Supporting Information

For

Synthesis of Thiiranes by Rhodium-catalyzed Sulfur Addition

Reaction to Reactive Alkenes

Mieko Arisawa*, Takuya Ichikawa, and Masahiko

Yamaguchi*

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan

CONTENTS

Page

Supplementary materials	S2
Typical Procedures	S2
The Spectral and Analytical Data	S2
References	S12
NMR Spectra	S13

Supplementary Materials

¹H-, ¹³C-, ³¹P-NMR spectra were recorded on a Varian Mercury (400 MHz) and tetramethylsilane, triphenylphosphine were used as standard. IR spectra were measured on a JASCO FT/IR-410 spectrophotometer. Melting points were determined with a Yanagimoto micro melting point apparatus without correction. High- and low-resolution mass spectra were measured on a JEOL JMS-DX-303, a JEOL JMS-700, or a JMS-T100GC spectrometer. Elemental analyses were conducted with Yanako CHN CORDER MT-6 and Yanako YHS-11. Merck silica gel 60 (63-200 mm) was employed for flash column chromatography.

Typical experimental procedures for the synthesis of *exo*-1,2,7,8-tetrahydro-2,7- epoxynaphtho [2.3-*b*] thiirane 4a : In a two-necked flask equipped with a reflux condenser were placed 1,4-epoxy-1,4-tetrahydronaphthalene (0.250 mmol, 36.0 mg), RhH(PPh₃)₄ (5 mol%, 14.4 mg), 1,2-bis(diphenylphosphino)ethane (10 mol%, 10.0 mg), and 4-ethynyltoluene (50 mol%, 15.2 µL) in acetone (0.25 mL) under an argon atmosphere, and the solution was stirred at room temperature for 30 min. Then, sulfur (1.5 eq., 14.4 mg) was added, and the solution was heated at reflux for 3 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel giving *exo*-1,2,7,8-tetrahydro-2,7-epoxynaphtho- [2.3-*b*]thiilane 4a (40.1mg, 91%). 4a: Colorless needles. Mp. 103.0-103.5 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 3.04 (2H, s), 5.18 (2H, s), 7.17 (2H, dd, *J* = 5.2, 3.2 Hz), 7.34 (2H, dd, *J* = 5.2, 3.2 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 37.1, 77.8, 120.7, 127.0, 145.0. IR (KBr) 3024, 1451, 1246, 1055, 981, 879, 838, 766, 670, 648, 523 cm⁻¹. MS (EI) *m/z* 176 (M⁺, 15%), 147 (M⁺-CHO, 100%). HRMS Calcd for C₁₀H₈OS: 176.0296. Found:176.0289. 4a exhibited NOE between aromatic proton at δ 7.17(dd) and thiirane proton at δ 3.04 (s).

exo-5,6-Dimethyltetrahydro-2,7-epoxynaphtho[2.3-*b*]thiirane 4b: Colorless crystals. Mp. 98.5-99.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 2.25 (6H, s), 3.01 (2H, s), 5.11 (2H, s), 7.12 (2H, s). ¹³C-NMR (100 MHz, CDCl₃) δ 19.9, 37.3, 77.7, 122.1, 135.0, 142.7. IR (KBr) 3055, 3007, 2938, 2919, 1456, 1244, 1049, 979, 867, 677, 650 cm⁻¹. MS (EI) *m/z* 204 (M⁺, 11%), 175 (M⁺- CHO, 100%). HRMS Calcd for C₁₂H₁₂OS: 204.0609 Found: 204.0605. **4b** exhibited NOE between aromatic proton at δ 7.12 (s) and thiirane proton at δ 3.01 (s).

exo-2,7-Dimethy-1,8-dihydro-2,7-epoxynaphtho[2.3-*b*]thiirane 4c: Colorless crystals. Mp. 90.5-91.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 1.80 (6H, s), 3.02 (2H, s), 7.18 (2H, dd, J = 5.2, 3.2 Hz), 7.24 (2H, dd, J = 5.2, 3.2 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 14.9, 44.1, 84.0, 119.4, 126.9, 148.2. IR (KBr) 3040, 2976, 2928, 1924, 1820, 1405, 1385, 1270, 1137, 1028, 899, 871, 765, 655 cm⁻¹. MS (EI) *m/z* 204 (M⁺, 2%), 161 (M⁺- C₂H₃O, 100%), 128 (M⁺-C₂H₃OS, 17%). HRMS Calcd for C₁₂H₁₂OS: 204.0609 Found: 204.0626. **4c** exhibited NOE between aromatic proton at δ 7.18 (dd) and thiirane proton at δ 3.02 (s).

