Nickel-Catalyzed Direct Thiolation of Unactivated C(sp³)–H Bonds with Disulfides

Sheng-Yi Yan,[‡] Yue-Jin Liu,[‡] Bin Liu, Yan-Hua Liu, Zhuo-Zhuo Zhang, Bing-Feng Shi^{*}

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Supporting Information

Table of Contents:

1. General information	S2
2. Experimental Section	S2
2.1 Preparation of substrate	S2
2.2 Optimization of Reaction Conditions	S5
2.4 General Procedure for the Thiolation	S 8
2.5 Mechanistic Investigation	S19
3. References	S20
4. Spectra	S21

1. General Information

All the materials and solvents were purchased from commercial suppliers, such as Adamas-beta[®], Energy Chemical, TCI etc and used without additional purification. NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, using TMS as internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal (77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or a low-resolution MS instrument using EI ionization.

2. Experimental Section

2.1 Preparation of Substrates

Compounds 1a-1b, 1d, 1i-1k, 1m-1o were known compounds.^[1] Compounds 1c, 1e, 1f, 1h, 1l were prepared according to the following procedures.

General Procedure for the Preparation of Starting Materials 1

To a solution of LDA (10 mL, 2 M in THF) in THF (10 mL) was added the acid (10 mmol) dropwise at 0 °C, then the reaction mixture was refluxed for 2 h. After cooling to room temperature, the according alkyl iodide (30 mmol) was added dropwise, then it was refluxed overnight. Then the reaction solution was diluted with water and washed with ethyl acetate, the aqueous phase was then acidified with 2 M HCl to pH \approx 2 and extracted with ethyl acetate three times, the combined organic phase was then dried with anhydrous magnesium sulfate. After concentrating, it was dissolved in CH₂Cl₂ (ca. 30 mL), then DMF (0.2 mL) was added following by (COCl)₂ (20 mmol) dropwise at 0 °C, the reaction mixture was then stirred at room temperature for another 5 h . After that the solution was evaporated in vacuum, then anhydrous CH₂Cl₂ (40 mL) was added following by adding the CH₂Cl₂ solution of

8-aminoquinoline (1.73 g, 12 mmol), Et₃N (1.38 mL, 10 mmol) and DMAP (6.1 mg, 0.05 mmol) dropwise in ice bath. Then it was stirred at room temperature overnight, washed with water and dried with anhydrous magnesium sulfate. After concentrating, the residue was purified by flash column chromatography to afford corresponding 8-aminoquinoline amide **1**.

2,5-dimethyl-2-phenyl-N-(quinolin-8-yl)hexanamide 1c

¹**H NMR** (400 MHz, CDCl₃) δ 9.86 (br, 1H), 8.76 (d, *J* = 7.6 Hz, 1H), 8.60 (d, *J* = 2.8 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.53 - 7.49 (m, 3H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.41 - 7.34 (m, 3H), 7.29 (d, *J* = 7.2 Hz, 1H), 2.25 (td, *J* = 13.2, 4.4 Hz, 1H), 2.15 (td, *J* = 12.4, 4.4 Hz,, 1H), 1.74 (s, 3H), 1.62 - 1.60 (m, 1H), 1.55 - 1.52 (m, 1H), 1.15 - 1.06 (m, 1H), 0.88 (dd, *J* = 6.4, 4.8 Hz, 6H); ¹³C **NMR** (100 MHz, CDCl₃) δ 175.57, 148.16, 144.26, 138.77, 136.13, 134.83, 128.80, 127.92, 127.41, 126.96, 126.84, 121.50, 121.27, 116.06, 51.94, 37.03, 33.55, 28.73, 23.68, 22.70, 22.68.

2-methyl-2-phenyl-N-(quinolin-8-yl)tetradecanamide 1e

¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (br, 1H), 8.76 (d, *J* = 7.6 Hz, 1H), 8.60 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.08 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.53 – 7.49 (m, 3H), 7.44 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.29 (d, *J* = 7.6 Hz, 1H), 2.27 – 2.20 (m, 1H), 2.16 – 2.09 (m, 1H), 1.74 (s, 3H), 1.32 – 1.25 (m, 20H), 0.87 (t, *J* = 6.4 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 175.51, 148.14, 144.33, 138.76, 136.11, 134.83, 128.78, 127.91, 127.41, 126.94, 126.80, 121.47, 121.24, 116.06, 52.04, 39.23, 32.01, 30.34, 29.73, 29.54, 29.44, 24.65, 23.75, 22.79, 14.23.

2-methyl-2-phenyl-N-(quinolin-8-yl)pent-4-enamide 1f

¹**H NMR** (400 MHz, CDCl₃) δ 9.86 (br, 1H), 8.76 (d, *J* = 7.2 Hz, 1H), 8.60 (d, *J* = 3.6 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.53 - 7.49 (m, 3H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.41 - 7.34 (m, 3H), 7.30 (t, *J* = 7.2 Hz, 1H), 5.72 - 5.62 (m, 1H), 5.13 (d, *J* = 16.8 Hz, 1H), 5.05 (d, *J* = 10.0 Hz, 1H), 3.01 (dd, *J* = 14.0, 7.6 Hz, 1H), 2.91 (dd, *J* = 14.0, 6.4 Hz, 1H), 1.76 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 174.94, 148.20, 143.43, 138.73, 136.15, 134.73, 134.26, 128.86, 127.91, 127.39, 127.18, 126.89, 121.52, 121.38, 118.60, 116.10, 51.61, 43.85, 23.51.

