A Formal *anti*-Markovnikov Hydroamination of Allylic Alcohols via Tandem Oxidation/1,4-Conjugate Addition/1,2-Reduction with Ru Catalyst

Yushi Nakamura, Yohei Oe, and Tetsuo Ohta

Department of Biomedical Information, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0321

Supporting Information

Table of Contents

1.	General information	S2
2.	Screening of Ru catalysts for hydroamination	S2
3.	Optimization of reaction conditions	S 5
4.	Synthesis of materials	S7
5.	Hydroamination methods	S8
6.	Characterization of products	S9
7.	Analysis Charts	S16
8.	References	S62
		-

1. General information

NMR spectra were recorded with Varian Mercury Plus 300-4N spectrometers by using TMS ($\delta = 0$ ppm) as an internal standard for ¹H NMR and CDCl₃ ($\delta = 77$ ppm) for ¹³C NMR spectroscopy. Mass spectra (GC-MS) were recorded with a Shimazu QP5000 instrument. High-resolution mass spectra (FAB) were recorded by using a JEOL JMS-700 instrument with *meta*-nitrobenzyl alcohol as the matrix and PEG-200 as the calibration standard. Elemental analysis was depended on A Rabbit Science. All catalytic reactions were carried out under argon in sealed tube. Unless noted otherwise, all reagents and solvents were purchased from commercial suppliers. Reagents obtained from commercial sources were used without purification. Ru complexes ([RuCl₂(*p*-cymene)]₂,¹ RuCl₂(DMSO)₄,¹ RuCl₂(PPh₃)₃,¹ RuClH(CO)(PPh₃)₃,¹ RuCl₂(dppe)(en),³ RuCl₂(dppf)(en),³ RuCl₂(dppbenzene)(en)³) and a part of Ligands (L1,⁴ L2,⁵ L3,⁴ L5⁶) were synthesized according to litelature protocols. A part of allylic alcohols (1b,⁷ 1c,⁸ 1d,⁹ 1e,⁷ 1f,¹⁰ 1g¹¹) were also synthesized according to literature protocols. 2,6-Bis(*n*-butyliminomethyl)pyridine (L4) was synthesized by reference to litelature protocol.¹²

2. Screening of Ru catalysts for hydroamination

2.1. Screening of Ru Precursors or Solvents for Hydroamination

To an argon-purged reaction tube equipped with J-Young stop valve was added Ru pre. (2 mol% Ru), Dppe (0.044 mmol), and anhydrous CH_2Cl_2 (1 mL). The mixture was degassed by using freeze-pump-thaw cycles (FPT cycles) and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then the solvent was removed under reduced pressure. To the residue was added 3-buten-2-ol (1a) (6 mmol), morpholine (2a) (2 mmol), and anhydrous solvent (0.5 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

Table S	S1. Scree	ning of]	Ru Precui	sors or Sol	vents for I	Hydroamination
						•/

OH +	HN O Hu pre. (2 mol% Ru Dppe (2.2 mol%) Solvent, 95°C, 5 h) OH + _	
1a	2a	3aa 💛 🗸	4aa 💛 🗸
Entry	Ru pre.	Solvent (mL)	NMR Yield (3aa/4aa) (%)
1	$[RuCl_2(p-cymene)]_2$	Toluene/H ₂ O $(0.4/0.1)$	0/60
2	$[RuCl_2(p-cymene)]_2$	1,4-Dioxane (0.5)	0/32
3	$[RuCl_2(p-cymene)]_2$	IPA (0.5)	0/62
4	RuCl ₂ (DMSO) ₄	IPA (0.5)	0/13
5	$RuCl_2(PPh_3)_3$	IPA (0.5)	0/18
6	RuClH(CO)(PPh ₃) ₃	IPA (0.5)	0/trace

2.2. Screening of Ligands for Hydroamination

Method A: To an argon-purged reaction tube equipped with J-Young stop valve was added $[RuCl_2(p-cymene)]_2$ (0.02 mmol), Ligand (0.044 mmol), and anhydrous CH_2Cl_2 (1 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then the solvent was removed under reduced pressure. To the residue was added 3-buten-2-ol (1a) (6 mmol), morpholine (2a) (2 mmol), and anhydrous IPA (0.5 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 95°C for 5 h, then to the mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

Method B: To an argon-purged reaction tube equipped with J-Young stop valve was added $[RuCl_2(p-cymene)]_2$ (0.02 mmol), Ligand (0.044 mmol), and anhydrous CH₂Cl₂ (1 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then the solvent was removed under reduced pressure. To the residue was added 3-buten-2-ol (1a) (2.2 mmol), morpholine (2a) (2 mmol), and anhydrous IPA (0.5 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was added then purged with argon again. The reaction mixture was stirred at 95°C for 22 h, then to the mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