1,1-Dimethylethyl-1a,2,7,7a-tetrahydronaphtho[**2.3-***b*]**thiirane-2,7-imine-8-carboxylate 4d:** Colorless crystals. Mp. 96.0-96.5 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 1.47 (9H, s), 2.91 (1H, d, J = 5.2 Hz), 2.95 (1H, d, J = 5.2 Hz), 5.08 (1H, s), 5.22 (1H, s), 7.14 (2H, dd, J = 5.6, 3.2 Hz), 7.29-7.33 (2H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 28.2, 37.6, 38.3, 61.5 (d, J = 2.3 Hz), 62.2, 80.1, 120.8, 121.0, 126.7, 144.3, 144.6, 154.6. IR (KBr) 2977, 2928, 1689, 1452, 1364, 1298, 1161, 1084, 1043, 945, 864, 741, 681, 654 cm⁻¹. MS (EI) *m/z* 275 (M⁺, 1%), 219 (M⁺- C₄H₈, 100%), 175 (M⁺-C₅H₈O₂, 91%), 130 (M⁺- C₆H₁₀O₂S, 44%), 57 (^tBu, 72%). HRMS Calcd for C₁₅H₁₇NO₂S: 275.0980. Found:275.0970. **4d** exhibited NOE between aromatic proton at δ 7.14 (dd) and thiirane proton at δ 2.95 (d).

exo-2,7-Methanonaphtho[*2.3-b*]*thiirane* **4e:** Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 1.56 (1H, dt, J = 10.0, 1.6 Hz), 2.16 (1H, dt, J = 10.0, 1.6 Hz), 2.99 (2H, s), 3.40 (2H, s), 7.06 (2H, dd, J = 4.8, 2.8 Hz), 7.23 (2H, dd, J = 4.8, 2.8 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 39.8, 40.6, 44.6, 122.2, 125.9, 148.3. IR (KBr) 3049, 2914, 1694, 1484, 1432, 1246, 1093, 871, 812, 741, 695, 525 cm⁻¹. MS (EI) m/z 174 (M⁺, 96%), 173 (M⁺-H, 100%), 141 (M⁺-HS, 65%). HRMS Calcd for C₁₁H₁₀S: 174.0503. Found:174.0499. **4e** exhibited NOE between aromatic proton at δ 7.06 (dd) and thiirane proton at δ 2.99 (s).

exo-1-(3-Thiatricyclo[3.2.1.0^{2,4}]oct-6-yl)-ethanone 4f: Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 0.86 (1H, d, *J* = 10.0 Hz), 1.69 (1H, ddd, *J* = 12.8, 10.0, 4.0 Hz), 1.76 (1H, d, *J* = 10.0 Hz), 1.89 (1H, ddd, *J* = 12.8, 4.8, 2.8 Hz), 2.24 (3H, s), 2.52 (1H, d, *J* = 2.8 Hz), 2.63 (1H, d, *J* = 5.2 Hz), 2.84 (1H, d, J = 5.2 Hz), 2.89 (1H, s), 3.01 (1H, dt, J = 10.0, 4.4 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 28.3, 29.3, 29.6, 33.7, 37.1, 38.2, 41.2, 54.6, 208.1. IR (neat) 2971, 1705, 1359, 1173, 1070, 651 cm⁻¹. MS (EI) *m*/*z* 168 (M⁺, 100%), 125 (M⁺- C₂H₃O, 37%), 98 (M⁺- C₄H₆O, 69%), 43 (C₂H₃O, 31%). HRMS Calcd for C₉H₁₂OS: 168.0609. Found:168.0592. **4f** exhibited NOE between thiirane proton at δ 2.84 (d) and acetyl proton at δ 2.24 (s).

