylene (1.0 mL) for 18 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 3:1) yielded 2i (18.2 mg, 0.058 mmol, 58%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.30 (s, 6H), 2.85 (s, 2H), 6.15 (d, *J* = 8.0 Hz, 1H), 6.81–6.86 (m, 1H), 7.11–7.16 (m, 1H), 7.17–7.21 (m, 1H), 7.22–7.30 (m, 4H), 7.30–7.35 (m, 3H), 7.64–7.69 (m, 1H), 8.69–8.73 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.3, 41.9, 50.4, 122.0, 122.2, 124.6, 125.4, 125.8, 126.7, 128.0, 128.1, 129.1, 134.7, 136.5, 139.0, 140.6, 142.0, 150.2, 156.1, 161.0; HRMS (ESI) calcd for C₂₃H₂₂N [M + H]⁺ 312.1747, found 312.1744.

(*Z*)-1,1,5-Trimethyl-3-(2-pyridylmethylene)indane (2j). The general procedure was followed using 1j (37.4 mg, 0.150 mmol), RhCl(PPh₃)₃ (5.4 mg, 5.8 μ mol, 4 mol% Rh), and *p*-xylene (1.5 mL) for 40 min. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1) yielded 2j (31.4 mg, 0.126 mmol, 84%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.32 (s, 6H), 2.22 (s, 3H), 2.79 (d, *J* = 1.5 Hz, 2H), 6.59 (t, *J* = 2.0 Hz, 1H), 7.04–7.08 (m, 1H), 7.10–7.16 (m, 2H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.59–7.65 (m, 2H), 8.64–8.67 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 21.4, 29.4, 40.9, 52.3, 121.2, 121.4, 122.2, 123.8, 125.8, 130.1, 135.3, 135.9, 137.5, 145.0, 149.2, 155.0, 156.9; HRMS (ESI) calcd for C₁₈H₂₀N [M + H]⁺ 250.1590, found 250.1591.

(*Z*)-5-Chloro-1,1-dimethyl-3-(2-pyridylmethylene)indane (2k). The general procedure was followed using 1k (40.7 mg, 0.151 mmol), RhCl(PPh₃)₃ (5.4 mg, 5.8 μ mol, 4 mol% Rh), and *p*-xylene (1.5 mL) for 50 min. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1) yielded 2k (35.4 mg, 0.131 mmol, 87%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.32 (s, 6H), 2.82 (d, *J* = 1.5 Hz, 2H), 6.62 (t, *J* = 2.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H), 7.15–7.19 (m, 1H), 7.21 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.66 (dt, *J* = 1.5, 7.7 Hz, 1H), 8.08 (d, *J* = 2.5 Hz, 1H), 8.67–8.70 (m, 1H); ¹³C NMR (CDCl₃,

75.6 MHz) δ 29.2, 40.9, 52.2, 121.6, 122.8, 123.4, 123.9, 125.9, 129.1, 131.7, 136.2, 139.1, 143.7, 149.2, 156.01, 156.04; HRMS (ESI) calcd for C₁₇H₁₇ClN [M + H]⁺ 270.1044, found 270.1044.

(*Z*)-1,1-Dimethyl-3-(2-pyridylmethylene)-5-(trifluoromethyl)indane (21). The general procedure was followed using 11 (30.3 mg, 0.100 mmol), RhCl(PPh₃)₃ (3.7 mg, 4.0 μ mol, 4 mol% Rh), and *p*-xylene (1.0 mL) for 75 min. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1) yielded 21 (24.8 mg, 0.082 mmol, 82%) as a white solid. Mp 81–85 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.35 (s, 6H), 2.86 (d, *J* = 2.0 Hz, 2H), 6.67 (t, *J* = 2.0 Hz, 1H), 7.15–7.20 (m, 1H), 7.29–7.33 (m, 2H), 7.48–7.52 (m, 1H), 7.67 (dt, *J* = 2.0, 7.8 Hz, 1H), 8.57 (s, 1H), 8.66–8.69 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.1, 41.4, 52.1, 121.7, 122.7, 123.2, 123.5 (q, ³*J*_{C-F} = 4.9 Hz), 124.0, 124.4 (q, ¹*J*_{C-F} = 272.2 Hz), 125.9 (q, ³*J*_{C-F} = 3.6 Hz), 128.4 (q, ²*J*_{C-F} = 31.6 Hz), 136.2, 138.0, 143.6, 149.1, 155.8, 161.1; HRMS (ESI) calcd for C₁₈H₁₇F₃N [M + H]⁺ 304.1308, found 304.1308.

