

Supplementary Information

All work was carried out excluding humidity and air in an atmosphere of dried and purified nitrogen (Westfalen AG) using vacuum glass lines or a glove box (MBraun). Solvents were dried over activated alumina. All reaction vessels were made of borosilicate glass and dried before use.

Preparation of $[(Ph_3P)_2AgReO_4]_2$

The compound was obtained best from $AgReO_4$ and PPh_3 in a ratio of 1:2 in boiling acetonitrile after 16 hours as a rose colored product in 92 % yield. Redissolving in acetonitrile and slow evaporation led to the formation of colorless, light and air stable single crystals.

Preparation of $[Ag(PPh_3)_4][ReO_4]$

Starting at $AgReO_4$: PPh_3 ratios of 1 : 3, $[Ag(PPh_3)_4][ReO_4]$ is always obtained. The exact 1:4 ratio leads to the formation of phase pure product after 3 hours of reaction time in a benzene/acetonitrile 2/1 mixture at room temperature. After workup, the colorless precipitate was dried in *vacuo*, yielding the light and air stable compound (89 %). The compound is also obtained without Schlenk techniques. In order to obtain single crystals, the compound was recrystallized from benzene/acetonitrile under slow cooling (3 °C/min) from 80 °C to room temperature.

ATR-IR spectra (4000 – 600 cm^{-1} , Figg. S1, S2), NMR and chemical analysis data

a) $[Ag(PPh_3)_4][ReO_4]$:

^{31}P -NMR: +10,8 ppm (s) for coordinated PPh_3 (free PPh_3 is observed at -4.7 ppm).
Elem. anal. (% found / % calc.): C 61.5, 61.45, H 4.3, 4.3, P 9.7, 8.8