Fig. S1 Structure of Screening Ligands

Table S2. Screening of Ligands for Hydroamination

	OH + HNO	[RuCl ₂ (<i>p</i> -cymene)] ₂ (2 mol% Ru) Ligands (2.2 mol%) Method A or B	OH N O	
	1a 2a	Licond	3aa Mothod	4aa
	1	Dana	Method A	<u>NVIK 1 leid (3aa/4aa) (76)</u> 0/62
	1	Dppe	Method A	0/03
	2	$(\mathbf{P}) \mathbf{D} \mathbf{N} \mathbf{A} \mathbf{D}$	Method A	0/12
	3	(Λ) -DINAP (S) SECDUOS	Method A	0/13
	4	(S)-SEULIOS	Method A	0//
	3	S-PIIOS Vontrhag	Method A	0/4
	8	Danf	Method A	0/22
	/	Dppi	Method A	0/17400
		_ Dpppenzene	Method A	
	9	1 10 Dhononthroling	Method A	0/0
	10	1,10-Phenantinoline $2,2^{2}$ Dis $(2, avagalina)$	Method A	0/11/202
	11	2,2 -DIS(2-0XaZ01111e)	Method A	0/3
	12		Method A	0/0
	15		Method A	0/3
	14		Method A	0/13
	$\frac{13^{\circ}}{16c}$	$- \frac{\mathbf{L}\mathbf{I}}{\mathbf{D}\mathbf{u}\mathbf{C}\mathbf{I}} (\mathbf{D}\mathbf{D}\mathbf{h}) (\mathbf{c}\mathbf{n}^{b})$	Method P	
1	10-	$RuCl_2(PPII_3)_2(eII^2)$	Method P	0/0
I	194.6	$RuCl_2(uppe)(en)$	Mothod D	0/0
	10	$RuCl_2(uppe)(en)$	Method P	0/7
	200	$RuCl_2(upp1)(ell)$	Mothod D	0/3
	$\frac{20^{2}}{21}$		Method P	
	21		Mathad P	0/4
	22		Mothod D	0/5
	25 24d		Mathad P	0/3
	24" 25d.e	L4 I <i>A</i>	Mathad D	
	25",- 26d.e	L4 15	Mathad D	20/0
	$20^{a,c}$		Mathad D	0/12
	214,0	LU	Method B	uace/0

^{*a*}KOH (5 mol%) was added. ^{*b*}en = ethylendiamine. ^{*c*}Prepared Ru complex (2 mol% Ru) was used. ^{*d*}RuClH(CO)(PPh₃)₃ (2 mol% Ru) was used as a catalyst precursor. ^{*e*}KOBu^{*t*} (5 mol%) was added.

3. Optimization of reaction conditions

3.1. Optimization of Reaction Conditions for Hydroamination with 3-Buten-2-ol (1a) and Morpholine (2a)

To an argon-purged reaction tube equipped with J-Young stop valve was added RuClH(CO)(PPh₃)₃ (0.04 mmol), 2,6bis(*n*-butyliminomethyl)pyridine (L4) (0.044 mmol) prepared from pyridine-2,6-carbaldehyde and *n*-butylamine, and anhydrous CH₂Cl₂ (1 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then the solvent was removed under reduced pressure. To the residue was added KOBu^t, 3-buten-2-ol (**1a**), morpholine (**2a**) (2 mmol), and anhydrous IPA (0.5 mL). The mixturewas degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at the respective temperature for 22 h, then to the mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

Table S3. Optimization of Reaction Conditions for Hydroamination with 3-Buten-2-ol (1a) and Morpholine (2a)

	OH + HN	L4 (2.2 mol%) <u>KOBu^t</u> IPA, Temp., 22 h		1
	1a 2	a	3aa	\searrow 0
Entry	1a (mmol)	KOBu ^t (mol%)	Temp. (°C)	NMR Yield (%)
1	2.2	5	95	26
2	2.2	5	70	56
3	2.2	7.5	70	38
4	2.2	3	70	70
5	2.6	3	70	>99
6^a	2.6	3	70	72
7 ^b	2.6	3	70	0

^{*a*}RuCl₂(PPh₃)₃ was used. ^{*b*}[Ru(CO)₃Cl₂]₂ was used.

3.2. Optimization of Reaction Conditions for Hydroamination with Allyl Alcohol (1h) and Morpholine (2a)

To an argon-purged reaction tube equipped with J-Young stop valve was added RuClH(CO)(PPh₃)₃ (0.04 mmol), 2,6bis(*n*-butyliminomethyl)pyridine (L4) prepared from pyridine-2,6-carbaldehyde and *n*-butylamine (0.044 mmol), and anhydrous CH₂Cl₂ (1 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then the solvent was removed under reduced pressure. To the residue was added KOBu^t (0.06 mmol), allyl alcohol (1a) (2.6 mmol), morpholine (2a) (2 mmol), and anhydrous solvent (0.5 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at the respective temperature for 22 h,then to the mixture was added triphenylmethane (0.2 mmol)as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

HO	+ HN 0 KOBu ^t (3 mol Solvent, Tem	⁽ Ph ₃) ₃ (2 mol% Ru)) <u>%)</u> HO p., 22 h	(2 mol% Ru) $HO N O$	
1h	2a	3	Bha	
Entry	Solvent (mL)	Temp.	NMR Yield (%)	
1	IPA (0.5)	70	55	
2	IPA (0.5)	80	82	
3	IPA (0.5)	85	90	
4	IPA (0.5)	90	50	
5	IPA/Toluene (0.5/0.5)	85	99	

4. Synthesis of materials Synthesis of 2,6-bis(*n*-butyliminomethyl)pyridine (L4)

Scheme S1. Synthesis of 2,6-bis(*n*-butyliminomethyl)pyridine (L4)

Under argon atmosphere, to a 80 mL Schlenk flask was added $MgSO_4$ (0.6 g), pyridine-2,6-carbaldehyde (0.1 mmol), *n*-butylamine (0.05 mL), and CHCl₃ (1.6 mL). The reaction mixture was stirred at r.t. for 4 h, then filtrated, and the filtrate was concentrated. The residue was dried under reduced pressure to give the product as a colorless oil quantitatively. The 0.05M solution of L4 in CH₂Cl₂ was prepared by adding CH₂Cl₂ (2 mL) to the residue, and used for catalytic reactions.