(Z)-6-Bromo-1,1-dimethyl-3-(2-pyridylmethylene)indane (2m). The general procedure was followed using 1m (48.0 mg, 0.153 mmol), RhCl(PPh₃)₃ (13.9 mg, 15.0 μ mol,

10 mol% Rh), and *p*-xylene (1.5 mL) for 9.5 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 6:1, thrice, then 8:1) yielded **2m** (21.6 mg, 0.069 mmol, 45%) as a yellow solid. Mp 64–69 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.32 (s, 6H), 2.81 (d, *J* = 2.5 Hz, 2H), 6.61 (t, J = 2.0 Hz, 1H), 7.12–7.17 (m, 1H), 7.19 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.32–7.35 (m, 2H), 7.64 (dt, *J* = 1.7, 7.6 Hz, 1H), 7.87 (d, *J* = 8.5 Hz, 1H), 8.63–8.67 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.2, 41.5, 52.0, 121.4, 122.3, 123.1, 123.9, 125.8, 127.2, 129.2, 136.1, 136.4, 143.7, 149.2, 156.4, 159.8; HRMS (ESI) calcd for C₁₇H₁₇BrN [M + H]⁺ 314.0539, found 314.0537.

(Z)-1,1-Dimethyl-3-(2-pyridylmethylene)-2,3-dihydro-1H-

cyclopenta[*b*]**naphthalene (2n).** The general procedure was followed using **1n** (42.8 mg, 0.150 mmol), RhCl(PPh₃)₃ (5.6 mg, 6.1 μ mol, 4 mol% Rh), and *p*-xylene (1.5 mL) for 7.5 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1, twice) yielded **2n** (27.0 mg, 0.095 mmol, 63%) as a white solid. Mp 73–75 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.44 (s, 6H), 2.88 (d, *J* = 2.5 Hz, 2H), 6.73 (t, *J* = 2.0 Hz, 1H), 7.17–7.22 (m, 1H), 7.32–7.36 (m, 1H), 7.38–7.43 (m, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.62 (s, 1H), 7.63–7.68 (m, 2H), 7.76 (d, *J* = 7.5 Hz, 1H), 8.43 (s, 1H), 8.72–8.75 (m, 1H); ¹³C NMR (CDCl₃, 75.6 MHz) δ 29.5, 41.0, 52.7, 120.1, 121.5, 123.0, 123.9, 124.8, 125.0, 126.1, 127.3, 128.9, 132.4, 134.2, 136.0, 136.2, 144.3, 149.3, 155.2, 156.7; HRMS (ESI) calcd for C₂₁H₂₀N [M + H]⁺ 286.1590, found 286.1590.

(*Z*)- and (*E*)-6,6-Dimethyl-4-(2-pyridylmethylene)-5,6-dihydro-4*H*cyclopenta[*b*]thiophene (2o and 3o). The general procedure was followed using 1o (32.8 mg, 0.136 mmol), RhCl(PPh₃)₃ (13.9 mg, 15.0 μ mol, 11 mol% Rh), and *p*-xylene (1.5 mL) for 24 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 4:1) yielded a mixture of 2o and 3o (17.7 mg, 0.073 mmol, 54%; 2o:3o = 54:46 determined by ¹H NMR) as a yellow oil. Spectral data were obtained as a mixture of the two compounds. ¹H NMR (CDCl₃, 500 MHz) δ 1.41 (s, 6H; major), 1.43 (s, 6H; minor), 3.15 (d, *J* = 1.5 Hz, 2H; major), 3.48 (d, *J* = 2.0 Hz, 2H; minor), 6.28 (t, *J* = 2.0 Hz, 1H; major), 6.65 (t, *J* = 2.3 Hz, 1H; minor), 7.01–7.13 (m, 2H), 7.23–7.28 (m, 1H), 7.58–7.63 (m, 2H), 8.58–8.65 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 30.5, 30.8, 40.9, 42.7, 53.0, 55.7, 116.6, 117.0, 118.6, 120.0, 120.6, 123.0, 123.4, 124.6, 126.6, 128.9, 135.8, 135.9, 141.2, 142.1, 143.3, 146.0, 149.0, 149.2, 156.8, 157.5, 160.9, 165.1; HRMS (ESI) calcd for C₁₅H₁₆NS [M + H]⁺ 2242.0998, found 242.0997.