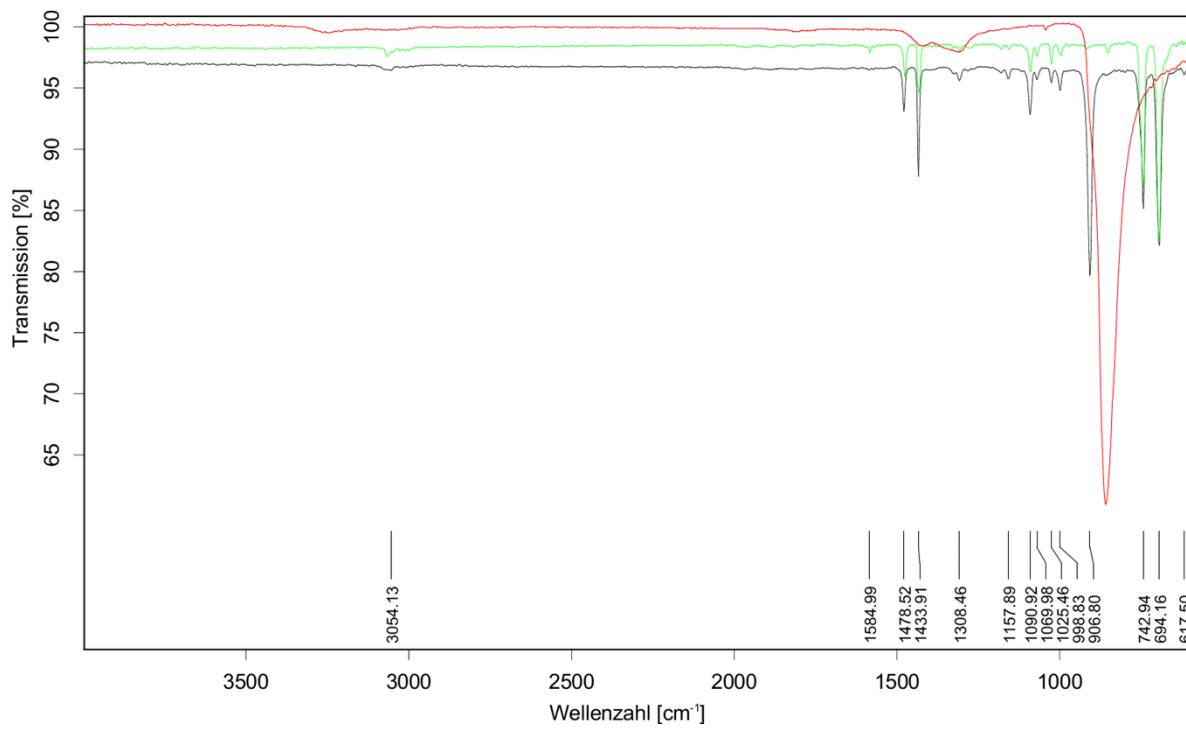
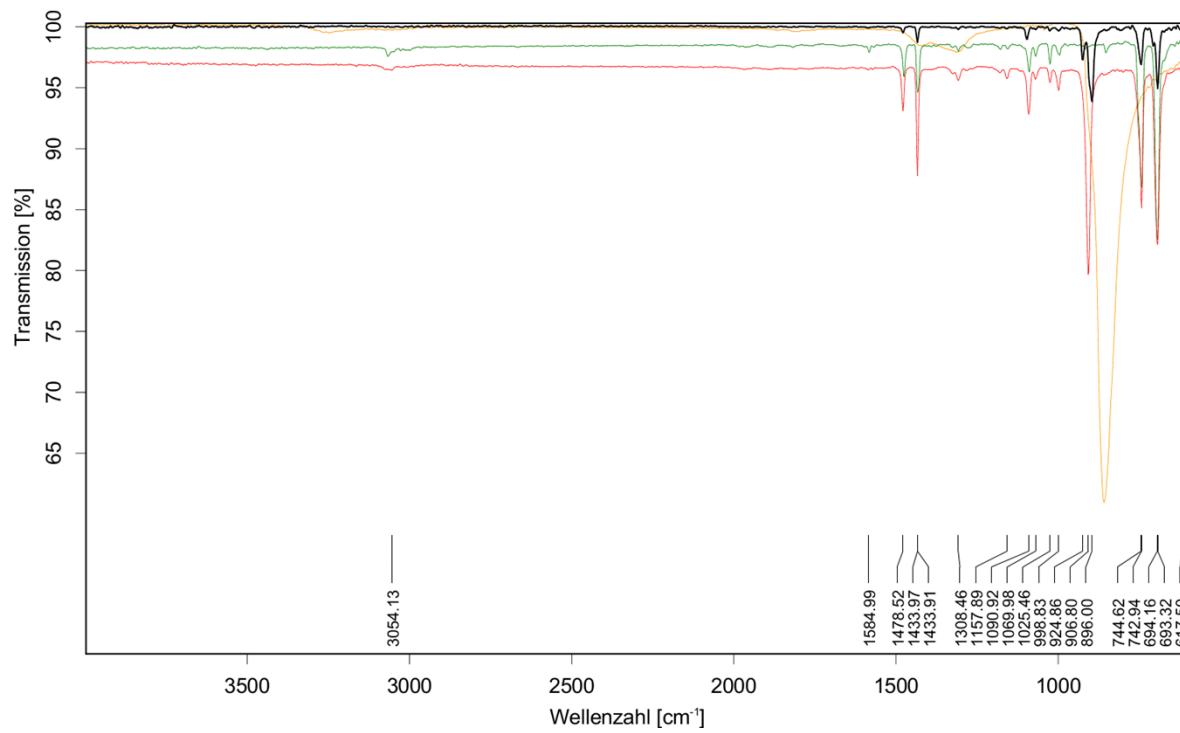


Fig. S1 IR spectra of $[\text{Ag}(\text{PPh}_3)_4]\text{[ReO}_4]$ (black), PPh_3 (green) and AgReO_4 (red)

b) $[(\text{Ph}_3\text{P})_2\text{AgReO}_4]_2$

^{31}P -NMR: + 11.3 ppm (s)

Elem. anal. (% found / % calc.): C 49.3 / 49.0, H 3.4 / 3.4, P 7.0 / 7.2, Ag 12.1 / 12.22