¹H NMR: $\delta = 0.95$ (t, J = 7.2 Hz, 6H, - CH₃), 1.41 (sex, J = 7.5 Hz, 4H, -CH₂CH₃), 1.72 (quin, J = 7.2 Hz, 4H, - CH₂CH₂CH₃), 3.69 (t, J = 7.2 Hz, 4H, -CH₂N-), 7.80 (t, J = 7.8 Hz, 1H, Ar-H), 8.00 (d, J = 7.8 Hz, 2H, Ar-H), 8.41 (s, 2H, -NCH-) ppm. ¹³C NMR: $\delta = 13.8$, 20.4, 32.7, 61.3, 122.1, 137.0, 154.4, 161.4 ppm.GC-MS: m/z = 245. HRMS (FAB, *m*-NBA): Calcd. for C₁₅H₂₄N₃ ([M+H]⁺) 246.1970; found 246.1964. CAS Registry Number: 1469980-53-7.

Synthesis of (3-methoxy-4-penten-1-yl)benzene (1c')

Scheme S2. Synthesis of (3-methoxy-4-penten-1-yl)benzene (1c')

Under argon, to a 200 mL reaction container was added **1c** (11.7 mmol), and THF (20 mL). To the mixture was slowly added NaH, in oil (14 mmol) at 0°C, and the mixture was stirred at r.t. for 1 h. Then, methyl iodide (17.6 mmol) was added at 0°C, and the reaction mixture was stirred at r.t. for 17 h. After the reaction was quenched with the distilled water and sat. NH₄Cl aq., the solution extracted with Et₂O from the resulting mixture was washed with Brine, dehydrated with Na₂SO₄, and then filtrated. The filtrate was concentrated, and the residue was dried under reduced pressure. The residue was purified by vacuum distillation to give the product as a colorless oil (82 % yield).

¹H NMR: δ = 1.71-1.98 (m, 2H, -CHC*H*₂-), 2.60-2.80 (m, 2H, -C*H*₂Ar), 3.27 (s, 3H, -OC*H*₃), 3.50 (qurt, *J* = 7.2 Hz, 1H, -CHOCH₃), 5.16-5.24 (m, 2H, -CH=C*H*₂), 5.62-5.74 (m, 1H, -C*H*=CH₂), 7.15-7.30 (m, 5H, Ar-*H*) ppm. ¹³C NMR: δ = 31.5, 37.0, 56.2, 82.0, 117.3, 125.8, 128.3, 128.5, 138.6, 142.1 ppm.GC-MS: *m/z* = 176. HRMS (FAB, *m*-NBA): Calcd. for C12H16O (M⁺) 176.1201; found 176.1201. CAS Registry Number: 37904-38-4.

5. Hydroamination methods

Method A: Hydroamination of 3-buten-2-ol (1a)

To an argon-purged reaction tube equipped with J-Young stop valve was added RuClH(CO)(PPh₃)₃ (0.04 mmol), 2,6bis(*n*-butyliminomethyl)pyridine (L4) (0.044 mmol) prepared from pyridine-2,6-carbaldehyde and *n*-butylamine, and anhydrous CH₂Cl₂ (1 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then the solvent was removed under reduced pressure. To the residue was added KOBu^t (0.06 mmol), 3-buten-2-ol (**1a**) (2.6 mmol), amine (2 mmol), and anhydrous IPA (0.5 mL). The mixturewas degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred for at 70°C 22 h, then to the mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

Method B: Hydroamination of allylic alcohols

To an argon-purged reaction tube equipped with J-Young stop valve was added RuClH(CO)(PPh₃)₃ (0.04 mmol), 2,6bis(*n*-butyliminomethyl)pyridine (L4) (0.044 mmol) prepared from pyridine-2,6-carbaldehyde and *n*-butylamine, and anhydrous CH_2Cl_2 (1 mL). The mixture was degassed by using FPT cycles and then purged with argona gain. The reaction mixture was stirred at 40°C for 1 h, then vacuum distilled. To the residue was added KOBu^{*i*} (0.06 mmol), allylic alcohols (2.6 mmol), morphoine (2a) (2 mmol), and corresponding anhydrous solevnt (0.5 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at the corresponding temperaturefor 22 h, then to the mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

Method C: Hydroamination of allyl alcohol (1h)

To an argon-purged reaction tube equipped with J-Young stop valve was added RuClH(CO)(PPh₃)₃ (0.04 mmol), 2,6bis(*n*-butyliminomethyl)pyridine (L4) (0.044 mmol) prepared from pyridine-2,6-carbaldehyde and *n*-butylamine, and anhydrous CH₂Cl₂ (1 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then vacuum distilled. To the residue was added KOBu^{*t*} (0.06 mmol), allyl alcohol (1h) (2.6 mmol), amine (2 mmol), anhydrous IPA (0.5 mL), and Toluene (0.5 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 85°C for 22 h, then to the mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

Method D: Hydroamination of (3-methoxy-4-penten-1-yl)benzene (1c')

To an argon-purged reaction tube equipped with J-Young stop valvewas added RuClH(CO)(PPh₃)₃ (0.04 mmol), 2,6bis(*n*-butyliminomethyl)pyridine (L4) (0.044 mmol) prepared from pyridine-2,6-carbaldehyde and *n*-butylamine, and anhydrous CH_2Cl_2 (1 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 40°C for 1 h, then vacuum distilled. To the residue was added KOBu^t (0.06 mmol), (3methoxy-4-penten-1-yl)benzene (1c') (2.6 mmol), morphoine (2a) (2 mmol), and IPA (0.5 mL). The mixture was degassed by using FPT cycles and then purged with argon again. The reaction mixture was stirred at 70°C for 22 h, then to the mixture was added triphenylmethane (0.2 mmol) as an internal standard for NMR yield. A part of the solution was picked up and evaporated, and then the yield was measured by ¹H NMR.