exo-3-Thiatricyclo[3.2.1.0^{2,4}]octane¹⁾ 4g: Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 0.65 (1H, d, J = 10.0 Hz), 1.25 (2H, dd, J = 8.0, 2.4 Hz), 1.53 (1H, d, J = 10.0 Hz), 1.63 (2H, d, J = 8.0 Hz), 2.44 (2H, s), 2.74 (2H, s). ¹³C-NMR (100 MHz, CDCl₃) δ 27.5 (2 peaks), 37.4, 37.6. IR (neat) 2921, 2868, 1724, 1364, 1224, 1103 cm⁻¹. MS (EI) *m/z* 126 (M⁺, 100%), 93 (M⁺- HS, 73%). HRMS Calcd for C₇H₁₀S: 126.0503. Found:12.0509.

exo-3-Thiatricyclo[3.2.1.0^{2,4}]oct-6-ene²⁾ 4h: Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 1.28 (1H, d, J = 9.2 Hz), 1.85 (1H, d, J = 9.2 Hz), 2.97 (2H, s), 3.03 (2H, s), 6.38 (2H, t, J = 1.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 41.5, 41.6, 43.4, 140.1. IR (neat) 2991, 1441, 1313, 1192, 1053, 715 cm⁻¹. MS (EI) *m/z* 124 (M⁺, 99%), 123 (M⁺- H, 100%), 91 (M⁺- HS, 71%). HRMS Calcd for C₇H₈S: 124.0347. Found:124.0357.

exo-1a,2a,3,5a,6,6a-Hexahydro-2,6-methano-2*H*-indeno[5.6-*b*]thiirane³⁾ 4i: Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 0.86 (1H, d, *J* = 10.4 Hz), 1.70 (1H, d, *J* = 10.4 Hz), 2.28 (1H, ddq, *J* = 18.0, 10.0, 2.4 Hz), 2.37 (1H, d, *J* = 18.0 Hz), 2.46 (1H, d, *J* = 4.0 Hz), 2.56 (1H, dd, *J* = 4.0, 1.6 Hz), 2.69 (1H, d, *J* = 5.2 Hz), 2.75 (1H,tt, *J* = 10.0, 4.0 Hz), 2.91 (1H, d, *J* = 5.2 Hz), 3.25-3.30 (1H, m), 5.59-5.63 (1H, m), 5.67-5.69 (1H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 30.9, 31.0, 34.5, 37.6, 39.6, 41.2, 42.5, 54.3, 130.2, 132.2. IR (neat) 2925, 2852, 1450, 1320, 1261, 1060, 653 cm⁻¹. MS (EI) *m/z* 164 (M⁺, 43%), 131 (M⁺- HS, 10%), 98 (M⁺- C₅H₆, 100%), 66 (M⁺- C₅H₆S, 16%). HRMS Calcd for C₁₀H₁₂S: 164.0660. Found:164.0678. **4i** exhibited NOE between thiirane proton at δ 2.69 (d) and alkene proton at δ 5.59-5.63 (m).

trans-10-Thiabicyclo[7.1.0]nonane 6: Colorless crystals. Mp.57.5-58.0 °C (Hexane) Lit⁴⁾ 58.0-59.0 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃) δ 0.98-1.08 (2H, m), 1.15 (2H, t, *J* = 12.0 Hz), 1.64 (2H, q, *J* = 12.0 Hz), 1.94 (2H, d, *J* = 14.4 Hz), 2.08 (2H, dt, *J* = 10.0, 4.0 Hz), 2.45 (2H, dt, *J* = 14.4, 2.0 Hz), 2.66 (2H, d, *J* = 10.0 Hz). The *trans* structure was confirmed by referred thiirane proton⁴⁾ [¹H-CDCl₃ δ 2.68(2H, m)] ¹³C-NMR (100 MHz, CDCl₃) δ 28.3, 31.9, 36.9, 43.3. IR (KBr) 2926, 2855, 1450, 1412, 1220, 982, 636 cm⁻¹. MS (EI) *m/z* 142 (M⁺, 8%), 109 (M⁺- HS, 4%), 85 (M⁺- C₂HS, 68%), 83 (M⁺- C₂H₃S, 100%). HRMS Calcd for C₈H₁₄S: 142.0816. Found:142.0826.

