SUPPORTING INFORMATION

Oxidations with Air by Ascorbate-Driven

Quinone Redox Cycling

Gastón Silveira-Dorta,^[a] Diego M. Monzón,^[a] Fernando P. Crisóstomo,^[a] Tomás Martín,^[b] Víctor S. Martín,^[a] and Romen Carrillo*^[a]

[a] Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna. Avda. Astrofísico Fco. Sánchez 2, Apdo. Correos 456, 38200 – La Laguna, S/C. de Tenerife (Spain).^[b] Instituto de Productos Naturales y Agrobiología-CSIC Avda. Astrofísico Francisco Sánchez, 3 38206-La Laguna, Tenerife, Spain.

rocarril@ull.es

Table of Contents

1.	Materials and methods	S2
2.	General Procedures	
3.	Characterization of products	S3
4.	¹⁸ O Labelling experiment	S9
5.	Detection of peroxymonocarbonate	S11
6.	NMR spectra	S12

Materials and methods.

¹H NMR spectra were recorded at 600 and 500 MHz, ¹³C NMR spectra were recorded at 150 and 125 MHz. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H NMR spectrum as 0.00 ppm (chloroform, 7.26 ppm; dimethyl sulfoxide- d_6 2.50 ppm, acetonitrile- d_3 , 1.93 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintuplet, sex = sextet, dd = double doublet, ddd = double double doublet, m =multiplet, dt = doublet triplet and br = broad, coupling constant (J values) in Hz and integration. Chemical shifts for ¹³C NMR spectra were recorded in ppm from tetramethylsilane using the central peak of CDCl₃ (77.0 ppm), dimethyl sulfoxide (39.5 ppm) and methanol (49.0 ppm) as the internal standard. Accurate mass (HRMS) were determined by electrospray ionization (ESI-TOF) and electronic impact (EI-TOF). Flash column chromatography was performed using silica gel, 60 Å and 0.2-0.5 mm with the indicated solvent system according to standard techniques. Compounds were visualized on TLC plates by use of UV light, or vanillin with acetic and sulfuric acid in ethanol with heating. Boronic acids were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. L-Sodium Ascorbate, BioXtra ≥99.0% from ALDRICH was employed. NaHCO₃ BioXtra, 99.5-100.5% from ALDRICH was employed. For detection of peroxymonocarbonate by NMR, NaH¹³CO₃ 98 atom % ¹³C from ALDRICH was employed. Reactions were performed protected from light. Anhydrous magnesium sulfate was used for drying solutions.

General Procedures

General procedure for oxidation (optimized conditions).

Arylboronic acid (1 mmol) (or arylboronic ester or potassium aryltrifluroborate salt or alkylboronic acid) and sodium ascorbate (2 mmol) were added to a mixture 1:1 (1M solution NaHCO₃/EtOH) at room temperature protected from light. Then the quinone (0.1 mmol) was added. The reaction was stirred open-flask at room temperature until the starting material disappeared. The progress of the reaction was monitored by TLC. The reaction mixture was poured into saturated aqueous NH₄Cl (10 mL, saturated solution) and extracted with ethyl acetate (4 \times 20 mL). The combined extract was dried over

anhydrous MgSO₄. After evaporation of the solvent under reduced pressure, the residue was chromatographed by silica gel to obtain the desired products.

General Procedures for epoxidation of α , β -unsaturated aldehydes.

A mixture of α , β -unsaturated aldehyde (1 mmol) and sodium ascorbate (2 mmol) was stirred in a 1:1 mixture of solvents (1M solution NaHCO₃:EtOH). Then pyrrolidine (0.2 mmol) was added and finally menadione (0.1 mmol) was added. The reaction was stirred at room temperature protected from light. The progress of the reaction was monitored by TLC until the starting material disappeared. The mixture was poured into saturated NH₄Cl (10 mL, saturated solution) and extracted with ethyl acetate (4 × 20 mL). The combined extract was dried over MgSO₄. After evaporation of the solvent under reduced pressure, the residue was chromatographed by silica gel to obtain the desired products.