1-methyl-N-(quinolin-8-yl)cyclopropanecarboxamide 1h

¹H NMR (400 MHz, CDCl₃) δ 10.38 (br, 1H), 8.83 (d, J = 4.0 Hz, 1H), 8.75 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.55 - 7.44 (m, 3H), 1.65 (s, 3H), 1.39 (dd, J = 5.6, 4.0 Hz, 2H), 0.75 (q, J = 3.6 Hz, 2H);
¹³C NMR (100 MHz, CDCl₃) δ 173.77, 148.28, 138.71, 136.34, 134.78, 128.00, 127.49, 121.60, 121.26, 116.20, 20.70, 19.89, 16.86.

2-ethyl-2-methyl-N-(quinolin-8-yl)hexanamide 11

¹H NMR (400 MHz, CDCl₃) δ 10.23 (br, 1H), 8.82 (d, J = 6.0 Hz, 2H), 8.16 (d, J = 8.4 Hz, 1H),
7.55 - 7.43 (m, 3H), 1.94 - 1.80 (m, 2H), 1.68 - 1.63 (m, 1H), 1.58 - 1.52 (m, 1H), 1.37 - 1.31 (m,
7H), 0.94 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.89,

148.07, 138.64, 136.08, 134.54, 127.79, 127.25, 121.38, 121.03, 115.99, 47.46, 39.66, 32.84, 26.70, 23.22, 20.61, 13.90, 8.90.

	N ^Q + PhSSPh	[Ni] (10 mol%), BIN	IOL (20 mol%)	N ^Q
\	Н	Base (2.0 equiv),	Additive	Н
1 a	2a	DMSO, N ₂ , 140	⊃°C	SPh 3a
Entry	[Ni]	Base	Additive (equiv)	Yield ^b
1	NiCl ₂ ·6H ₂ O	KTFA		24%
2	Ni(acac) ₂	KTFA		19%
3	Ni(OTf) ₂	KTFA		20%
4	NiI ₂	KTFA		24%
5	NiCl ₂	KTFA		23%
6	(dppp) NiCl ₂	KTFA		27%
7	(dppp) NiCl ₂	KTFA	$Cu(OAc)_2(2.0)$	trace
8	(dppp) NiCl ₂	KTFA	$CuF_{2}(2.0)$	N.R
9	(dppp) NiCl ₂	KTFA	CuO (2.0)	42%
10	(dppp) NiCl ₂	KTFA	Cu(OH) ₂ (2.0)	40%
11	(dppp) NiCl ₂	KTFA	Cu(OH) ₂ CO ₃ (2.0)	45%
12	(dppp) NiCl ₂	KTFA	Ag ₂ O (2.0)	37%
13	(dppp) NiCl ₂	KTFA	Ag ₂ CO ₃ (2.0)	20%
14	(dppp) NiCl ₂	KTFA	Ag ₂ O (1.0)	56% (53% ^c)
15	(dppp) NiCl ₂	Na ₂ CO ₃	Ag ₂ O (1.0)	39%
16	(dppp) NiCl ₂	NaHCO ₃	Ag ₂ O (1.0)	23%
17	(dppp) NiCl ₂	K_2CO_3	Ag ₂ O (1.0)	20%
18	(dppp) NiCl ₂	NaOAc	Ag ₂ O (1.0)	17%
19	(dppp) NiCl ₂	NaTFA	Ag ₂ O (1.0)	44%
20	(dppp) NiCl ₂	LiTFA	Ag ₂ O (1.0)	35%
21		KTFA	Ag ₂ O (1.0)	N.R

2.3 Optimization of Reaction Conditions^a

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.2 mmol), DMSO (1 mL), 140 °C, N₂, 12 h. ^{*b*}¹H NMR yield using CH₂Br₂ as the internal standard. ^{*c*}Isolated yield in parenthesis.

Additional condition screening

Table S1. Screening of Catalyst^a

O N ^Q		[Ni] (10 mol%) BINOL (20 mol%), KTFA (2.0 equiv)	O N ^Q	
↓ H	+ 1133111	DMSO, N ₂ , 140 °C	SPh	
l 1a	2a		3a	
Entry		[Ni] (10 mol%)	Yield ^b	
1		NiCl ₂ ·6H ₂ O	24%	
2		Ni(acac) ₂	19%	
3		Ni(OTf) ₂	20%	
4		NiI ₂	24%	
5		NiCl ₂	23%	
6		(dppp) NiCl ₂	27%	
7		(PPh ₃) ₂ NiCl ₂	23%	
8		Ni(ClO ₄) ₂ ·6H ₂ O	22%	
9		NiBr ₂	20%	

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.2 mmol), BINOL (0.02 mmol), KTFA (0.2 mmol), DMSO (1 mL), 140 °C, N₂, 12 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard.