Typical experimental procedures for the synthesis of 10-thiabicyclo[7.1.0]dec-1,5-diene 10: In a

two-necked flask equipped with a reflux condenser were placed 1,2,6-cyclononatriene (1.50 mmol, 180.3 mg), RhH(PPh₃)₄ (5 mol%, 28.8 mg), 1,2-bis(diphenylphosphino)ethane (10 mol%, 20.0 mg), and 4-ethynyltoluene (50 mol%, 31.2 μ L) in acetone (0.25 mL) and DMF (0.25 mL) under an argon atmosphere, and the solution was stirred at room temperature for 30 min. Then, sulfur (0.6 mmol, 19.2 mg) was added, and the solution was heated at reflux for 3 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel giving 10-thiabicyclo[7.1.0]dec-1,5-diene **10** (26.3 mg, 35%). **10**: Colorless needles. Mp. 58.0-58.5 °C (Hexane). Lit.⁵⁾ 54.0-55.0 °C (Petroleum ether). ¹H-NMR (400 MHz, CDCl₃) δ 1.14 (1H, q, *J* = 12.0 Hz), 2.14 (2H, dt, *J* = 14.0, 6.4 Hz), 2.25 (1H, t, J = 12.0 Hz), 2.37-2.46 (1H, m), 2.55 (1H, d, *J* = 18.0 Hz), 2.62-2.70 (2H, m), 3.36 (1H, ddd, *J* = 10.4, 4.0, 1.6 Hz), 5.39 (1H,dt, *J* = 11.2, 4.0 Hz), 5.55-5.64 (2H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 23.6, 24.4, 30.2, 37.1, 37.2, 114.1, 127.3, 127.9, 131.0. IR (KBr) 3000, 2941, 2912, 2899, 2880, 2851, 1650 cm⁻¹. MS (EI) *m/z* 152 (M⁺, 100%), 119 (M⁺+ HS, 96%). HRMS Calcd for C₉H₁₂S: 152.0660. Found:152.0659.

10-Thiabicyclo[7.1.0]dec-1-ene 8⁵): Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 1.20-1.77 (8H, m), 1.80-1.91 (1H, m), 2.05-2.15 (1H, m), 2.45-2.60 (2H, m), 3.29 (1H, d, *J* = 12.0 Hz), 5.62 (1H, d, *J* = 4.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 21.3, 24.1, 24.2, 25.1, 29.5, 34.7, 38.0, 114.0, 128.7. IR (neat) 2931, 2866, 2360, 2342, 1716, 1463, 1443, 1336, 964, 781, 616 cm⁻¹. MS (EI) *m/z* 154 (M⁺, 81%), 121 (M⁺- HS, 62%), 57 (M⁺- C₅H₅S, 100%). HRMS Calcd for C₉H₁₄S: 154.0816. Found:154.0818.