For the over-oxidation to benzaldehyde: Similar procedure than above was followed, although 4mmol of ascorbate and 0.4mmol of menadione were employed.

Characterization of products

OH

Benzaldehyde **5**, catechol **7** and benzoic acid **9**, were compared to commercial samples and they were completely identical.

OH 2a 1H NMR (500 MHz, CDCl₃, 298 K): \delta ppm 7.19-7.16 (m, 2H), 6.86 (t, *J* **= 7.4 Hz, 1H), 6.77-6.75 (m, 2H), 4.82 (br, 1H). 13C NMR (125 MHz, CDCl₃, 298 K): \delta ppm 155.4, 129.7, 120.9, 115.4 LRMS (EI)** *m/z* (relative intensity): 94.0 [M⁺] (100.0) HRMS (EI): m/z: calcd for C₆H₆O [M⁺]: 94.0419, found: 94.0415. **Column Chromatography:** Gradient (95:5-80:20) (Hex-AcOEt) **Yield:** 89 %

MeO^{2b} ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 6.81-6.77 (m, 4H), 5.45 (br, 1H), 3.77 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 153.5, 149.7, 116.3, 115.1, 56.0 **LRMS (EI)** *m/z* (relative intensity): 124.1 [M⁺] (95.1); HRMS (EI): m/z: calcd for C₇H₈O₂ [M⁺]: 124.0524, found: 124.0522.

Column Chromatography: Gradient (95:5-80:20) (Hex-AcOEt) Yield: 99 %

ОН

Br

^{2c} ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.00 (d, J = 7.5 Hz, 2H), 6.78 (t, J = 7.5 Hz, 1H), 4.63 (br, 1H), 2.27 (s, 6H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 152.2, 128.6, 123.0, 120.2, 15.8 LRMS (EI) *m*/z (relative intensity): 122.1 [M⁺] (10.4) HRMS (EI): m/z: calcd for C₈H₁₀O [M⁺] : 122.0732; found: 122.0732. Column Chromatography: (99:1) (Hex:AcOEt) Yield: 64 %

OH
2d ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.45 (dd, J₁ = 1.1; J₂ = 8.0 Hz, 1H), 7.24-7.21 (m, 1H), 7.02 (dd, J₁ = 1.1; J₂ = 8.0 Hz, 1H) 5.49 (br, 1H)
¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 152.3, 132.0, 129.2, 121.8, 116.1, 110.3 Column Chromatography: : (99:1) (Hex:AcOEt)
Yield: 90 %

b ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.91 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 5.56 (br, 1H), 2.56 (s, 3H)

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 198.8, 161.6, 131.2, 129.5, 115.6, 26.3 LRMS (EI) *m/z* (relative intensity): 136.0 [M⁺] (46.0); HRMS (EI): m/z: calcd for C₈H₈O₂ [M]⁺: 136.0524, found: 136.0522.

Column Chromatography: Gradient (95:5-80:20) (Hex-AcOEt) Yield: 98 %

Yield: 86 %

OH 2g 1

^{2g} ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 6.92 (t, J = 8.4 Hz, 2H),
6.79-6.76 (m, 2H), 5.15 (br, 1H)

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 158.2, 156.4, 151.5, 151.5, 116.3, 116.2, 116.1, 115.8

Column Chromatography: (99:1) (Hex:AcOEt)

Yield: 95 %

MeS^{OH}_{2h} ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.21 (d, J = 8.2 Hz, 2H),

6.78 (d, *J* = 8.2 Hz, 2H), 5.27 (br, 1H), 2.44 (s, 3H).

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 154.1, 130.4, 128.9, 116.1, 18.1

LRMS (EI) *m*/*z* (relative intensity): 140.0 [M⁺] (100.0); HRMS (EI): m/*z*: calcd for C₇H₈OS [M]⁺: 140.0296; found: 140.0298.

Column Chromatography: (95:5) (Hex:AcOEt)

Yield: 89 %

H₃COCO² 2i ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.94 (d, J = 8.6 Hz, 2H), 6.90 (d, 2H, J = 8.6 Hz), 3.90 (s, 3H).