Table S2. Screening of Ligand^a

O N ^Q	+ PhSSPh	Nil ₂ (10 mol%) L (20 mol%), KTFA (2.0 equiv) ➤	O N ^Q
	0-	DMSO, N ₂ , 140 °C	SPh
1a	Za		3a
Entry		L (20 mol%)	Yield ^b
1		dppe	15%
2		dppp	13%
3		dppb	13%
4		dppbz	19%
5		1,10-Phen	8%
6		BINAP	10%
7		DME	17%
8		BDMAE	15%
9		TMEDA	12%
10		MesCOOH	18%
11		PhCOOH	10%
12		AdCOOH	17%
13		Boc-Ile-OH	10%
14		Boc-Pro-OH	20%
15		Boc-Gly-OH	14%
16		BINOL	24%

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.2 mmol), NiI₂ (0.01 mmol), KTFA (0.2 mmol), DMSO (1 mL), 140 °C, N₂, 12 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard.

2

0

Omega Nil2 (10 mol%), BINOL (20 mol%) VITEA (2.0 mol%), A Litting (2.0 mol%)

	KTFA (2.0 equiv), Additive (2.0 equiv)	Q
H + PhSSPr 1a 2a	DMSO, N ₂ , 140 °C	H SPh 3a
Entry	Additive (2.0 equiv)	Yield ^b
1	Mn(OAc) ₂	trace
2	MnO ₂	26%
3	$Ce(NH_4)_2(NO_3)_2$	N.R
4	Fe ₂ O ₃	34%
5	PhI(OAc) ₂	N.R
6	CrO ₃	N.R
7	$ZnCl_2$	30%
8	Zn(OAc) ₂	35%
9	Cu(OAc) ₂	trace
10	Cu ₂ O	31%
11	CuO	36%
12	Cu(OH) ₂	37%
13	Cu(OH) ₂ CO ₃ (2.0)	42%

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.2 mmol), NiI₂ (0.01 mmol), BINOL (0.02 mmol), KTFA (0.2 mmol), DMSO (1 mL), 140 °C, N₂, 12 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard.

Table S4. Screening of Additive with (dppp)NiCl₂^{*a*}

0	(dppp)NiCl ₂ (10 mol%), BINOL (20 mol%)		
Q N/Q		KTFA (2.0 equiv), Additive	Q A
Ĥ	+ PhSSPh	DMSO, N ₂ , 140 °C	SPh
1a	2a		3a
Entry		Additive (equiv)	Yield ^b
1		$Cu(OAc)_2(2.0)$	trace
2		$CuF_2(2.0)$	N.R
3		CuO (2.0)	42%
4		Cu(OH) ₂ (2.0)	40%
5		Cu(OH) ₂ CO ₃ (2.0)	45%

6	Ag ₂ CO ₃ (2.0)	20%	
7	Ag ₂ O (2.0)	37%	
8	Ag ₂ O (1.5)	45%	
9	Ag ₂ O (1.0)	56%	
10	Ag ₂ O (0.5)	47%	

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.2 mmol), (dppp)NiCl₂ (0.01 mmol), BINOL (0.02 mmol), KTFA (0.2 mmol), DMSO (1 mL), 140 °C, N₂, 12 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard.

Table S5. Screening of Base^a

(dppp)NiCl ₂ (10 mol%), BINOL (20 mol%)			
N ^Q . PhS	Base (2.0 equiv), Ag ₂ O (1.0 eq		
✓ H + FII3.	DMSO, N ₂ , 140 °C	H SPh	
1a 2a	I	3a	
Entry	Base (2.0 equiv)	Yield ^b	
1	KTFA	56%	
2	Na ₂ CO ₃	39%	
3	NaHCO ₃	23%	
4	K_2CO_3	20%	
5	NaOAc	17%	
6	NaTFA	44%	
7	LiTFA	35%	
8	Li ₂ CO ₃	20%	
9	K ₃ PO ₄ (1.0 equiv)	trace	

^{*a*} Reactions were carried out by using **1a** (0.1 mmol), **2a** (0.2 mmol), (dppp)NiCl₂ (0.01 mmol), BINOL (0.02 mmol), DMSO (1 mL), 140 °C, N₂, 12 h. ^{*b*1}H NMR yield using CH₂Br₂ as the internal standard.

2.3 General Procedure for the Thiolation

To a 50 mL Schlenk tube was added substrate (0.1 mmol), RSSR (0.2 mmol), BINOL (5.7 mg, 0.02 mmol), Ag₂O (23.2 mg, 0.1 mmol), KTFA (30.4 mg, 0.2 mmol), (dppp)NiCl₂ (5.4 mg, 0.01 mmol) and DMSO (1 mL). The vial was evacuated and filled with N₂ (1 atm), and stirred at 140 °C for 12 h. The mixture was then cooled to

room temperature, diluted with ethyl acetate (3×20 mL), filtrated through ceilt and washed with water and brine. The combined phase was then dried with anhydrous magnesium sulfate. After concentration, the resulting residue was purified by preparative TLC using hexane/EtOAc as the eluent to afford the product.