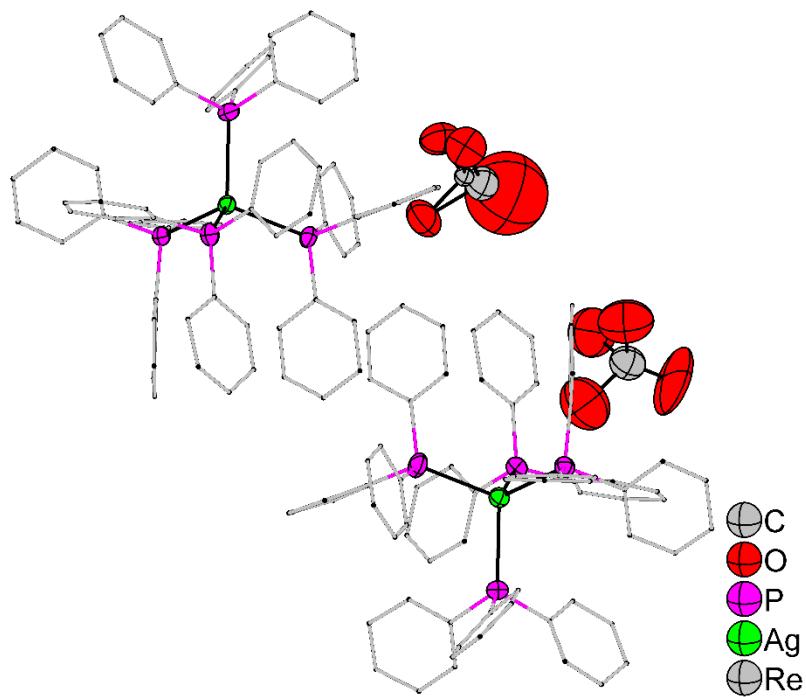

Fig. S2: IR spectra of $[(\text{Ph}_3\text{P})_2\text{AgReO}_4]_2$ (black), PPh_3 (green), AgReO_4 (yellow), and $[\text{Ag}(\text{PPh}_3)_4][\text{ReO}_4]$ (red).

Table S1. Selected crystallographic data for the compounds.

Data	$[\text{Ag}(\text{PPh}_3)_4][\text{ReO}_4]$	$[(\text{Ph}_3\text{P})_2\text{AgReO}_4]_2$
Sum formula	$\text{AgC}_{72}\text{H}_{60}\text{O}_4\text{P}_4\text{Re}$	$\text{Ag}_2\text{C}_{72}\text{H}_{60}\text{O}_8\text{P}_4\text{Re}_2$
Color	colorless	colorless
Habitus	block	block
Formula mass [g/mol]	1407.15	1765.22
Crystal System	trigonal	Triclinic
Space group (No.)	$R\bar{3}$ (No.146)	$P-1$ (No. 2)
a [Å]	14.2192(1)	12.1764(4)
b [Å]	14.2192(1)	12.4966(3)
c [Å]	51.1145(9)	13.2647(5)
α [°]	90	89.938(2)
β [°]	90	62.745(3)
γ [°]	120	68.528(2)

[\AA^3]	8950.0(2)	1635.6(1)
Z	6	1
$\rho_{\text{calc.}} [\text{g/cm}^3]$	1.56	1.79
$\lambda [\text{\AA}] (\text{MoK}\alpha)$	0.71073	
$T [\text{K}]$	123(2)	
R_{int}	0.064	0.062
h	-23 to 24	-21 to 21
k	-25 to 25	-12 to 22
l	-89 to 90	-23 to 23
$S (I \geq 2\sigma(I), \text{ all data})$	0.92, 0.92	0.78, 0.78
$R(F) (I \geq 2\sigma(I), \text{ all data})$	0.051, 0.095	0.040, 0.112
$wR(F^2) (I \geq 2\sigma(I), \text{ all data})$	0.128, 0.141	0.085, 0.075
Reflections/Parameters/Restraints	22832/496/1	18415/416/0
$\Delta Q_{\text{max.}} [\text{e\AA}^{-3}]; \Delta Q_{\text{min.}} [\text{e\AA}^{-3}]$	4.27, -3.42	3.16, -3.32

Both structures were solved using the Patterson method implemented in Shelxs and refined using Shelxle. $[\text{Ag}(\text{PPh}_3)_4][\text{ReO}_4]$ was refined as an inversion twin in spacegroup $R\bar{3}$ in which one of the perrhenate anions is disordered. Refinements in the centrosymmetric space group $R\bar{3}$ showed a completely disordered ReO_4^- anion, worse R-values and the refinement did not converge. The residual electron density is located close to the Re atoms. The structure of the cyclic dimer only showed some disorder in the O-atoms not coordinating to Ag cations. All H-atoms were located and refined using a riding model. Further details of the crystal structure investigations are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), <http://www.fiz-karlsruhe.de/icsd.html>, on quoting the depository numbers CSD- 429166 for $[\text{Ag}(\text{PPh}_3)_4][\text{ReO}_4]$ and CSD- 429165 for $[(\text{Ph}_3\text{P})_2\text{AgReO}_4]_2$.

Figure S3. A section of the crystal structure of $[\text{Ag}(\text{PPh}_3)_4][\text{ReO}_4]$ where the disorder of one ReO_4^- anions becomes obvious. Thermal displacement parameters are shown at the 70 % level at 123 K. H atoms are omitted and the C atoms are shown as a wire-frame for the sake of clarity.