6. Characterization of products

4-(Morpholin-1-yl)butan-2-ol (**3aa**)

The reaction was conducted according to Method A with amine 2a (>99% yield). The product was purified by column chromatography (EtOAc:MeOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 1.18$ (d, J = 6.0 Hz, 3H, -CH₃), 1.45-1.53 (m, 1H, -CHC*H*H-), 1.58-1.72 (m, 1H, -CHCH*H*-), 2.40 (br-s, 2H, -CHCH₂C*H*₂-), 2.53-2.70 (m, 4H, -NC*H*₂CH₂O-), 3.71 (br-s, 4H, -NCH₂C*H*₂O-), 3.91-4.01 (m, 1H, -CHOH) ppm. ¹³C NMR: $\delta = 23.2$, 32.8, 53.5, 58.1, 66.8, 69.6 ppm. GC-MS: m/z = 159. HRMS (FAB, *m*-NBA): Calcd. for C₈H₁₈NO₂ ([M+H]⁺) 160.1338; found 160.1342. CAS Registry Number: 858440-45-6.

4-(Piperizin-1-yl)butan-2-ol (3ab)

Fig S3. Chemical Structure of 3ab

The reaction was conducted according to Method A with amine **2b** (86% yield). The product was purified by column chromatography (EtOAc:MeOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR (CDCl₃): δ = 1.16 (d, *J* = 6.0 Hz, 3H, -CH₃), 1.31-1.70 (m, 8H, -CHCH₂-, -NCH₂(CH₂)₃-), 2.30 (br-s, 2H, -CHCH₂CH₂-), 2.44-2.63 (m, 4H, -NCH₂(CH₂)₂-), 3.89-4.00 (m, 1H, -CHOH) ppm. ¹³C NMR: δ = 23.4, 24.1, 25.9, 33.2, 54.5, 58.4, 69.8 ppm. GC-MS: *m*/*z* = 157. HRMS (FAB, *m*-NBA): Calcd. for C₉H₂₀NO ([M+H]⁺) 158.1545; found 158.1546. CAS Registry Number: 71648-40-3.

4-(4-Phenylpiperazin-1-yl)butan-2-ol (3ac)

Fig S4. Chemical Structure of 3ac

The reaction was conducted according to Method A with amine 2c (>99% yield). The product was purified by column chromatography (CHCl₃:Hexane = 1:1). The product was obtained as a white solid.

¹H NMR: $\delta = 1.19$ (d, J = 6.0 Hz, 3H, -CH₃), 1.48-1.57 (m, 1H, -CHCHH-), 1.62-1.75 (m, 1H, -CHCHH-), 2.51-2.86 (m, 6H, -CHCH₂CH₂-, -CH₂CH₂NAr), 3.15-3.25 (m, 4H, -CH₂CH₂NAr), 3.94-4.02 (m, 1H, -CHOH), 5.91 (br-s, 1H, -OH), 6.84-6.93 (m, 3H, Ar-H), 7.24-7.29 (m, 2H, Ar-H) ppm. ¹³C NMR: $\delta = 23.3$, 33.2, 49.1, 53.2, 57.7, 69.7, 116.1, 119.8, 129.0, 151.0 ppm. GC-MS: m/z = 234. HRMS (FAB, *m*-NBA): Calcd. for C₁₄H₂₃N₂O ([M+H]⁺) 235.1810; found 235.1812. CAS Registry Number: 1034267-00-9.

Fig S5. Chemical Structure of 3ad

The reaction was conducted according to Method A with amine 2d (90% yield). The product was purified by column chromatography (EtOAc:MeOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.18 (d, *J* = 6.3 Hz, 3H, -CH₃), 1.54-1.61 (m, 1H, -CHCHH-), 1.68-1.81 (m, 1H, -CHCHH-), 2.58-3.01 (m, 6H, -CHCH₂CH₂-, -N(CH₂)₂Ar), 3.61-3.66 (d, 1H, *J* = 14.7 Hz -NCHHAr), 3.73-3.78 (d, *J* = 14.7 Hz, 1H, -NCHHAr), 3.96-4.03 (m, 1H, -CHOH), 7.01-7.15 (m, 4H, Ar-H) ppm. ¹³C NMR: δ = 23.4, 28.8, 33.6, 50.5, 56.3, 57.5, 69.7, 125.7, 126.2, 126.5, 128.5, 133.9, 134.0 ppm. GC-MS: *m/z* = 205. HRMS (FAB, *m*-NBA): Calcd. for C₁₃H₂₀NO ([M+H]⁺) 206.1545; found 206.1548. CAS Registry Number: 1247753-69-0.

4-(1,4-Dioxa-8-azaspiro[4.5]decan-8-yl)butan-2-ol (3ae)

Fig S6. Chemical Structure of 3ae

The reaction was conducted according to Method A with amine 2e (75% yield). The product was purified by column chromatography (EtOAc:MeOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 1.17$ (d, J = 6.3 Hz, 3H, -*CH*₃), 1.43-1.52 (m, 1H, -*CHCH*H-), 1.56-1.80 (m, 5H, -*CHCHH*-, -*CCH*₂-), 2.46 (br-s, 2H, -*CHCH*₂*CH*₂-), 2.54-2.80 (m, 4H, -*NCH*₂*CH*₂*C*-), 3.90-4.00 (m, 5H, -*CHO*H, -*CH*₂O-), 6.23 (br-s, 1H, - OH) ppm. ¹³C NMR: $\delta = 23.3$, 33.6, 34.7, 51.4, 57.4, 64.2, 69.7, 106.8 ppm. GC-MS: m/z = 215. Anal. Calcd. for $C_{11}H_{21}NO_3$: C, 61.37; H, 9.83; N, 6.51. Found: C, 61.43; H, 9.76; N, 6.55.