2-phenyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)hexanamide 3a

¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (br, 1H), 8.72 (d, J = 7.6 Hz, 1H), 8.58 (dd, J = 4.0, 1.6 Hz, 1H), 8.07 (dd, J = 8.4, 1.6 Hz, 1H), 7.53 – 7.43 (m, 4H), 7.37 – 7.33 (m, 3H), 7.29 – 7.26 (m, 3H), 7.15 (t, J = 7.2 Hz, 2H), 7.09 - 7.06 (m, 1H), 3.85 (d, J = 12.4 Hz, 1H), 3.77 (d, J = 12.8 Hz, 1H), 2.52 – 2.45 (m, 1H), 2.36 – 2.28 (m, 1H), 1.33 - 1.28 (m, 4H), 0.83 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.60, 148.30, 141.76, 138.77, 137.24, 136.19, 134.58, 130.13, 128.83, 128.79, 127.98, 127.61, 127.42, 127.34, 126.10, 121.60, 121.49, 116.27, 56.03, 41.81, 34.84, 26.60, 23.28, 14.01; **HRMS** (EI-TOF) calcd for C₂₈H₂₈N₂OS (M⁺): 440.1922, found: 440.1920.

2-phenyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)butanamide 3b

¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (br, 1H), 8.73 (d, *J* = 7.6 Hz, 1H), 8.59 – 8.58 (m, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.49 (m, 3H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.33 (m, 3H), 7.29 - 7.27 (m, 3H), 7.14 (t, *J* = 7.6 Hz, 2H), 7.07 (t, *J* = 7.2 Hz, 1H), 3.85 (d, *J* = 12.8 Hz, 1H), 3.77 (d, *J* = 12.8 Hz, 1H), 2.59 - 2.50 (m, 1H), 2.46 - 2.38

(m, 1H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.45, 148.31, 141.53, 138.75, 137.19, 136.20, 134.57, 130.08, 128.84, 128.80, 127.98, 127.64, 127.40, 126.09, 121.59, 121.49, 116.25, 56.38, 41.13, 27.90, 8.97; **HRMS** (EI-TOF) calcd for C₂₆H₂₄N₂OS (M⁺): 412.1609, found: 412.1605.

5-methyl-2-phenyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)hexanamide 3c

¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (br, 1H), 8.71 (d, J = 7.6 Hz, 1H), 8.58 – 8.57 (m, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.52 -7.49 (m, 3H), 7.44 (d, J = 8.0 Hz, 1H), 7.37 – 7.33 (m, 3H), 7.28 -7.25 (m, 3H), 7.15 (t, J = 8.0 Hz, 2H), 7.09 - 7.06 (m, 1H), 3.83 (d, J = 12.8 Hz, 1H), 3.77 (d, J = 12.8 Hz, 1H), 2.53 – 2.46 (m, 1H), 2.37 – 2.30 (m, 1H), 1.55 – 1.48 (m, 1H), 1.23 – 1.16 (m, 2H), 0.84 (d, J = 6.4 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.58, 148.27, 141.80, 138.76, 137.25, 136.17, 134.57, 130.16, 128.82, 128.79, 127.97, 127.59, 127.41, 127.31, 126.10, 121.59, 121.48, 116.28, 55.97, 41.76, 33.20, 32.83, 28.63, 22.63, 22.58; **HRMS** (EI-TOF) calcd for C₂₉H₃₀N₂OS (M⁺): 454.2079, found: 454.2079.

2-phenyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)octanamide 3d

¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (br, 1H), 8.72 (d, *J* = 7.6 Hz, 1H), 8.58 – 8.57 (m, 1H), 8.07 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.52 – 7.49 (m, 3H), 7.45 – 7.43 (m, 1H), 7.37 – 7.32 (m, 3H), 7.28 – 7.25 (m, 3H), 7.15 (t, *J* = 7.6 Hz, 2H), 7.07 (t, *J* = 7.6 Hz, 1H), 3.85 (d, *J* = 12.6 Hz, 1H), 3.77 (d, *J* = 12.8 Hz, 1H), 2.50 – 2.46 (m, 1H), 2.34 – 2.30

(m, 1H), 1.29 -1.26 (m, 4H), 1.19 (d, J = 3.5 Hz, 4H), 0.78 - 0.77 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.60, 148.28, 141.77, 138.76, 137.25, 136.18, 134.57, 130.15, 128.82, 128.79, 127.97, 127.59, 127.41, 127.32, 126.10, 121.58, 121.47, 116.26, 56.07, 41.83, 35.02, 31.62, 29.83, 24.36, 22.69, 14.12; **HRMS** (EI-TOF) calcd for C₃₀H₃₂N₂OS (M⁺): 468.2235, found: 468.2235.