Typical experimental procedure for the synthesis of [RhS₂(dppe)₂]Cl complex 12: In a two-necked flask were placed sulfur (0.5 mmol atom, 16 mg), RhH(PPh₃)₄ (5 mol%, 28.8 mg), 1,2-bis(diphenylphosphino)ethane (10 mol%, 20.0 mg) in acetone (0.5 mL). The solution was stirred under an argon atmosphere at room temperature for 3 h. The solvent was removed under reduced pressure, and the residue was washed with CHCl₃ and hexane, concentrated gave [RhS₂(dppe)₂]Cl complex **12** as purple crystals. **12**: Mp. 205.0-206.0 °C (Hexane/CH₂Cl₂= 3). Lit⁷⁾ 200 °C (decompt., MeCN). ¹H-NMR (400 MHz, CDCl₃) δ 2.28-2.75 (8H, m), 6.04 (4H,dd, J = 9.2, 8.8 Hz), 7.00 (4H, t, J = 7.2 Hz), 7.12 (4H, t, J = 7.2 Hz), 7.18 (4H, t, J = 7.2 Hz), 7.29-7.40 (12H, m), 7.49 (6H, dd, J = 7.6, 6.8 Hz), 7.58 (2H, dd, J = 7.6, 6.4 Hz), 7.70 (4H, dd, J = 6.8, 5.6 Hz). ³¹P-NMR (162 MHz, CDCl₃) δ 50.1 (dt, J = 126.7, 16.8 Hz), 52.1 (dt, J = 87.0, 16.8 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 21.6 (q, J = 15.0 Hz), 31.5 (dt, J = 32.2, 10.5 Hz), 125.2 (t, J = 28.4 Hz), 126.3, 129.0 (t, J = 44.0 Hz), 129.2 (t, J = 40.9 Hz), 130.3, 131.5, 131.6, 133.0 (dd, J = 74.5, 60.3 Hz). IR (KBr) 3431, 3050, 2915, 1694, 1432, 1093, 742, 685, 526 cm⁻¹. LC-MS(ESI⁺) C₅₂H₄₈P₄RhS₂ Calcd for 963.1203. Found: 963.1222. Elemental analysis (C₅₂H₄₈ClP₄RhS₂) Calcd for: C, 62.50%; H, 4.84%; Cl, 3.55%; S, 6.42%, Found: C, 62.39%; H, 4.97%; Cl, 3.46%; S, 6.42%

$$\begin{bmatrix} Ph_2P \\ S_{M,.} \\ H_{+,...} \\ PPh_2 \\ S \\ Ph_2P \\ Ph_2P \end{bmatrix} Cl^{-1}$$

Typical experimental procedure for the analysis of complex 11: In a two-necked flask equipped with a reflux condenser were placed sulfur (0.5 mmol atom, 16 mg), $RhH(PPh_3)_4$ (5 mol%, 28.8 mg), 1,2-bis(diphenylphosphino)ethane (10 mol%, 20.0 mg), in acetone (0.5 mL). The solution was stirred under an argon atmosphere at room temperature for 3 h. The reaction mixture was sampling by a syringe and diluted by degassed toluene-d₈. ³¹P-NMR analysis showed formation of a rhodium

intermediate 11. 11: ³¹P-NMR (Toluene-d₈) δ 49.4 (bs), 50.1 (dd, J = 38.2, 15.2 Hz). LC-MS(ESI⁺) C₅₂H₄₈P₄RhS₂ Calcd for 963.1203. Found: 963.1175.

Typical experimental procedure for the synthesis of RhH(dppe)₂ 13: In a two-necked flask were placed RhH(PPh₃)₄ (0.05 mmol, 57.6 mg) and 1,2-bis(diphenylphosphino)ethane (0.10 mmol, 40.0 mg) in acetone (1.0 mL). The solution was stirred under an argon atmosphere at room temperature for 30 min. The precipitated solid was filted, and the solid washed with hexane, gave RhH(dppe)₂ complex 13 as red crystals (36.2 mg, 80%). 13: ¹H-NMR (400 MHz, C₆D₆) δ -10.19 (1H, dpent, *J* = 17.6, 10.8 Hz), 2.09 (8H, brs), 6.90-6.97 (24H, m), 7.48 (16H, brs). ³¹P-NMR (162 MHz, C₆D₆) δ 56.4 (dd, *J* = 143.4, 6.1 Hz). IR (KBr) 3045, 2887, 1896, 1431, 1095, 738, 692, 521, 491 cm⁻¹. LC-MS(ESI⁺) C₅₂H₄₈P₄Rh Calcd for 899.1762. Found: 899.1799.

The reaction using RhH(dppe)₂ complex 13: In a two-necked flask equipped with a reflux condenser were placed 1,4-epoxy-1,4-tetrahydronaphthalene (0.250 mmol, 36.0 mg), RhH(dppe)₂ 13 (5 mol%, 11.3 mg), and 4-ethynyltoluene (50 mol%, 15.2 μ L) in acetone (0.25 mL) under an argon atmosphere, and the solution was stirred at room temperature for 30 min. Then, sulfur (1.5 eq., 14.4 mg) was added, and the solution was heated at reflux for 3 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel giving 4a (17.6 mg, 91%).