4-(Indolin-1-yl)butan-2-ol (3af)

OH

Fig S7. Chemical Structure of 3af

The reaction was conducted according to Method A with amine 2f (86% yield). The product was purified by column chromatography (EtOAc:Hexane = 1:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 1.24$ (d, J = 6.0 Hz, 3H, -*CH*₃), 1.70-1.83 (m, 2H, -*CHCH*₂-), 2.95 (t, J = 8.1 Hz, 2H, -NCH₂*CH*₂Ar), 3.10-3.51 (m, 5H, -*CHCH*₂*CH*₂*C*, -*NCH*₂*CH*₂Ar, -*OH*), 3.96-4.07 (m, 1H, -*CHO*H), 6.61 (d, J = 7.8 Hz, 1H, Ar-*H*), 6.72 (t, J = 7.2 Hz, 1H, Ar-*H*), 7.09 (t, J = 7.2 Hz, 2H, Ar-*H*) ppm. ¹³C NMR: $\delta = 23.6$, 28.5, 35.7, 48.5, 53.9, 67.9, 108.0, 118.6, 124.4, 127.2, 130.4, 152.4 ppm. GC-MS: m/z = 191. HRMS (FAB, *m*-NBA): Calcd. for C₁₂H₁₇NO (M⁺) 191.1310; found 191.1309. CAS Registry Number: 56771-63-2.

Fig S8. Chemical Structure of 3ag

The reaction was conducted according to Method A with amine 2g (74% yield). The product was purified by column chromatography (EtOAc:Hexane = 1:5) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.08 (d, *J* = 6.3 Hz, 3H, -CH₃), 1.45-1.54 (m, 1H, -CHCHH-), 1.67-1.80 (m, 1H, -CHCHH-), 2.51-2.58 (m, 1H, -CHCH₂CHH-), 2.71-2.81 (m, 1H, -CHCH₂CHH-), 3.24 (d, *J* = 13.2 Hz, 2H, -CHHAr), 3.68-3.78 (m, 1H, -CHOH), 3.89 (d, *J* = 13.2 Hz, 2H, -CHHAr), 7.23-7.36 (m, 10H, Ar-*H*) ppm. ¹³C NMR: δ = 23.1, 34.0, 52.6, 58.5, 69.2, 127.3, 128.4, 129.2, 138.0 ppm. GC-MS: *m*/*z* = 269. HRMS (FAB, *m*-NBA): Calcd. for C₁₈H₂₄NO ([M+H]⁺) 270.1858; found 270.1857. CAS Registry Number: 177550-45-7.

4-(benzylamino)butan-2-ol (3ah)

Fig S9. Chemical Structure of 3ah

The reaction was conducted according to Method A with amine **2h** (44% yield). The product was purified by column chromatography (EtOAc:Hexane = 6:5, + Et₃N (7%)) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 1.17$ (d, J = 6.0 Hz, 3H, -CH₃), 1.42-1.65 (m, 2H, -CHCH₂-), 2.74-2.83 (m, 1H, -CHCH₂CHH-), 2.98-3.05 (m, 1H, -CHCHH-), 3.73 (d, J = 12.9 Hz, 1H, -CHHAr), 3.82 (d, J = 13.2Hz, 2H, -CHHAr), 3.94-4.02 (m, 1H, -CHOH), 7.22-7.35 (m, 5H, Ar-H) ppm. ¹³C NMR: $\delta = 23.5$, 36.7, 48.2, 53.7, 69.6, 127.1, 128.1, 128.4, 139.3 ppm. GC-MS: m/z = 179. HRMS (FAB, m-NBA): Calcd. for C₁₁H₁₈NO ([M+H]⁺) 180.1388; found 180.1391. CAS Registry Number: 93293-37-9.

1-(Morpholin-1-yl)heptan-3-ol (3ba)

Fig S10. Chemical Structure of 3ba

The reaction was conducted according to Method B with allylic alcohols **1b** at 70°C in IPA (0.5 mL) (>99% yield). The product was purified by column chromatography (EtOAc only) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 0.91$ (t, J = 7.2 Hz, 3H, -CH₃), 1.21-1.70 (m, 8H, -(CH₂)₃CH₃, -CHCH₂CH₂N-), 2.43 (br-s, 2H, -CHCH₂CH₂N-), 2.51-2.69 (m, 4H, -NCH₂CH₂O-), 3.56-3.81 (m, 5H, -NCH₂CH₂O-, -CHOH) ppm. ¹³C NMR: $\delta = 14.0$, 22.7, 27.7, 31.2, 37.4, 53.6, 58.3, 66.9, 73.7 ppm. GC-MS: m/z = 201. HRMS (FAB, *m*-NBA): Calcd. for C₁₁H₂₄NO₂ ([M+H]⁺) 202.1807; found 202.1801.

Fig S11. Chemical Structure of 3ca

The reaction was conducted according to Method B with allylic alcohols 1c at 70°C in IPA (0.5 mL) (90% yield). The product was purified by column chromatography (EtOAc:Hexane = 1:1) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.41-1.54 (m, 1H, -CHC*H*HCH₂N-), 1.60-1.87 (m, 3H, -CHCH*H*CH₂N-, -C*H*₂CH₂Ar), 2.41 (br-s, 2H, -CHCH₂C*H*₂N-), 2.55-2.87 (m, 6H, -C*H*₂Ar, -NC*H*₂CH₂O-), 3.62-3.85 (m, 5H, -NCH₂C*H*₂O-, -C*H*OH), 6.09 (br-s, 1H, -CHO*H*), 7.15-7.31 (m, 5H, Ar-*H*) ppm. ¹³C NMR: δ = 31.2, 31.9, 39.4, 53.6, 58.3, 66.9, 73.0, 125.6, 128.3, 128.4, 142.4 ppm. GC-MS: *m*/*z* = 249. HRMS (FAB, *m*-NBA): Calcd. for C₁₅H₂₄NO₂ ([M+H]⁺) 250.1807; found 250.1803.