2-phenyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)tetradecanamide 3e

¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (br, 1H), 8.72 (d, J = 6.8 Hz, 1H), 8.58 (d, J = 2.4 Hz, 1H), 8.07 (dd, J = 8.0, 1.2 Hz, 1H), 7.53 – 7.44 (m, 4H), 7.37 -7.33 (m, 3H), 7.29 -7.25 (m, 3H), 7.15 (t, J = 7.2 Hz, 2H), 7.08 (t, J = 7.2 Hz, 1H), 3.84 (d, J = 12.8 Hz, 1H), 3.77 (d, J = 12.8 Hz, 1H), 2.55 – 2.46 (m, 1H), 2.33 – 2.30 (m, 1H), 1.28 (s, 5H), 1.21 -1.15 (m, 15H), 0.87 (t, J = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.61, 148.28, 141.77, 138.76, 137.26, 136.18, 134.58, 130.14, 128.82, 128.79, 127.97, 127.60, 127.42, 127.33, 126.10, 121.58, 121.47, 116.26, 56.07, 41.81, 34.97, 32.04, 30.13, 29.74, 29.71, 29.66, 29.46, 29.40, 24.35, 22.82, 14.26; **HRMS** (EI-TOF) calcd for C₃₆H₄₄N₂OS (M⁺): 552.3174, found: 552.3170.

2-phenyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)pent-4-enamide 3f

¹**H NMR** (400 MHz, CDCl₃) δ 9.87 (br, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.58 (d, J = 2.8 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.52 – 7.44 (m, 4H), 7.40 – 7.33 (m, 3H), 7.31 – 7.27 (m, 3H), 7.11 (t, J = 7.2 Hz, 2H), 7.05 (t, J = 7.2 Hz, 1H), 5.73 - 5.63 (m, 1H), 5.15 (d, J = 16.8 Hz, 1H), 5.08 (d, J = 10.0 Hz, 1H), 3.79 (s, 2H), 3.24 (dd, J = 14.0, 7.2 Hz, 1H), 3.15 (dd, J = 13.6, 7.2 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 172.81,

148.29, 140.99, 138.75, 136.98, 136.19, 134.48, 132.90, 130.36, 128.91, 128.76, 127.97, 127.77, 127.41, 127.35, 126.17, 121.59, 121.55, 119.84, 116.33, 55.97, 41.72, 39.69; **HRMS** (EI-TOF) calcd for C₂₇H₂₄N₂OS (M⁺): 424.1609, found: 424.1608.

2-benzyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)butanamide 3g

¹**H NMR** (400 MHz, CDCl₃) δ 10.27 (br, 1H), 8.74 (d, J = 4.4 Hz, 2H), 8.15 (d, J = 8.0 Hz, 1H), 7.52 (q, J = 8.2 Hz, 2H), 7.44 – 7.39 (m, 3H), 7.23 - 7.09 (m, 8H), 3.39 (d, J = 12.0 Hz, 1H), 3.30 – 3.21 (m, 3H), 1.97 (q, J = 7.2 Hz, 2H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 173.08, 148.37, 138.90, 136.91, 136.36, 134.28, 130.24, 130.10, 128.93, 128.34, 128.04, 127.57, 126.81, 126.21, 121.68, 121.57, 116.59, 53.24, 41.20, 38.74, 28.31, 8.93; **HRMS** (EI-TOF) calcd for C₂₇H₂₆N₂OS (M⁺): 426.1766, found: 426.1760.

1-((phenylthio)methyl)-N-(quinolin-8-yl)cyclopropanecarboxamide 3h

¹**H NMR** (400 MHz, CDCl₃) δ 10.80 (br, 1H), 8.76 (dd, J = 6.8, 1.2 Hz, 1H), 8.72 (dd, J = 4.0, 0.8 Hz 1H), 8.15 (d, J = 7.2 Hz, 1H), 7.59 - 7.48 (m, 4H), 7.43 (dd, J = 8.4, 4.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 7.6 Hz, 1H), 3.49 (s, 2H), 1.49 (dd, J = 6.8, 4.4 Hz, 2H), 0.94 (dd, J = 6.8, 4.0 Hz, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 171.46, 148.29, 138.89, 136.37, 136.09, 134.95, 131.32, 129.12, 128.10, 127.56, 127.05, 121.68, 121.51, 116.60, 40.87, 25.19, 16.39; **HRMS** (EI-TOF) calcd for C₂₀H₁₈N₂OS (M⁺): 334.1140, found: 334.1138.

1-((phenylthio)methyl)-N-(quinolin-8-yl)cyclopentanecarboxamide 3i

¹H NMR (400 MHz, CDCl₃) δ 10.30 (br, 1H), 8.80 (d, J = 2.8 Hz, 1H), 8.71 (dd, J = 7.8, 2.0 Hz, 1H), 8.15 (dd, J = 8.0, 0.8 Hz, 1H), 7.52 – 7.43 (m, 3H), 7.35 (d, J = 7.6 Hz, 2H), 7.10 (t, J = 7.2 Hz, 2H), 7.03 (t, J = 7.2 Hz, 1H), 3.43 (s, 2H), 2.37 – 2.34 (m, 2H), 1.97 – 1.93 (m, 2H), 1.86 - 1.82 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 174.55, 148.33, 138.92, 136.93, 136.37, 134.62, 130.13, 128.81, 128.02, 127.53, 126.15, 121.63, 121.43, 116.52, 57.11, 43.73, 36.12, 24.86; **HRMS** (EI-TOF) calcd for C₂₂H₂₂N₂OS (M⁺): 362.1453, found: 362.1452.