Typical experimental procedures for the synthesis of 2,4-bis(4-tolyl)thiophene 15: In a two-necked flask equipped with a reflux condenser were placed 4-ethynyltoluene 3 (1.5 mmol, 188.4 μ L), sulfur (0.5 mmol atom, 16 mg), RhH(PPh₃)₄ (5 mol%, 28.8 mg), 1,2-bis(diphenylphosphino)-ethane (10 mol%, 20.0 mg) in acetone (0.5 mL). The solution was heated at reflux under an argon

atmosphere for 3 h. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel giving 2,4-bis(4-tolyl)thiophene **15** (3.0 mg, 2%). **15**: Colorless crystals. Mp. 146.5-147.0 °C (Hexane/Toluene = 1) Lit⁶⁾ 144.0-145.0 °C (Ethanol). ¹H-NMR (400 MHz, CDCl₃) δ 2.38 (6H, s), 7.20 (2H, d, *J* = 10.8 Hz), 7.22 (2H, d, *J* = 10.8 Hz), 7.31 (1H, d, *J* = 2.0 Hz), 7.51 (2H, d, *J* = 10.8 Hz), 7.52 (1H, d, *J* = 2.0 Hz), 7.54 (2H, d, *J* = 10.8 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 21.1, 21.2, 118.6, 121.8, 125.7, 126.2, 129.5 (2 peaks), 131.6, 133.1, 136.9, 137.5, 143.0, 145.0. IR (KBr) 3096, 3021, 2911, 2854, 1908 1499, 1307, 1123, 809, 748 cm⁻¹. MS (EI) *m/z* 264.1 (M⁺, 100%). HRMS Calcd for C₁₈H₁₆S: 264.0982. Found:264.0973.

Typical experimental procedures for the synthesis of *exo-*1,2,7,8-Tetrahydro-2,7epoxynaphthalene-1-thiol 16a: In a two-necked flask equipped with a reflux condenser were placed LiAlH₄ in THF (0.5 mL), to which *exo-*1,2,7,8-tetrahydro-2,7-epoxynaphtho[2,3-*b*]thiirane **4a** (0.1 mmol, 18.0 mg) in THF (0.5 mL) was added dropwise. The mixture was heated at reflux under an argon atmosphere for 3 h. A small amount of cold water was added slowly, and the solution was diluted with ether. Then a small amount of 2 M HCl solution was added. The organic layer was washed with brine twice. The aqueous layer was extracted with ether. The combined organic layer was dried with MgSO₄ and concentrated. Purified by flash column chromatography afforded *exo-*1,2,7,8-tetrahydro-2,7-epoxynaphthalene-1-thiol **16a** (11.6 mg, 65%): Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 1.96 (1H, ddd, *J* = 12.4, 4.8, 4.0 Hz), 2.07 (1H, d, *J* = 8.0 Hz), 2.11 (1H, dd, *J* = 12.4, 4.0 Hz), 2.87 (1H, dt *J* = 8.0, 4.0 Hz), 5.18 (1H, s), 5.44 (1H, d, *J* = 4.8 Hz), 7.16-7.29 (4H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 38.0, 40.5, 79.5, 87.3, 119.1, 119.6, 126.9, 127.3, 143.9, 145.2. IR (neat) 3069, 2968, 1468, 1276, 1155, 1000, 756, 514 cm⁻¹. MS (EI) *m/z* 178 (M⁺, 2%), 118 (M⁺- CH₂CHSH, 100%). HRMS Calcd for C₁₀H₁₀OS: 178.0452. Found:178.0431. **16a** exhibited NOE between *endo* proton at δ 2.87 (dt) and aryl proton at δ 7.16-7.17 (m).