(*E*)-1,1,7-Trimethyl-3-(2-pyridylmethylene)indane (3p), 1,1,7-trimethyl-3-(2pyridylmethyl)indene (4p) and (*E*)-1,1-dimethyl-3-(2-pyridylmethylene)-1,2,3,4tetrahydronaphthalene (5). The general procedure was followed using 1p (47.7 mg, 0.191

mmol), RhCl(PPh₃)₃ (7.4 mg, 8.0 μ mol, 4 mol% Rh), and *p*-xylene (2.0 mL) for 18.5 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 5:1, twice) yielded two fractions, A and B.

The fraction A contained **3p** (13.0 mg, 0.052 mmol, 27%), and the fraction B contained **4p** and **5** (27.5 mg, 0.110 mmol, 58%, **4p**:**5** = 39:61 determined by ¹H NMR).

3p: ¹H NMR (CDCl₃, 500 MHz) δ 1.44 (s, 6H), 2.45 (s, 3H), 3.18 (d, *J* = 2.5 Hz, 2H), 7.02 (t, *J* = 2.5 Hz, 1H), 7.04–7.09 (m, 2H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.65 (dt, *J* = 1.7, 7.7 Hz, 1H), 8.62–8.65 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 19.3, 28.2, 44.1, 50.1, 118.4, 118.6, 120.4, 123.5, 127.1, 132.0, 134.3, 136.0, 141.2, 146.9, 149.3, 151.7, 157.3; HRMS (ESI) calcd for C₁₈H₂₀N [M + H]⁺ 250.1590, found 250.1590.

4p and 5: Spectral data were obtained as a mixture of the two compounds. ¹H NMR (CDCl₃, 500 MHz) δ 1.16 (s, 6H; **5**), 1.41 (s, 6H; **4p**), 2.13 (s, 2H; **5**), 2.47 (s, 3H; **4p**), 3.71 (s, 2H; **5**), 4.03 (s, 2H; **4p**), 6.00 (s, 1H; **4p**), 6.35 (s, 1H; **5**), 6.93 (d, *J* = 7.0 Hz), 7.00–7.05 (m), 7.07–7.20 (m), 7.23–7.28 (m), 7.55–7.67 (m), 8.54–8.59 (m); ¹³C NMR (CDCl₃, 126 MHz) δ 18.7, 22.1, 28.3, 34.0, 36.9, 42.2, 46.7, 49.3, 117.5, 121.2, 121.3, 122.8, 123.3, 123.5, 124.1, 126.1, 126.4, 126.6, 127.1, 127.6, 132.6, 133.3, 136.3, 136.4, 136.8, 137.5, 143.0, 143.5,

145.0, 149.1, 149.2, 150.3, 159.3, 159.6; HRMS (ESI) calcd for $C_{18}H_{20}N [M + H]^+ 250.1590$, found 250.1590.

(*Z*)-3-Benzyl-3-methyl-1-(2-pyridylmethylene)-1,2,3,4-tetrahydronaphthalene (2q). The general procedure was followed using 1q (30.6 mg, 0.094 mmol), RhCl(PPh₃)₃ (3.7 mg, 4.0 μ mol, 4 mol% Rh), and *p*-xylene (1.0 mL) for 10 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1) yielded 6 (17.4 mg, 0.053 mmol, 57%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 1.04 (s, 3H), 2.37 (d, *J* = 12.5 Hz, 1H), 2.46–2.52 (m, 1H), 2.59 (d, *J* = 17.0 Hz, 1H), 2.68 (d, *J* = 13.5 Hz, 1H), 2.76 (d, *J* = 13.0 Hz, 1H), 2.89 (d, *J* = 16.5 Hz, 1H), 6.51 (s, 1H), 6.81–6.87 (m, 1H), 7.05–7.33 (m, 10H), 7.44 (dt, *J* = 1.5, 7.7 Hz, 1H), 8.58–8.62 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 25.7, 35.8, 41.7, 47.4, 48.1, 121.2, 124.2, 124.6, 126.1, 126.2, 127.8, 128.2, 128.8, 129.5, 130.7, 133.2, 135.6, 137.7, 138.3, 139.4, 149.6, 157.9; HRMS (ESI) calcd for C₂₄H₂₄N [M + H]⁺ 326.1903, found 326.1903.