1-((phenylthio)methyl)-N-(quinolin-8-yl)cyclohexanecarboxamide 3j

¹**H NMR** (400 MHz, CDCl₃) δ 10.40 (br, 1H), 8.82 (dd, J = 4.0, 1.2 Hz, 1H), 8.71 (dd, J = 5.6, 2.8 Hz, 1H), 8.15 (dd, J = 8.4, 1.2 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.30 (d, J = 7.2 Hz, 2H), 7.06 (t, J = 7.2 Hz, 2H), 7.00 (t, J = 7.2 Hz, 1H), 3.32 (s, 2H), 2.33 (d, J = 10.4 Hz, 2H), 1.73 – 1.58 (m, 7H), 1.43 – 1.34 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.54, 148.36, 139.03, 136.87, 136.34, 134.51, 130.12, 128.74, 128.02, 127.52, 126.06, 121.62, 121.44, 116.60, 49.25, 44.74, 33.95, 25.89, 22.99; **HRMS** (EI-TOF) calcd for C₂₃H₂₄N₂OS (M⁺): 376.1609, found: 376.1608.

2-ethyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)butanamide 3k

¹H NMR (400 MHz, CDCl₃) δ 10.33 (br, 1H), 8.81 (d, J = 2.8 Hz, 1H), 8.76 (dd, J = 6.8, 1.6 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.54 – 7.40 (m, 5H), 7.20 (t, J = 7.2 Hz, 2H), 7.11 (t, J = 7.2 Hz, 1H), 3.41 (s, 2H), 2.06 – 1.87 (m, 4H), 0.93 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.96, 148.41, 138.95, 137.09, 136.42, 134.49, 130.15, 128.90, 128.07, 127.57, 126.17, 121.69, 121.49, 116.52, 52.18, 38.73, 28.13, 8.73; HRMS (EI-TOF) calcd for C₂₂H₂₄N₂OS (M⁺): 364.1609, found: 364.1608.

2-ethyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)hexanamide 31

¹**H NMR** (400 MHz, CDCl₃) δ 10.33 (br, 1H), 8.82 – 8.81 (m, 1H), 8.75 (d, J = 6.8 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.54 – 7.41 (m, 5H), 7.20 (t, J = 7.2 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 3.45 – 3.38 (m, 2H), 2.05 - 1.88 (m, 3H), 1.84 – 1.78 (m, 1H), 1.41 - 1.28 (m, 4H), 0.92 (t, J = 7.6 Hz, 3H), 0.84 (t, J = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 174.11, 148.40, 138.96, 137.15, 136.41, 134.51, 130.17, 128.90, 128.07, 127.57, 126.17, 121.70, 121.47, 116.52, 51.87, 39.02, 35.47, 28.58, 26.45, 23.26, 14.03, 8.72; **HRMS** (EI-TOF) calcd for C₂₄H₂₈N₂OS (M⁺): 392.1922, found: 392.1919.

2-ethyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)octanamide 3m

¹**H NMR** (400 MHz, CDCl₃) δ 10.32 (br, 1H), 8.81 (d, J = 2.4 Hz, 1H), 8.75 (dd, J = 6.8, 1.6 Hz, 1H), 8.16 (dd, J = 8.0, 0.4 Hz, 1H), 7.54 – 7.41 (m, 5H), 7.20 (t, J = 7.2 Hz, 2H), 7.11 (t, J = 7.2 Hz, 1H), 3.45 – 3.37 (m, 2H), 2.06 – 1.78 (m, 4H), 1.27 – 1.21 (m, 8H), 0.92 (t, J = 7.2 Hz, 3H), 0.82 - 0.79 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 174.12, 148.39, 138.96, 137.17, 136.41, 134.51, 130.19, 128.90, 128.07,

127.57, 126.18, 121.69, 121.46, 116.52, 51.91, 39.03, 35.71, 31.70, 29.83, 28.63, 24.24, 22.72, 14.16, 8.74; **HRMS** (EI-TOF) calcd for $C_{26}H_{32}N_2OS$ (M⁺): 420.2235, found: 420.2240.

2-ethyl-5-methyl-2-((phenylthio)methyl)-*N*-(quinolin-8-yl)hexanamide 3n ¹H NMR (400 MHz, CDCl₃) δ 10.33 (br, 1H), 8.81 (d, *J* = 2.8 Hz, 1H), 8.74 (dd, *J* = 6.8, 1.2 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.54 – 7.41 (m, 5H), 7.20 (t, *J* = 7.2 Hz, 2H), 7.11 (t, *J* = 7.2 Hz, 1H), 3.43 (d, *J* = 12.8 Hz, 1H), 3.38 (d, *J* = 12.4 Hz, 1H), 2.07 – 1.78 (m, 4H), 1.53 - 1.45 (m, 1H), 1.23 – 1.10 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H), 0.85 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.10, 148.38, 138.96, 137.176, 136.40, 134.51, 130.18, 128.90, 128.07, 127.57, 126.16, 121.69, 121.45, 116.51, 51.81, 38.96, 33.47, 33.09, 28.60, 22.64, 22.59, 8.71; HRMS (EI-TOF) calcd for C₂₅H₃₀N₂OS (M⁺): 406.2079, found: 406.2083.