exo-1,2,7,8-Tetrahydro-2,7-methanonaphthalene-1-thiol 16e: Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 1.68 (1H, dt, J = 12.8, 4.0 Hz), 1.82-1.88 (2H, m), 1.95 (1H, d, J = 5.6 Hz), 2.09 (1H, dt, J = 8.0, 1.2 Hz), 2.87 (1H, ddd, J = 8.0, 5.6 Hz), 3.21 (1H, s), 3.36 (1H, d, J = 2.4 Hz), 7.07-7.08 (2H, m), 7.13-7.15 (1H, m), 7.17-7.19 (1H, m). ¹³C-NMR (100 MHz, CDCl₃) δ 38.0, 39.5, 44.2, 46.1, 53.8, 120.9, 121.2, 125.9, 126.3, 146.3, 147.6. IR (neat) 3001, 2947, 1459, 1258, 1206, 985, 758, 626 cm⁻¹. MS (EI) *m/z* 176 (M⁺, 25%), 143 (M⁺- SH, 29%), 116 (M⁺- CH₂CHSH, 100%). HRMS Calcd for C₁₁H₁₂S: 176.0660. Found:176.0662. **16e** exhibited NOE between *endo* proton at δ 2.87 (dt) and aryl proton at δ 7.17-7.19 (m).

Typical experimental procedures for the synthesis of 1,5-cyclononadiene-1-thiol 17: In a two-necked flask were placed LiAlH₄ in THF (0.5 mL), to which 10-thiabicyclo[7.1.0]dec-1-ene 10 (0.1 mmol, 15.0 mg) in THF (0.5 mL) was added dropwise. The mixture was stirred under an argon atmosphere at room temperature for 2 h. A small amount of cold water was added slowly, and the solution was diluted with ether. Then a small amount of 2 M HCl solution was added. The organic layer was washed with brine twice. The aqueous layer was extracted with ether. The combined organic layer was dried with MgSO₄ and concentrated giving 1,5-cyclononadiene-1-thiol 17 (37%,

yield was determined by internal standard 1,1,2-trichloroethane). **17**: Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 1.73 (2H, s), 1.95-2.05 (4H, m), 2.13 (2H, s), 2.25-2.31 (2H, m), 2.60 (1H, s), 5.42 (1H, q, *J* = 8.8 Hz), 5.74 (1H, d, *J* = 8.0 Hz), 5.88(1H, t, *J* = 8.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 24.0, 26.2, 27.2, 27.8, 31.6, 129.9, 130.1 (2 peaks), 130.9. IR (neat) 2949, 2869, 1729, 1703, 1454, 1260, 1092, 803, 754 cm⁻¹. MS (EI) *m/z* 154 (M⁺, 14%), 121 (M⁺- HS, 100%). HRMS Calcd for C₉H₁₄S: 154.0816. Found:154.0801.

Typical experimental procedures for the synthesis of 1-acetylthio-1,5-cyclononadiene 18: In a two-necked flask were placed 1,5-cyclononadiene-1-thiol 17 (0.04 mmol, 6.3 mg) and pyridine (0.1 mmol, 8.0 μ L) in dichloromethane (0.25 mL) under an argon atmosphere. The mixture was cooled at 0 °C, and acetyl chloride (0.1 mmol, 7.0 μ L) was added dropwise. The solution was warmed to room temperature for 1 h, when a small amount of water was added. The aqueous layer was extracted with dichloromethane. The combined organic layers were dried with MgSO₄, and concentrated. Purification by flash column chromatography afforded 1-acetylthio-1,5-cyclononadiene 18 (6.0 mg, 88%). 18: Colorless oils. ¹H-NMR (400 MHz, CDCl₃) δ 1.63-1.65 (2H, m), 1.91-1.96 (2H, m), 2.04-2.09 (2H, m), 2.13-2.18 (2H, m), 2.29-2.32 (2H, m), 2.31 (3H, s), 5.44 (1H, dt, *J* = 10.8, 8.4 Hz), 5.75 (1H, dt, *J* = 10.8, 8.4 Hz), 6.19 (1H, t, *J* = 8.4 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ 24.3, 25.6, 27.4, 28.1, 29.3, 30.2, 130.3, 130.4, 130.7, 143.5, 195.8. IR (neat) 3006, 2933, 2859, 1697, 1460, 1352, 1110, 947, 728, 619 cm⁻¹. MS (EI) *m/z* 196 (M⁺, 3%), 153 (M⁺-CH₃CO, 27%), 121 (M⁺- CH₃COS, 100%). HRMS Calcd for C₁₁H₁₆OS: 196.0922. Found: 196.0912. **18** exhibited NOE between alkene proton at δ 6.19 (t) and acetyl proton at δ 2.31 (s).