4-(Morpholin-1-yl)-1-phenylbutan-2-ol (3da)

Fig S12. Chemical Structure of 3da

The reaction was conducted according to Method B with allylic alcohols 1d at 100°C in IPA (0.5 mL) and Toluene (0.5 mL) (91% yield). The product was purified by column chromatography (EtOAc:Hexane = 1:1) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.46-1.55 (m, 1H, -CHCHHCH₂-), 1.61-1.74 (m, 1H, -CHCHHCH₂-), 2.39 (br-s, 2H, -CHCH₂CH₂-), 2.54-2.70 (m, 5H, -CHHAr, -NCH₂CH₂O-), 2.85 (dd, *J* = 13.5 Hz, *J* = 6.9 Hz, 1H, -CHHAr), 3.61-3.78 (m, 4H, -NCH₂CH₂O-), 3.99-4.07 (m, 1H, -CHOH), 7.17-7.32 (m, 5H, Ar-*H*) ppm. ¹³C NMR: δ = 30.4, 44.1, 53.6, 58.2, 66.8, 74.8, 126.1, 128.2, 129.2, 138.8 ppm. GC-MS: *m*/*z* = 235. HRMS (FAB, *m*-NBA): Calcd. for C₁₄H₂₂NO₂ ([M+H]⁺) 236.1651; found 236.1651.

3-(Morpholin-1-yl)-1-phenylpropropan-1-ol (3ea)¹³

Fig S13. Chemical Structure of 3ea

The reaction was conducted according to Method B with allylic alcohols **1e** at 80°C in IPA (0.5 mL) and Toluene (0.5 mL) (>99% yield). The product was purified by column chromatography (EtOAc only) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR (CDCl₃): δ = 1.84-1.91 (m, 2H, -CHCH₂-), 2.40-2.74 (m, 6H, -CHCH₂CH₂-, -NCH₂CH₂O-), 3.76 (t, *J* = 4.8 Hz, 4H, -NCH₂CH₂O-), 4.95 (t, *J* = 5.4 Hz, 1H, -CHOH), 6.47 (br-s, 1H, -OH), 7.20-7.39 (m, 5H, Ar-H) ppm. ¹³C NMR: δ = 33.4, 53.7, 57.6, 66.9, 75.5, 125.5, 127.0, 128.3, 144.7 ppm. GC-MS: *m/z* = 221. CAS Registry Number: 4441-34-3.

The reaction was conducted according to Method B with allylic alcohols **1f** at 65°C in IPA (0.5 mL) and Toluene (0.5 mL) (70% yield). The product was purified by column chromatography (EtOAc only) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.76-1.93 (m, 2H, -CHC*H*₂-), 2.49 (br-s, 2H, -CHCH₂C*H*₂-), 2.54-2.73 (m, 4H, -NC*H*₂CH₂O-), 3.75 (t, *J* = 4.5 Hz, 4H, -NCH₂C*H*₂O-), 3.80 (s, 3H, Ar-OC*H*₃), 4.89 (dd, *J* = 7.8 Hz, *J* = 3.6 Hz, 1H, -CHOH), 6.86-6.89 (m, 2H, Ar-*H*), 7.26-7.30 (m, 2H, Ar-*H*) ppm. ¹³C NMR: δ = 33.5, 53.7, 55.3, 57.6, 66.9, 75.2, 113.6, 126.6, 136.9, 158.6 ppm. GC-MS: *m*/*z* = 251. CAS Registry Number: 109562-49-4.

4-(Morpholin-1-yl)-1-phenoxybutan-2-ol (3ga)

Fig S15. Chemical Structure of 3ga

The reaction was conducted according to Method B with allylic alcohols 1g at 90°C in IPA (0.5 mL) and Toluene (0.5 mL) (92% yield). The product was purified by column chromatography (EtOAc only) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.68-1.89 (m, 2H, -CHCH₂CH₂-), 2.47 (br-s, 2H, -CHCH₂CH₂-), 2.57-2.77 (m, 4H, -NCH₂CH₂O-), 3.72 (t, *J* = 4.5 Hz, 4H, -NCH₂CH₂O-), 3.87 (dd, *J* = 9.3 Hz, *J* = 5.7 Hz, 1H, -OCHHCH-), 3.97 (dd, *J* = 9.3 Hz, *J* = 5.7 Hz, 1H, -OCHHCH-), 4.15-4.23 (m, 1H, -CHOH), 6.89-6.97 (m, 3H, Ar-H), 7.24-7.31 (m, 2H, Ar-H) ppm. ¹³C NMR: δ = 28.0, 53.7, 57.6, 66.9, 71.4, 71.7, 114.5, 120.8, 129.4, 158.8 ppm. FAB-MS: *m*/*z* = 252 ([M + H]⁺). HRMS (FAB, *m*-NBA): Calcd. for C₁₄H₂₂NO₃ ([M+H]⁺) 252.1600; found 252.1595. CAS Registry Number: 873390-19-3.

3-(Morpholin-1-yl)propan-1-ol (3ha)14

Fig S16. Chemical Structure of 3ha

The reaction was conducted according to Method C with amine 2a (99% yield). The product was purified by column chromatography (EtOAc:MrOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 1.73$ (quin, J = 5.4 Hz, 2H, -CH₂CH₂OH), 2.53 (br-s, 2H, -CH₂CH₂OH), 2.59 (t, J = 5.7 Hz, 4H, -NCH₂CH₂O-), 3.71 (t, J = 4.5 Hz, 4H, -NCH₂CH₂O-), 3.81 (t, J = 5.4 Hz, 2H, -CH₂OH), 4.44 (br-s, 1H, -OH) ppm. ¹³C NMR: $\delta = 26.8$, 53.7, 59.0, 64.3, 66.8 ppm. GC-MS: m/z = 145. CAS Registry Number: 4441-30-9.