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 167.5, 160.3, 131.9, 122.3, 115.3, 52.1. LRMS (EI) *m/z* (relative intensity): 152.0 [M⁺] (71.5); HRMS (EI): m/z: calcd for C₈H₈O₃ [M⁺]: 152.0473; found: 152.0469.

Column Chromatography: (95:5) (Hex:AcOEt)

Yield: 98 %

^{2j} ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.05 (d, J = 8.2 Hz, 2H), 6.76 (d, J = 8.2 Hz, 2H), 5.06 (br, 1H), 2.58 (t, J = 7.6 Hz, 2H), 1.57 (quin, J = 7.6 Hz, 2H), 1.36 (sex, J = 7.3 Hz, 2H), 0.93 (t, J = 7.3, 3H).

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 153.4, 135.2, 129.5, 115.1, 34.7, 33.9, 22.3, 13.9.

LRMS (EI) m/z (relative intensity): 150.1 [M⁺] (18.5) HRMS (EI): m/z: calcd for C₁₀H₁₄O [M⁺]: 150.1045; found: 152.1039.

Column Chromatography: (99:1) (Hex:AcOEt)

Yield: 76 %

¹H NMR (600 MHz, CDCl₃, 298 K): δ ppm 6.82 (d, 2H, J = 8.4 Hz), 1 (br. 111), 1.22 (c, 011)

5.11 (br, 1H), 1.33 (s, 9H).

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 153.1, 143.6, 126.5, 114.8, 34.1,31.6.
 LRMS (EI) *m/z* (relative intensity): 149.1 [M - 1H⁺] (100.0)
 HRMS (EI):

m/z: calcd for: C₁₀H₁₃O [M – 1H⁺]: 149.0966; found: 149.0969.

Column Chromatography: gradient (99:1, 95:5) (Hex-AcOEt)

Yield: 85%

ОН

N²¹ ¹H NMR (600 MHz, CD₃OD, 298 K): δ ppm 8.10 (s, 1H), 8.01 (d, 1H, J = 1.8 Hz), 7.26 (s, 2H), 5.08 (br, 1H).

¹³C NMR (125 MHz, CD₃OD, 298 K): *δ* ppm 154.6, 139.4, 136.8, 124.5, 123.1.

LRMS (EI) m/z (relative intensity): 94.0 [M - 1H⁺] (100.0) HRMS (EI): m/z: calcd for: C₅H₅O [M - 1H⁺]: 94.0293; found: 94.0295.

Column Chromatography: gradient (80:20, 50:50, AcOEt) (Hex-AcOEt) Yield: 83% HOOC 2m ¹H NMR (600 MHz, DMSO-*d*₆, 298 K): δ ppm 7.79 (d, 2H, *J* = 8.4

Hz), 6.83 (d, 2H, *J* = 8.4 Hz), 3.41 (br, 1H).

¹³C NMR (125 MHz, DMSO-*d6*, 298 K): δ ppm 167.6, 162.1, 132.0, 121.8, 115.6.
 Column Chromatography: gradient (95:5, 75:25, 50:50) (Hex-AcOEt)

Yield: 98%

₩<u></u>он

2n ¹**H** NMR (600 MHz, CDCl₃, 298 K): δ ppm 3.61 (t, 2H, J = 6.7 Hz), 1.74 (br, 1H), 1.56-1.51 (m, 2H), 1.34-1.25 (m, 14H), 0.86 (t, 3H, J = 6.7 Hz).

¹³C NMR (125 MHz, CDCl₃, 298 K): *δ* ppm 63.0, 32.8, 31.9, 29.6, 29.5, 29.4, 29.3, 25.7, 22.6, 14.0.

Column Chromatography: (20:80) (Hex-AcOEt) **Yield:** 83%

¹H NMR (400 MHz, CDCl₃, 298 K): δ ppm 3.45 (dt, 1H, *J* = 6.1, 2.1

Hz,), 4.19 (m, 1H), 7.29–7.40 (m, 5H), 9.21 (dd, *J* = 1.2, 6.0 Hz).