General Procedure for the Rhodium(I)-Catalysed Skeletal Reorganisation of Cyclobutanones 6. A Schlenk tube was charged with cyclobutanone 6 (0.200 mmol), RhCl(PPh₃)₃ (10 μ mol, 5 mol% Rh), benzoic acid (0.100 mmol, 0.5 equiv), and aminopyridine 7a (0.240 mmol, 1.2 equiv, liquid 7b was added via syringe after *p*-xylene). The tube was evacuated and backfilled with nitrogen. *p*-Xylene (2.0 mL) was added via syringe through the septum, and the mixture was heated at 150 °C for the indicated time.

After cooling to room temperature, HCl aq. (1.0 M, 0.20 mL) was added to the reaction mixture, and the mixture was stirred at room temperature for 1.5 h. The mixture was filtered through a plug of Florisil[®] washing with hexane–AcOEt (1:1), and the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC on silica gel to afford the following compounds.

3,3-Dimethyl-1-indanone (8a). The general procedure was followed using **6a** (80.8 mg, 0.504 mmol), RhCl(PPh₃)₃ (23.1 mg, 25 μ mol), benzoic acid (30.8 mg, 0.252 mmol), 2aminopyridine (**7a**, 57.0 mg, 0.606 mmol) and *p*-xylene (5.0 mL) for 22.5 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1, twice) yielded **8a** (68.0 mg, 0.424 mmol, 84%) as a colourless oil. The reaction of **6a** (29.9 mg, 0.187 mmol) employing 2-amino-3picoline (**7b**) afforded **8a** (23.6 mg, 0.147 mmol) in 79% yield. ¹H NMR (CDCl₃, 500 MHz) δ 1.42 (s, 6H), 2.59 (s, 2H), 7.34–7.38 (m, 1H), 7.48–7.51 (m, 1H), 7.59–7.63 (m, 1H), 7.68– 7.71 (m, 1H). The spectral data matched those reported in the literature.¹ HRMS (ESI) calcd for C₁₁H₁₂NaO [M + Na]⁺ 183.0780, found 183.0781; IR (ν /cm⁻¹): 1712, 1604, 1242, 764.

3,3,6-Trimethyl-1-indanone (8b). The general procedure was followed using **6b** (34.1 mg, 0.196 mmol), RhCl(PPh₃)₃ (9.3 mg, 10 μ mol), benzoic acid (12.5 mg, 0.102 mmol), 2-

¹ L.-Q. Cui, K. Liu and C. Zhang, Org. Biomol. Chem., 2011, 9, 2258.

amino-3-picoline (**7b**, 26.0 mg, 0.240 mmol) and *p*-xylene (2.0 mL) for 12 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 12:1, twice) yielded **8b** (25.2 mg, 0.145 mmol, 74%) as a yellow oil. The reaction of **6b** (34.8 mg, 0.200 mmol) employing 2-aminopyridine (**7a**) afforded **8b** (22.5 mg, 0.129 mmol) in 65% yield. ¹H NMR (CDCl₃, 500 MHz) δ 1.40 (s, 6H), 2.40 (s, 3H), 2.58 (s, 2H), 7.37–7.40 (m, 1H), 7.42–7.45 (m, 1H), 7.49–7.51 (m, 1H); ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 20.5, 29.7, 37.9, 52.5, 122.4, 123.7, 135.0, 136.1, 137.0, 161.1, 204.9; HRMS (ESI) calcd for C₁₂H₁₄NaO [M + Na]⁺ 197.0937, found 197.0937; IR (*v*/cm⁻¹): 2962, 1712, 1288.