Fig S17. Chemical Structure of 3hb

The reaction was conducted according to Method C with amine **2b** (94% yield). The product was purified by column chromatography (EtOAc:MrOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.37-1.49 (m, 2H, -CH₂CH₂CH₂CH₂N-), 1.57 (quin, *J* = 5.4 Hz, 4H, -CH₂CH₂CH₂N-), 1.68 (quin, *J* = 5.4 Hz, 2H, -CH₂CH₂OH), 2.45 (br-s, 2H, -CH₂CH₂CH₂OH), 2.56 (t, *J* = 5.7 Hz, 4H, -CH₂CH₂CH₂CH₂N-), 3.80 (t, *J* = 5.4 Hz, 2H, -CH₂OH) ppm. ¹³C NMR: δ = 24.2, 26.0, 27.0, 54.7, 59.7, 64.8 ppm. GC-MS: *m*/*z* = 143. CAS Registry Number: 104-58-5.

3-(4-Phenylpiperazin-1-yl)propan-1-ol (**3hc**)

The reaction was conducted according to Method C with amine 2c at 90°C (98% yield). The product was purified by column chromatography (EtOAc:MrOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 1.76$ (qurt, J = 5.4 Hz, 2H, -CH₂CH₂OH), 2.65-2.71 (m, 6H, -CH₂CH₂CH₂OH, -CH₂CH₂NAr), 3.20 (t, J = 5.1 Hz, 4H, -CH₂NAr), 3.82 (t, J = 5.1 Hz, 2H, -CH₂OH), 5.13 (br-s, 1H, -OH), 6.84-6.94 (m, 3H, Ar-H), 7.23-7.29 (m, 2H, Ar-H) ppm. ¹³C NMR: $\delta = 27.1$, 49.2, 53.3, 58.7, 64.5, 116.1, 119.9, 129.1, 151.1 ppm. GC-MS: m/z = 220. HRMS (FAB, *m*-NBA): Calcd. for C₁₃H₂₁N₂O ([M+H]⁺) 221.1654; found 221.1652. CAS Registry Number: 67514-07-2.

3-(1,2,3,4-Tetrahydroisoquinolin-2-yl)propan-1-ol (3hd)¹⁵

Fig S19. Chemical Structure of 3hd

The reaction was conducted according to Method C with amine **2d** (95% yield). The product was purified by column chromatography (EtOAc:MrOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.82 (quin, 2H, *J* = 5.7 Hz, -*CH*₂CH₂OH), 2.76-2.81 (m, 4H, -*CH*₂CH₂CH₂OH, -*CH*₂CH₂Ar), 2.91 (t, *J* = 5.7 Hz, 2H, -*CH*₂CH₂Ar), 3.70 (s, 2H, -N*CH*₂Ar), 3.84 (t, 2H, *J* = 5.4 Hz, -*CH*₂OH) 7.00-7.15 (m, 4H, Ar-*H*) ppm. ¹³C NMR: δ = 27.5, 29.0, 50.8, 56.5, 58.7, 64.6, 125.7, 126.3, 126.5, 128.6, 134.1, 134.2 ppm. GC-MS: *m*/*z* = 191. CAS Registry Number: 86368-07-2.

Fig S20. Chemical Structure of 3he

The reaction was conducted according to Method C with amine 2e (80% yield). The product was purified by column chromatography (EtOAc:MrOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: δ = 1.68-1.76 (m, 6H, -CH₂CH₂OH, -CH₂C-), 2.51-2.65 (m, 6H, -CH₂CH₂CH₂OH, -NCH₂CH₂C-), 3.81 (t, J = 5.1 Hz, 2H, -CH₂OH), 3.95 (s, 4H, -CH₂O-), 5.44 (br-s, 1H, -OH) ppm.¹³C NMR: δ = 27.4, 34.8, 51.6, 58.6, 64.2, 64.7, 106.9 ppm. GC-MS: m/z = 201. HRMS (FAB, m-NBA): Calcd. for C₁₀H₂₀NO₃ ([M+H]⁺) 202.1443; found 202.1446. CAS Registry Number: 91017-21-9.

3-(Indolin-1-yl)propan-1-ol (3hf)

Fig S21. Chemical Structure of 3hf

The reaction was conducted according to Method C with amine 2f (92% yield). The product was purified by column chromatography (EtOAc:Hexane = 1:2) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 1.89$ (quin, J = 6.6 Hz, 2H, -CH₂CH₂OH), 2.40 (br-s, 1H, -OH), 2.96 (t, J = 8.1 Hz, 2H, -CH₂CH₂CH₂OH), 3.22 (t, J = 6.3 Hz, 2H, -CH₂Ar), 3.36 (t, J = 8.1 Hz, 2H, -NCH₂CH₂Ar), 3.79-3.84 (m, 2H, -CH₂OH), 6.59 (d, J = 7.8 Hz, 1H, Ar-H), 6.70 (t, J = 7.5 Hz, 1H, Ar-H), 7.10-7.12 (m, 2H, Ar-H) ppm. ¹³C NMR: $\delta = 28.6$, 29.9, 48.1, 53.8, 62.1, 107.7, 118.3, 124.5, 127.3, 130.2, 152.5 ppm. GC-MS: m/z = 177. HRMS (FAB, *m*-NBA): Calcd. for C₁₁H₁₅NO (M⁺) 177.1154; found 177.1158. CAS Registry Number: 105150-22-9.

3-(*N*,*N*-dipropylamino)propan-1-ol (**3hi**)

The reaction was conducted according to Method C with amine 2i (87% yield). The product was purified by column chromatography (EtOAc:MeOH = 20:3) and vacuum distillation. The product was obtained as a colorless oil.