¹³C NMR (100 MHz, CDCl₃, 298 K): δ ppm 56.6, 62.9, 125.7 (x 2), 128.8 (x 2), 129.2, 134.2, 196.8.

Column Chromatography: 95:5 (Hex-AcOEt)

Yield: 40%

OH

¹¹ ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.50-7.44 (m, 2H), 7.03 (d, J = 8.3 Hz, 1H), 6.96 (t, J = 7.7 Hz, 1H), 6.46 (br, 1H)

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 159.0, 134.8, 133.0, 120.8, 116.7, 116.6, 99.3

LRMS (EI) *m/z* (relative intensity): 119.0 [M⁺] (54.4); HRMS (EI): m/z: calcd for C₇H₅NO [M⁺]: 119.0371; found: 119.0373.

Column Chromatography: Gradient (95:5-70:30) (Hex-AcOEt)

Yield: 50 %

¹² ¹H NMR (500 MHz, CDCl₃-DMSO-*d*₆, 298 K): δ ppm 12.9, (br, 1H), 8.27 (br, 1H), 7.79 (d, *J* = 7.00 Hz, 1H), 7.71 (br, 1H), 7.33 (t, *J* = 8.00 Hz, 1H), 6.83-6.78 (m, 2H)

¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 172.1, 161.2, 133.6, 127.9, 118.0, 117.2, 114.3.

LRMS (EI) *m/z* (relative intensity): 137.0 [M⁺] (38.8); **HRMS (EI):** m/z: calcd for: C₇H₇NO₂ [M⁺]: 137.0477; found: 137.0482.

Column Chromatography: Gradient (95:5-70:30) (Hex-AcOEt)

Yield: 44 %

¹⁸O Labelling experiment.

A mixture of phenylboronic acid (1 mmol) and sodium ascorbate (2 mmol) was stirred in a 1:1 mixture of solvents (1M solution NaHCO₃/EtOH) at room temperature protected from light. The reaction was stirred under nitrogen for 15 minutes and then menadione (0.1mmol) was added. The reaction was then stirred at room temperature under ¹⁸O₂ atmosphere. The progress of the reaction was monitored by TLC, until the starting material disappeared. The mixture was poured into saturated aqueous NH₄Cl (10 mL, saturated solution) and extracted with ethyl acetate (4 × 20 mL). The combined extract was dried over anhydrous MgSO₄. After evaporation of the solvent under reduced pressure, the residue was chromatographed by silica gel to obtain the desired product **2a'**.

18 OH 2a'

^{2a'} ¹H NMR (500 MHz, CDCl₃, 298 K): δ ppm 7.19-7.16 (m, 2H), 6.86 (t, *J* = 7.4 Hz, 1H), 6.77-6.75 (m, 2H), 4.82 (br, 1H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ ppm 155.4, 129.7, 120.9, 115.4 LRMS (EI) *m/z* (relative intensity): 96.0 [M⁺] (100.0) HRMS (EI): m/z: calcd for C₆H₆ ¹⁸O [M⁺]: 96.0461, found: 96.0463.

Column Chromatography: Gradient (95:5-80:20) (Hex-AcOEt) Yield: 89 %

Elemental Composition Report

Page 1

Multiple Mass Analysis: 84 mass(es) processed - displaying only valid results Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Odd and Even Electron Ions 85 formula(e) evaluated with 14 results within limits (all results (up to 1000) for each mass) Elements Used: C: 1-6 H: 1-6 18O: 0-1 Romen