References

- 1) Zysman-Colman, E.; Leste-Lassere, P.; Harpp, D. N. J. Sulfur. Chem. 2008, 309.
- 2) Fujisawa, T.; Kobori, T. Chem. Lett. 1972, 1065.
- 3) Sugihara, Y.; Onda, K.; Suzuki, T. Tetrahedron Lett. 2010, 51, 4110.
- 4) Adam, W.; Bargon, R. M. Chem. Commun. 2001, 1910.
- 5) Adam, W.; Bargon, R. M.; Schenk, W. A. J. Am. Chem. Soc. 2003, 125, 3871.
- 6) Munir, G. J. Ind. Chem. Soc. 1976, 53, 490.
- 7) Ginsberg, A. P.; Lindsell, W. E.; Sprinkle, C. R.; West, K. W.; Cohen, R. L. Inorg. Chem. 1982, 21, 3666.

exo-1,2,7,8-Tetrahydro-2,7-epoxynaphtho[2.3-*b*] thiirane **4a** (¹H-NMR)

exo-1,2,7,8-Tetrahydro-2,7-epoxynaphtho[2.3-*b*] thiirane **4a** (¹³C-NMR)

1,1-Dimethylethyl-1a,2,7,7a-tetrahydronaphtho[2.3-*b*] thiirane-2,7-imine-8-carboxylate **4d** (¹H-NMR)

S20

1,1-Dimethylethyl-1a,2,7,7a-tetrahydronaphtho[2.3-*b*] thiirane-2,7-imine-8-carboxylate **4d** (¹³C-NMR)

S21

exo-2,7-Methanonaphtho[2.3-*b*] thiirane $4e(^{1}H-NMR)$

exo-2,7-Methanonaphtho[2.3-*b*] thiirane **4e** (¹³C-NMR)

S24

exo-1-(3-Thiatricyclo[$3.2.1.0^{2.4}$]oct-6-yl) ethanone **4f** (¹³C-NMR)

exo-3-Thiatricyclo[3.2.1.0^{2.4}]octane **4g** (¹³C-NMR)

exo-3-Thiatricyclo[3.2.1.0^{2.4}]oct-6-ene **4h** (¹H-NMR)

exo-3-Thiatricyclo[3.2.1.0^{2.4}]oct-6-ene **4h** (¹³C-NMR)

exo-1a,2a,3,5a,6,6a-Hexahydro-2,6-methano-2*H*-indeno[5.6-*b*]thiirane **4i** (¹H-NMR)

exo-1a,2a,3,5a,6,6a-Hexahydro-2,6-methano-2*H*-indeno[5.6-*b*]thiirane 4i (¹³C-NMR)

trans-10-Thiabicyclo[7.1.0]nonane 6 (¹H-NMR)

trans-10-Thiabicyclo[7.1.0]nonane **6** (¹³C-NMR)

10-Thiabicyclo[7.1.0]dec-1-ene **8** (¹³C-NMR)

10-Thiabicyclo[7.1.0]dec-1,5-diene 10 (¹H-NMR)

10-Thiabicyclo[7.1.0]dec-1,5-diene **10** (¹³C-NMR)

 $[RhS_2(dppe)_2]Cl \ complex \ \textbf{12} \ (^1H\text{-}NMR, \ CDCl_3)$

[RhS₂(dppe)₂]Cl complex **12** (¹H-NMR, CD₃NO₂)

[RhS₂(dppe)₂]Cl complex **12** (³¹P-NMR, CDCl₃)

RhH(dppe)₂ complex **13** (¹H-NMR, C₆D₆)

2,4-Bis(4-tolyl)thiophene 15 (1H-NMR)

2,4-Bis(4-tolyl)thiophene 15 (¹³C-NMR)

-

1,5-Cyclononadiene-1-thiol (E)-17 (1H-NMR)

1,5-Cyclononadiene-1-thiol (*E*)-17 (¹³C-NMR)

1- Acetylthio-1,5-cyclononadiene (E)-18 (1H-NMR)

1-Acetylthio-1,5-cyclononadiene (E)-18 (13C-NMR)