¹H NMR: $\delta = 0.89$ (t, J = 7.5, 6H, -CH₃), 1.44-1.57 (m, 4H, -CH₂CH₃), 1.68 (quin, J = 5.4 Hz, 2H, -CH₂CH₂OH), 2.34-2.41 (m, 4H, -NCH₂CH₂CH₃), 2.65 (t, J = 5.4 Hz, 2H, -CH₂CH₂OH), 3.81 (t, J = 5.1 Hz, 2H, -CH₂OH) ppm. ¹³C NMR: $\delta = 11.8$, 20.0, 27.8, 55.4, 56.1, 64.8 ppm. GC-MS: m/z = 159. HRMS (FAB, *m*-NBA): Calcd. for C₉H₂₂NO ([M+H]⁺) 160.1701; found 160.1705. CAS Registry Number: 34003-67-3.

Fig S23. ¹H NMR spectrum of L4

Fig S24. ¹³C NMR spectrum of L4

Fig S25. ¹H NMR spectrum of 1c'

Fig S26. ¹³C NMR spectrum of 1c'

Fig S27. ¹H NMR spectrum of 3aa

Fig S28. ¹³C NMR spectrum of 3aa

Fig S29. ¹H NMR spectrum of 3ab

Fig S30. ¹³C NMR spectrum of 3ab

Fig S31. ¹H NMR spectrum of 3ac

Fig S32. ¹³C NMR spectrum of 3ac

Fig S33. ¹H NMR spectrum of 3ad

Fig S34. ¹³C NMR spectrum of 3ad

Fig S35. ¹H NMR spectrum of 3ae

Fig S36. ¹³C NMR spectrum of 3ae

Fig S37. ¹H NMR spectrum of 3af

Fig S38. ¹³C NMR spectrum of 3af

Fig S39. ¹H NMR spectrum of 3ag

Fig S40. ¹³C NMR spectrum of 3ag

Fig S41. ¹H NMR spectrum of 3ah

Fig S42. ¹³C NMR spectrum of 3ah

Fig S43. ¹H NMR spectrum of 3ba

Fig S44. ¹³C NMR spectrum of **3ba**

Fig S45. ¹H NMR spectrum of 3ca

Fig S46. ¹³C NMR spectrum of 3ca

Fig S47. ¹H NMR spectrum of 3da

Fig S48. ¹³C NMR spectrum of 3da

Fig S49. ¹H NMR spectrum of 3ea

Fig S50. ¹³C NMR spectrum of 3ea

Fig S51. ¹H NMR spectrum of 3fa

Fig S52. ¹³C NMR spectrum of 3fa

Fig S53. ¹H NMR spectrum of 3ga

Fig S54. ¹³C NMR spectrum of 3ga

Fig S55. ¹H NMR spectrum of 3ha

Fig S56. ¹³C NMR spectrum of **3ha**

Fig S57. ¹H NMR spectrum of **3hb**

Fig S58. ¹³C NMR spectrum of **3hb**

Fig S59. ¹H NMR spectrum of 3hc

Fig S60. ¹³C NMR spectrum of **3hc**

Fig S61. ¹H NMR spectrum of 3hd

Fig S62. ¹³C NMR spectrum of 3hd

Fig S63. ¹H NMR spectrum of 3he

Fig S64. ¹³C NMR spectrum of **3he**

Fig S65. ¹H NMR spectrum of 3hf

Fig S66. ¹³C NMR spectrum of **3hf**

Fig S67. ¹H NMR spectrum of 3hi

Fig S68. ¹³C NMR spectrum of 3hi

8. References

1) Nihonkagakukai ed., Jikken Kagaku-Kouza [Course of Experimental Chemistry] (in Japanese), vol. 18, 4th Edition, Maruzen, Kyoto (1991).

- 2) P. D. de Koning, M. Jackson, I. C. Lennon, Org. Process. Res. Dev., 2006, 10, 1054-1058.
- 3) H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, A. F. England, T. Ikariya, R. Noyori, *Angew. Chem.*, Int. Ed. **1998**, *37*, 1703-1707.
- 4) R. García-Alvarez, J. Díez, P. Crochet, V. Cadierno, Organometallics, 2010, 29, 3955-3965.
- 5) S. J. Coote, G. J. Dawson, C. G. Frost, J. M. J. Williams, Synlett, 1993, 7, 509-510.
- 6) A. Habtemariam, B. Watchman, B. S. Potter, R. Palmer, S. Parsons, A. Parkin, P. J. Sadler, J. Chem. Soc., Dalton Trans., 2001, 1306-1318.
- 7) K. Hayashi, H. Tanimoto, H. Zhang, T. Morimoto, Y. Nishiyama, K. Kakiuchi, Org. Lett., 2012, 14, 5728-5731.
- 8) Y. Lu, G. Zou, G. Zhao, ACS Catal., 2013, 3, 1356-1359.
- 9) H. Lin, Y. Liu, Z. Wu, Chem. Commun., 2011, 47, 2610-2612.
- 10) H. Le, R. E. Kyne, L. A. Brozek, J. P. Morken, Org. Lett., 2013, 15, 1432-1435.
- 11) Y. Hon, Y. Wong, K. Wu, J. Chin. Chem. Soc., 2008, 55, 896-914.
- 12) V. Saggiomo, U. Lüning, Eur. J. Org. Chem., 2008, 4329-4333.
- 13) S. Ueno, K. Usui, R. Kuwano, Synlett, 2011, 9, 1303-1307.
- 14) C. L. Sann, J. Huddleston, J. Mann, Tetrahedron, 2007, 63, 12903-12911.
- 15) M. Ferles, A. Šilhánková, S. Kafka, P. Taufmann, T. Motáček, Collect. Czech. Chem. Commun, 1983, 48, 1759-1764.