6-Chloro-3,3-dimethyl-1-indanone (8c). The general procedure was followed using 6c (38.3 mg, 0.197 mmol), RhCl(PPh₃)₃ (9.3 mg, 10 μmol), benzoic acid (12.3 mg, 0.101 mmol), 2-amino-3-picoline (7b, 25.3 mg, 0.234 mmol) and *p*-xylene (2.0 mL) for 13 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1, twice) yielded 8c (29.1 mg, 0.149 mmol, 76%) as a yellow solid. The reaction of 6c (30.2 mg, 0.155 mmol) employing 2-aminopyridine (7a) afforded 8c (22.0 mg, 0.113 mmol) in 73% yield. Mp 123–127 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.41 (s, 6H), 2.60 (s, 2H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.55 (dd, *J* = 8.0, 2.5 Hz, 1H), 7.63 (d, *J* = 1.5 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.8, 38.4, 53.0, 123.1, 124.9, 133.8, 134.9, 136.8, 161.8, 204.3; HRMS (ESI) calcd for C₁₁H₁₁ClNaO [M + Na]⁺ 217.0391, found 217.0392; IR (ν/cm⁻¹): 1705, 1466, 1242.

3,3,5-Trimethyl-1-indanone (8d). The general procedure was followed using **6d** (34.8 mg, 0.200 mmol), RhCl(PPh₃)₃ (9.3 mg, 10 μ mol), benzoic acid (12.3 mg, 0.101 mmol), 2amino-3-picoline (**7b**, 25.9 mg, 0.239 mmol) and *p*-xylene (2.0 mL) for 15.5 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1, thrice) yielded **8d** (26.8 mg, 0.154 mmol, 77%) as a yellow oil. The reaction of **6c** (34.7 mg, 0.199 mmol) employing 2aminopyridine (**7a**) afforded **8c** (17.6 mg, 0.101 mmol) in 51% yield. ¹H NMR (CDCl₃, 500 MHz) δ 1.41 (s, 6H), 2.46 (s, 3H), 2.57 (s, 2H), 7.17 (d, *J* = 8.5 Hz, 1H), 7.26–7.29 (m, 1H), 7.59 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 22.2, 29.9, 38.3, 53.1, 123.1, 123.8, 128.6, 133.0, 146.0, 164.3, 205.4; HRMS (ESI) calcd for C₁₂H₁₄NaO [M + Na]⁺ 197.0937, found 197.0938; IR (*v*/cm⁻¹): 2962, 1712, 1604.

5-Bromo-3,3-dimethyl-1-indanone (8e). The general procedure was followed using **6e** (36.0 mg, 0.151 mmol), RhCl(PPh₃)₃ (6.9 mg, 7.5 μmol), benzoic acid (9.5 mg, 0.078 mmol), 2-aminopyridine (**7a**, 17.2 mg, 0.183 mmol) and *p*-xylene (1.5 mL) for 20 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 7:1) yielded **8e** (25.4 mg, 0.106 mmol, 71%) as a yellow solid. The reaction of **6e** (47.8 mg, 0.200 mmol) employing 2-amino-3-picoline (**7b**) afforded **8e** (29.3 mg, 0.123 mmol) in 61% yield. Mp 104–110 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.41 (s, 6H), 2.58 (s, 2H), 7.50 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 1.5 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.8, 38.6, 52.8, 124.7, 127.1, 130.2,

131.0, 134.1, 165.3, 204.5; HRMS (ESI) calcd for $C_{11}H_{11}BrNaO [M + Na]^+$ 260.9885, found 260.9885; IR (ν /cm⁻¹): 1705, 1589, 1242, 802.