2-ethyl-2-((phenylthio)methyl)-N-(quinolin-8-yl)butanamide 30

¹**H NMR** (400 MHz, CDCl₃) δ 10.33 (br, 1H), 8.81 (d, J = 2.8 Hz, 1H), 8.76 (dd, J = 6.8, 1.6 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.54 – 7.40 (m, 5H), 7.20 (t, J = 7.2 Hz, 2H), 7.11 (t, J = 7.2 Hz, 1H), 3.41 (s, 2H), 2.06 – 1.87 (m, 4H), 0.93 (t, J = 7.2 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.96, 148.41, 138.95, 137.09, 136.42, 134.49, 130.15, 128.90, 128.07, 127.57, 126.17, 121.69, 121.49, 116.52, 52.18, 38.73, 28.13, 8.73; **HRMS** (EI-TOF) calcd for C₂₄H₂₈N₂OS (M⁺): 392.1922, found: 392.1920.

2-(((3-fluorophenyl)thio)methyl)-2-phenyl-N-(quinolin-8-yl)hexanamide 5a

¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (br, 1H), 8.72 (d, *J* = 7.2 Hz, 1H), 8.58 (d, *J* = 3.2 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.54 – 7.44 (m, 4H), 7.38 - 7.34 (m, 3H), 7.28 (d, *J* = 6.8 Hz, 1H), 7.12 - 7.06 (m, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.92 (d, *J* = 9.6 Hz, 1H), 6.75 (t, *J* = 7.6 Hz, 1H), 3.83 (d, *J* = 12.8 Hz, 1H), 3.77 (d, *J* = 12.4 Hz, 1H), 2.52 - 2.44 (m, 1H), 2.35 – 2.28 (m, 1H), 1.36 - 1.32 (m, 4H), 0.85 (t, *J* = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.42, 162.70 (d, *J* = 246.1 Hz), 148.33, 141.48, 139.69, 138.73, 136.20, 134.49, 129.94 (d, *J* = 8.6 Hz), 128.87, 127.97, 127.74, 127.40, 127.33, 125.14 (d, *J* = 3.0 Hz), 121.60 (d, *J* = 5.7 Hz), 116.33 (d, *J* = 23.0 Hz), 116.26, 112.87 (d, *J* = 21.0 Hz), 55.92, 41.50, 34.85, 26.60, 23.27, 14.00; **HRMS** (EI-TOF) calcd for C₂₈H₂₇FN₂OS (M⁺): 458.1828, found: 458.1826.

2-(((4-chlorophenyl)thio)methyl)-2-phenyl-N-(quinolin-8-yl)hexanamide 5b

¹**H NMR** (400 MHz, CDCl₃) δ 9.82 (br, 1H), 8.70 (d, J = 6.8 Hz, 1H), 8.58 (d, J = 2.8 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.53 -7.44 (m, 4H), 7.35 (t, J = 7.0 Hz, 3H), 7.28 (d, J = 7.2 Hz, 1H), 7.15 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 3.80 (d, J = 12.8 Hz, 1H), 3.74 (d, J = 12.8 Hz, 1H), 2.51 - 2.43 (m, 1H), 2.35 - 2.28 (m, 1H), 1.36 - 1.27 (m, 4H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 173.42, 148.30, 141.55, 138.72, 136.22, 135.69, 134.47, 132.12, 131.53, 128.86, 128.82, 127.97,

127.68, 127.40, 127.34, 121.62, 121.58, 116.26, 56.04, 42.26, 34.86, 26.58, 23.28, 14.01; **HRMS** (EI-TOF) calcd for C₂₈H₂₇ClN₂OS (M⁺): 474.1533, found: 474.1531.

2-phenyl-*N*-(quinolin-8-yl)-2-((p-tolylthio)methyl)hexanamide 5c

¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (br, 1H), 8.71 (d, *J* = 7.6 Hz, 1H), 8.58 (d, *J* = 2.8 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.52 – 7.48 (m, 3H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.38 -7.32 (m, 3H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 3.82 (d, *J* = 12.8 Hz, 1H), 3.74 (d, *J* = 12.8 Hz, 1H), 2.51 - 2.43 (m, 1H), 2.36 – 2.28 (m, 1H), 2.23 (s, 3H), 1.32 – 1.23 (m, 4H), 0.83 (t, *J* = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.59, 148.26, 141.88, 138.75, 136.25, 136.15, 134.59, 133.45, 130.87, 129.55, 128.80, 127.95, 127.52, 127.40, 127.32, 121.56, 121.43, 116.25, 56.10, 42.49, 34.84, 26.56, 23.28, 21.07, 14.01; **HRMS** (EI-TOF) calcd for C₂₉H₃₀N₂OS (M⁺): 454.2079, found: 454.2078.