100-7	1201	(2.434)				96.	0463			Magnet E	
1							1				
1							1				
1							1				
0/											
70											
1			66.0469								
1	39.0382		65.0385								
32.02	33 40.045	52 50.0174 57 0	50.0174 57 0005		68,9952 76.0319		104		.0239 115 0536		
0	+116	57.0	225		77.0380	89.0408 95.0406	97	0493	_105.0331	115.0550	
	40.0	50.0	60.0	70.0	80.0	90.0	10	0.0	110.0	+++++++ m	
Minimum:	0.10				1.5						
Maximum:	100.00		5.0	20.0	50.0						
Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	For	mula			
00 0000				1/			101	mura			
96.0463	100.00	96.0461	0.2	2.1	4.0	45.6	C6	H6	180		
77.0380	2.94	77.0391	-1.1	-14.3	4.5	5546123.0	C6	HS	100		
76.0319	13.15	76.0313	0.6	7.9	5.0	2773100.0	CG	H4			
15.0224	4.16	75.0235	-1.1	-14.7	5.5	949.5	CG	H3			
74.0161	4.07	74.0157	0.4	5.4	6.0	352.0	C6	H2			
73.0072	0.85	73.0078	-0.6	-8.2	6.5	502.5	C6	H			
70.0303	0.92	70.0305	-0.2	-2.9	3.0	0.0	CA	HA	190		
66.0469	36.42	66.0470	-0.1	-1.5	3.0	2773024 3	CE	114	100		
65.0385	22.63	65.0391	-0.6	-9.2	3 5	2105 1	CO	10			
64.0325	1.50	64.0313	1.2	18.7	4 0	3732 2	CS	HS			
63.0230	6.93	63.0235	-0.5	-7.9	4 5	1520 4	05	H4			
61.0069	1.64	61.0078	-0.9	-14 8	5.5	1328.4	05	H3			
57.0225	6.93	57.0226	-0.1	-1 8	3.5	0/9.8	C5	H			
	F 0.4		0.1	-1.0	4.5	0.3	C3	H3	180		

Detection of peroxymonocarbonate

The bicarbonate activated peroxide is a known method for activating H_2O_2 . The actual oxidant is not hydrogen peroxide, but peroxymonocarbonate ion (HCO₄⁻) formed by the equilibrium reaction between bicarbonate ion and H_2O_2 :

 $HCO_3^- + H_2O_2 \longrightarrow HCO_4^- + H_2O$

Peroxymonocarbonate ion is a reactive species but it can be detected by several techniques, such as ¹³C NMR. We prepared a 1:1 solution of methanol- d_4 and sodium bicarbonate (1M) in deuterated water, analogous to the solution used in the reactions. We used 99% ¹³C-enriched NaHCO₃ (SIGMA-Aldrich). Sodium ascorbate (100 mg) was added to 1 mL of the solvent mixture. Finally, 5 mg of menadione were added. After 10 minutes stirring under air, the ¹³C NMR experiment at 25 °C was submitted. In the NMR spectrum it is clearly seen three peaks. The peak at 161.4 ppm was assigned to HCO₃⁻, while the peak at 159.9 ppm corresponds to peroxymonocarbonate HCO₄⁻. Primary alcohols, such as methanol, also react with bicarbonate to form alkyl carbonate esters, RCO₃⁻, and a third peak at 161.1 ppm is observed in the NMR spectrum.

 $HCO_3^- + MeOH \implies MeOCO_2^- + H_2O$

The small peak of peroxymonocarbonate is not only due to its intrinsically instable nature, but also because hydrogen peroxide is generated progressively in situ in small amounts, compared to previously reported experiments where a high concentration of peroxide is employed. Worth to mention, the experiment without ascorbate or menadione displays no peroxymonocarbonate peak.

Figure S3. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2a in CDCl₃

Figure S4. 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of **2b** in CDCl₃.

Figure S5. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2c in CDCl₃

Figure S6. 1 H (500 MHz) and 13 C (125 MHz) NMR spectra of 2d in CDCl₃

Figure S7. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2e in CDCl₃

Figure S8. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2f in DMSO- d_6

Figure S9. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2g in CDCl₃

Figure S10. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2h in CDCl₃

Figure S11. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2i in CDCl₃

Figure S12. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2j in CDCl₃

Figure S13. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2k in CDCl₃

Figure S14. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2l in CD₃OD

Figure S15. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 2m in DMSO- d_6

Figure S16. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 2n in CDCl₃

Figure S17. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 4 in CDCl₃

Figure S18. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of 11 in CDCl₃

Figure S19. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra of **12** in CDCl₃/DMSO- d_6