3,3,4-Trimethyl-1-indanone (8f). The general procedure was followed using **6f** (34.9 mg, 0.200 mmol), RhCl(PPh₃)₃ (9.3 mg, 10 μ mol), benzoic acid (12.0 mg, 0.098 mmol), 2amino-3-picoline (**7b**, 26.0 mg, 0.240 mmol) and *p*-xylene (2.0 mL) for 20 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1, twice) yielded **8f** (14.0 mg, 0.080 mmol, 40%) as a yellow solid. The reaction of **6f** (34.6 mg, 0.199 mmol) employing 2aminopyridine (**7a**) afforded **8f** (9.8 mg, 0.056 mmol) in 28% yield. Mp 47–51 °C; ¹H NMR (CDCl₃, 500 MHz) δ 1.52 (s, 6H), 2.52 (s, 3H), 2.61 (s, 2H), 7.26 (t, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 19.6, 28.0, 39.8, 54.7, 121.4, 127.7, 135.4, 136.3, 137.7, 159.9, 206.2; HRMS (ESI) calcd for C₁₂H₁₄NaO [M + Na]⁺ 197.0937, found 197.0936; IR (*v*/cm⁻¹): 1705, 1281, 795.

3-Methyl-3-phenyl-1-indanone (8g). The general procedure was followed using **6g** (44.6 mg, 0.201 mmol), RhCl(PPh₃)₃ (9.3 mg, 10 μ mol), benzoic acid (12.7 mg, 0.104 mmol), 2-amino-3-picoline (**7b**, 26.3 mg, 0.243 mmol) and *p*-xylene (2.0 mL) for 13.5 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1, twice) yielded **8g** (29.4 mg, 0.132 mmol, 66%) as a yellow oil. The reaction of **6g** (44.5 mg, 0.200 mmol) employing 2-

aminopyridine (**7a**) afforded **8g** (23.2 mg, 0.104 mmol) in 52% yield. ¹H NMR (CDCl₃, 500 MHz) δ 1.84 (s, 3H), 2.88 (d, *J* = 19.0 Hz, 1H), 3.00 (d, *J* = 19.5 Hz, 1H), 7.17–7.23 (m, 3H), 7.26–7.31 (m, 3H), 7.40–7.45 (m, 1H), 7.58–7.62 (m, 1H), 7.77–7.81 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 28.3, 46.0, 55.7, 123.3, 125.6, 126.2, 126.4, 127.7, 128.5, 135.2, 135.7, 147.3, 162.8, 205.8. The spectral data matched those reported in the literature.² IR (*v*/cm⁻¹): 1712, 1597, 1234, 764, 702.

3-Benzyl-3-methyl-1-tetralone (8h). The general procedure was followed using **6h** (50.1 mg, 0.200 mmol), RhCl(PPh₃)₃ (9.3 mg, 10 μ mol), benzoic acid (12.3 mg, 0.101 mmol), 2-amino-3-picoline (**7b**, 25.8 mg, 0.239 mmol) and *p*-xylene (2.0 mL) for 11 h. Purification by preparative TLC on silica gel (hexane:AcOEt = 10:1) yielded **8h** (38.3 mg, 0.153 mmol, 76%) as a yellow oil. The reaction of **6h** (30.2 mg, 0.121 mmol) employing 2-aminopyridine (**7a**) afforded **8h** (12.5 mg, 0.050 mmol) in 41% yield. ¹H NMR (CDCl₃, 500 MHz) δ 1.03 (s, 3H), 2.50 (dd, *J* = 16.5, 1.5 Hz, 1H), 2.60 (d, *J* = 16.5 Hz, 1H), 2.63–2.71 (m, 2H), 2.77 (d, *J* = 16.0 Hz, 1H), 2.95 (d, *J* = 16.0 Hz, 1H), 7.06–7.10 (m, 2H), 7.21–7.34 (m, 5H), 7.48–7.53 (m, 1H), 8.02–8.05 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 25.3, 37.5, 41.1, 46.8, 50.8, 126.4, 126.6, 126.7, 128.0, 129.4, 130.5, 131.9, 133.8, 137.3, 142.3, 198.2; HRMS (ESI) calcd for C₁₈H₁₈NaO [M + Na]⁺ 273.1250, found 273.1251; IR (ν /cm⁻¹): 1682, 1604, 1288, 756.

² T. Matsuda, M. Shigeno, M. Makino and M. Murakami, Org. Lett., 2006, 8, 3379.

1a

1b

1c

6b

6c

6e

6f

2a

3a

2a-*d*₅

2b

c

2e

2i

m

2n

p

8a

8b

8c

8d

e

8f

8g

8h