2-(((4-methoxyphenyl)thio)methyl)-2-phenyl-N-(quinolin-8-yl)hexanamide 5d

¹**H NMR** (400 MHz, CDCl₃) δ 9.83 (br, 1H), 8.71 (d, *J* = 7.2 Hz, 1H), 8.59 (d, *J* = 2.8 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.52 – 7.43 (m, 4H), 7.37 - 7.33 (m, 3H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 8.4 Hz, 2H), 3.80 – 3.68 (m, 5H), 2.50 – 2.43 (m, 1H), 2.36 – 2.28 (m, 1H), 1.33 –1.29 (m, 2H), 1.26 – 1.22 (m, 2H),

0.84 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.61, 158.89, 148.26, 141.93, 138.75, 136.16, 134.61, 133.69, 128.77, 127.95, 127.48, 127.40, 127.35, 121.57, 121.40, 116.25, 114.42, 56.25, 55.40, 43.84, 34.84, 26.54, 23.30, 14.04; HRMS (EI-TOF) calcd for C₂₉H₃₀N₂O₂S (M⁺): 470.2028, found: 470.2026.

2-(((2-methylfuran-3-yl)thio)methyl)-2-phenyl-*N***-(quinolin-8-yl)hexanamide 5e** ¹**H NMR** (400 MHz, CDCl₃) δ 9.82 (br, 1H), 8.71 (d, *J* = 7.2 Hz, 1H), 8.59 (d, *J* = 2.8 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 7.53 – 7.44 (m, 4H), 7.40 – 7.33 (m, 3H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.09 (d, *J* = 1.2 Hz, 1H), 6.11 (d, *J* = 1.2 Hz, 1H), 3.61 (d, *J* = 12.8 Hz, 1H), 3.51 (d, *J* = 12.8 Hz, 1H), 2.50 – 2.43 (m, 1H), 2.36 – 2.28 (m, 1H), 2.17 (s, 3H), 1.38 - 1.25 (m, 4H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.60, 154.25, 148.27, 141.90, 140.41, 138.76, 136.20, 134.62, 128.77, 127.97, 127.48, 127.43, 127.36, 121.59, 121.43, 116.22, 114.81, 111.51, 56.16, 43.42, 34.61, 26.54, 23.33, 14.05, 11.85; **HRMS** (EI-TOF) calcd for C₂₇H₂₈N₂O₂S (M⁺): 444.1871, found: 444.1870.

2-((ethylthio)methyl)-2-phenyl-N-(quinolin-8-yl)hexanamide 5f

¹**H NMR** (400 MHz, CDCl₃) δ 9.88 (br, 1H), 8.75 (d, J = 7.6 Hz, 1H), 8.61 – 8.60 (m, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.54 - 7.44 (m, 4H), 7.39 – 7.34 (m, 3H), 7.29 (d, J = 6.8 Hz, 1H), 3.44 (d, J = 13.2 Hz, 1H), 3.33 (d, J = 12.8 Hz, 1H), 2.50 - 2.42 (m, 1H), 2.26 (dd, J = 14.0, 6.8 Hz, 3H), 1.42 - 1.30 (m, 4H), 1.12 (td, J = 7.2, 1.2 Hz, 3H), 0.89 (t, J = 6.0 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 174.04, 148.31, 142.25,

138.81, 136.20, 134.70, 128.74, 128.01, 127.46, 127.40, 121.60, 121.44, 116.26, 56.09, 39.09, 34.91, 27.60, 26.62, 23.37, 14.92, 14.08; **HRMS** (EI-TOF) calcd for C₂₄H₂₈N₂OS (M⁺): 392.1922, found: 392.1920.

2.4 Mechanistic Investigation

To a 50 mL Schlenk tube was added substrate **1a** (0.1 mmol), PhSSPh (0.2 mmol), BINOL (5.7 mg, 0.02 mmol), Ag₂O (23.2 mg, 0.1 mmol), additive (0.1 mmol), KTFA (30.4 mg, 0.2 mmol), (dppp)NiCl₂ (5.4 mg, 0.01 mmol) and DMSO (1 mL). The vial was evacuated and filled with N₂ (1 atm) then stirred at 140 °C for 12 h. The mixture was then cooled to room temperature, diluted with ethyl acetate (3×20 mL), filtrated through ceilt and washed with water and brine. The combined phase was then dried with anhydrous magnesium sulfate. After concentration, the resulting residue was analyzed with NMR using CH₂Br₂ as the internal standard.

Thiolation with benzenethiol 5

To a 50 mL Schlenk tube was added substrate **1a** (0.1 mmol), PhSH (0.2 mmol), BINOL (5.7 mg, 0.02 mmol), Ag₂O (23.2 mg, 0.1 mmol), KTFA (30.4 mg, 0.2 mmol), (dppp)NiCl₂ (5.4 mg, 0.01 mmol) and DMSO (1 mL). The vial was evacuated and filled with N₂ (1 atm) then stirred at 140 °C for 12 h. The mixture was then cooled to room temperature, diluted with ethyl acetate (3×20 mL), filtrated through ceilt and washed with water and brine. The combined phase was then dried with anhydrous magnesium sulfate. After concentration, the resulting residue was purified by preparative TLC using hexane/EtOAc as the eluent to afford the product.

3. References:

1. Wu, X.-S.; Zhao, Y.; Ge, H.-B. J. Am. Chem. Soc., 2014, 136, 1789-1792.

4. NMR Spectra

1c

S22

1f

1h

3a

3b

3c

3d

3e

3f

3h

3i

3k

3m

3n

30

5a

5b

5f